Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Aryl hydrocarbon receptor nuclear translocator-like protein 1 (Arnt3) (Brain and muscle ARNT-like 1)

 BMAL1_MOUSE             Reviewed;         632 AA.
Q9WTL8; O88295; Q921S4; Q9R0U2; Q9WTL9;
15-AUG-2003, integrated into UniProtKB/Swiss-Prot.
15-AUG-2003, sequence version 2.
22-NOV-2017, entry version 161.
RecName: Full=Aryl hydrocarbon receptor nuclear translocator-like protein 1;
AltName: Full=Arnt3;
AltName: Full=Brain and muscle ARNT-like 1;
Name=Arntl; Synonyms=Bmal1;
Mus musculus (Mouse).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;
Muroidea; Muridae; Murinae; Mus; Mus.
NCBI_TaxID=10090;
[1]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 1; 2 AND 5).
TISSUE=Brain;
PubMed=10403839; DOI=10.1006/bbrc.1999.0970;
Yu W., Ikeda M., Abe H., Honma S., Ebisawa T., Yamauchi T., Honma K.,
Nomura M.;
"Characterization of three splice variants and genomic organization of
the mouse BMAL1 gene.";
Biochem. Biophys. Res. Commun. 260:760-767(1999).
[2]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 4).
PubMed=9704006; DOI=10.1006/bbrc.1998.9012;
Takahata S., Sogawa K., Kobayashi A., Ema M., Mimura J., Ozaki N.,
Fujii-Kuriyama Y.;
"Transcriptionally active heterodimer formation of an Arnt-like PAS
protein, Arnt3, with HIF-1a, HLF, and clock.";
Biochem. Biophys. Res. Commun. 248:789-794(1998).
[3]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 3 AND 4).
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[4]
INTERACTION WITH CLOCK.
PubMed=9616112; DOI=10.1126/science.280.5369.1564;
Gekakis N., Staknis D., Nguyen H.B., Davis F.C., Wilsbacher L.D.,
King D.P., Takahashi J.S., Weitz C.J.;
"Role of the CLOCK protein in the mammalian circadian mechanism.";
Science 280:1564-1569(1998).
[5]
IDENTIFICATION IN A COMPLEX WITH CLOCK; PER1; PER2; CRY1; CRY2; CSNK1D
AND CSNK1E, PHOSPHORYLATION, AND SUBCELLULAR LOCATION.
PubMed=11779462; DOI=10.1016/S0092-8674(01)00610-9;
Lee C., Etchegaray J.-P., Cagampang F.R.A., Loudon A.S.I.,
Reppert S.M.;
"Posttranslational mechanisms regulate the mammalian circadian
clock.";
Cell 107:855-867(2001).
[6]
INTERACTION WITH BHLHE40 AND BHLHE41.
PubMed=12397359; DOI=10.1038/nature01123;
Honma S., Kawamoto T., Takagi Y., Fujimoto K., Sato F., Noshiro M.,
Kato Y., Honma K.I.;
"Dec1 and Dec2 are regulators of the mammalian molecular clock.";
Nature 419:841-844(2002).
[7]
PHOSPHORYLATION, AND SUBCELLULAR LOCATION.
PubMed=12897057; DOI=10.1101/gad.1099503;
Kondratov R.V., Chernov M.V., Kondratova A.A., Gorbacheva V.Y.,
Gudkov A.V., Antoch M.P.;
"BMAL1-dependent circadian oscillation of nuclear CLOCK:
posttranslational events induced by dimerization of transcriptional
activators of the mammalian clock system.";
Genes Dev. 17:1921-1932(2003).
[8]
FUNCTION.
PubMed=14672706; DOI=10.1016/j.bbrc.2003.11.099;
Kawamoto T., Noshiro M., Sato F., Maemura K., Takeda N., Nagai R.,
Iwata T., Fujimoto K., Furukawa M., Miyazaki K., Honma S., Honma K.I.,
Kato Y.;
"A novel autofeedback loop of Dec1 transcription involved in circadian
rhythm regulation.";
Biochem. Biophys. Res. Commun. 313:117-124(2004).
[9]
SUMOYLATION AT LYS-266, AND MUTAGENESIS OF LYS-230; LYS-236; LYS-266
AND LYS-279.
PubMed=16109848; DOI=10.1126/science.1110689;
Cardone L., Hirayama J., Giordano F., Tamaru T., Palvimo J.J.,
Sassone-Corsi P.;
"Circadian clock control by SUMOylation of BMAL1.";
Science 309:1390-1394(2005).
[10]
INTERACTION WITH NPAS2.
PubMed=16628007; DOI=10.4161/cc.5.8.2684;
Kondratov R.V., Kondratova A.A., Lee C., Gorbacheva V.Y.,
Chernov M.V., Antoch M.P.;
"Post-translational regulation of circadian transcriptional
CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES.";
Cell Cycle 5:890-895(2006).
[11]
INTERACTION WITH EZH2; CLOCK; PER1; PER2; CRY1 AND CRY2.
PubMed=16717091; DOI=10.1074/jbc.M603722200;
Etchegaray J.P., Yang X., DeBruyne J.P., Peters A.H., Weaver D.R.,
Jenuwein T., Reppert S.M.;
"The polycomb group protein EZH2 is required for mammalian circadian
clock function.";
J. Biol. Chem. 281:21209-21215(2006).
[12]
SUBCELLULAR LOCATION, NUCLEAR LOCALIZATION SIGNAL, NUCLEAR EXPORT
SIGNAL, INTERACTION WITH CLOCK, MUTAGENESIS OF 38-LYS-ARG-39; LEU-154;
LEU-157; LEU-370 AND LEU-374, UBIQUITINATION, AND PROTEASOMAL
DEGRADATION.
PubMed=16980631; DOI=10.1128/MCB.00337-06;
Kwon I., Lee J., Chang S.H., Jung N.C., Lee B.J., Son G.H., Kim K.,
Lee K.H.;
"BMAL1 shuttling controls transactivation and degradation of the
CLOCK/BMAL1 heterodimer.";
Mol. Cell. Biol. 26:7318-7330(2006).
[13]
TISSUE SPECIFICITY, AND INDUCTION.
PubMed=16790549; DOI=10.1073/pnas.0604138103;
Partch C.L., Shields K.F., Thompson C.L., Selby C.P., Sancar A.;
"Posttranslational regulation of the mammalian circadian clock by
cryptochrome and protein phosphatase 5.";
Proc. Natl. Acad. Sci. U.S.A. 103:10467-10472(2006).
[14]
ACETYLATION AT LYS-544.
PubMed=18075593; DOI=10.1038/nature06394;
Hirayama J., Sahar S., Grimaldi B., Tamaru T., Takamatsu K.,
Nakahata Y., Sassone-Corsi P.;
"CLOCK-mediated acetylation of BMAL1 controls circadian function.";
Nature 450:1086-1090(2007).
[15]
INTERACTION WITH CRY1; CRY2 AND PER2.
PubMed=18430226; DOI=10.1186/1471-2199-9-41;
Langmesser S., Tallone T., Bordon A., Rusconi S., Albrecht U.;
"Interaction of circadian clock proteins PER2 and CRY with BMAL1 and
CLOCK.";
BMC Mol. Biol. 9:41-41(2008).
[16]
INTERACTION WITH SIRT1 AND CLOCK.
PubMed=18662546; DOI=10.1016/j.cell.2008.06.050;
Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F.,
Mostoslavsky R., Alt F.W., Schibler U.;
"SIRT1 regulates circadian clock gene expression through PER2
deacetylation.";
Cell 134:317-328(2008).
[17]
ACETYLATION AT LYS-544, DEACETYLATION, AND INTERACTION WITH SIRT1.
PubMed=18662547; DOI=10.1016/j.cell.2008.07.002;
Nakahata Y., Kaluzova M., Grimaldi B., Sahar S., Hirayama J., Chen D.,
Guarente L.P., Sassone-Corsi P.;
"The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated
chromatin remodeling and circadian control.";
Cell 134:329-340(2008).
[18]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=18258755; DOI=10.1177/0748730407311254;
Alvarez J.D., Hansen A., Ord T., Bebas P., Chappell P.E.,
Giebultowicz J.M., Williams C., Moss S., Sehgal A.;
"The circadian clock protein BMAL1 is necessary for fertility and
proper testosterone production in mice.";
J. Biol. Rhythms 23:26-36(2008).
[19]
FUNCTION.
PubMed=18316400; DOI=10.1128/MCB.01931-07;
Bertolucci C., Cavallari N., Colognesi I., Aguzzi J., Chen Z.,
Caruso P., Foa A., Tosini G., Bernardi F., Pinotti M.;
"Evidence for an overlapping role of CLOCK and NPAS2 transcription
factors in liver circadian oscillators.";
Mol. Cell. Biol. 28:3070-3075(2008).
[20]
SUMOYLATION AT LYS-259, SUBCELLULAR LOCATION, INTERACTION WITH SUMO3,
MUTAGENESIS OF LYS-259, UBIQUITINATION, AND PROTEASOMAL DEGRADATION.
PubMed=18644859; DOI=10.1128/MCB.00583-08;
Lee J., Lee Y., Lee M.J., Park E., Kang S.H., Chung C.H., Lee K.H.,
Kim K.;
"Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes
circadian activation of the CLOCK/BMAL1 complex.";
Mol. Cell. Biol. 28:6056-6065(2008).
[21]
INTERACTION WITH GSK3B AND CLOCK, AND PHOSPHORYLATION.
PubMed=19946213; DOI=10.4161/cc.8.24.10273;
Spengler M.L., Kuropatwinski K.K., Schumer M., Antoch M.P.;
"A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and
degradation.";
Cell Cycle 8:4138-4146(2009).
[22]
FUNCTION.
PubMed=19141540; DOI=10.1096/fj.08-117697;
Nader N., Chrousos G.P., Kino T.;
"Circadian rhythm transcription factor CLOCK regulates the
transcriptional activity of the glucocorticoid receptor by acetylating
its hinge region lysine cluster: potential physiological
implications.";
FASEB J. 23:1572-1583(2009).
[23]
FUNCTION, AND INTERACTION WITH PER2.
PubMed=19605937; DOI=10.1074/jbc.M109.040758;
Sasaki M., Yoshitane H., Du N.H., Okano T., Fukada Y.;
"Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes
its negative role and a positive role of BMAL2 in the circadian
transcription.";
J. Biol. Chem. 284:25149-25159(2009).
[24]
PHOSPHORYLATION.
PubMed=19414601; DOI=10.1128/MCB.01864-08;
Yoshitane H., Takao T., Satomi Y., Du N.H., Okano T., Fukada Y.;
"Roles of CLOCK phosphorylation in suppression of E-box-dependent
transcription.";
Mol. Cell. Biol. 29:3675-3686(2009).
[25]
PHOSPHORYLATION AT SER-97, SUBCELLULAR LOCATION, MUTAGENESIS OF
SER-97, AND INTERACTION WITH CLOCK.
PubMed=19330005; DOI=10.1038/nsmb.1578;
Tamaru T., Hirayama J., Isojima Y., Nagai K., Norioka S.,
Takamatsu K., Sassone-Corsi P.;
"CK2alpha phosphorylates BMAL1 to regulate the mammalian clock.";
Nat. Struct. Mol. Biol. 16:446-448(2009).
[26]
FUNCTION, AND INTERACTION WITH SIRT1.
PubMed=19299583; DOI=10.1126/science.1171641;
Ramsey K.M., Yoshino J., Brace C.S., Abrassart D., Kobayashi Y.,
Marcheva B., Hong H.K., Chong J.L., Buhr E.D., Lee C., Takahashi J.S.,
Imai S., Bass J.;
"Circadian clock feedback cycle through NAMPT-mediated NAD+
biosynthesis.";
Science 324:651-654(2009).
[27]
FUNCTION.
PubMed=19286518; DOI=10.1126/science.1170803;
Nakahata Y., Sahar S., Astarita G., Kaluzova M., Sassone-Corsi P.;
"Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1.";
Science 324:654-657(2009).
[28]
FUNCTION, AND INTERACTION WITH CRY2.
PubMed=20840750; DOI=10.1186/1471-2199-11-69;
Ozber N., Baris I., Tatlici G., Gur I., Kilinc S., Unal E.B.,
Kavakli I.H.;
"Identification of two amino acids in the C-terminal domain of mouse
CRY2 essential for PER2 interaction.";
BMC Mol. Biol. 11:69-69(2010).
[29]
FUNCTION.
PubMed=20153195; DOI=10.1016/j.cub.2009.12.034;
Shi S., Hida A., McGuinness O.P., Wasserman D.H., Yamazaki S.,
Johnson C.H.;
"Circadian clock gene Bmal1 is not essential; functional replacement
with its paralog, Bmal2.";
Curr. Biol. 20:316-321(2010).
[30]
FUNCTION.
PubMed=20430893; DOI=10.1074/jbc.M110.110361;
Doi R., Oishi K., Ishida N.;
"CLOCK regulates circadian rhythms of hepatic glycogen synthesis
through transcriptional activation of Gys2.";
J. Biol. Chem. 285:22114-22121(2010).
[31]
SUBCELLULAR LOCATION, AND INTERACTION WITH ID1; ID2 AND ID3.
PubMed=20861012; DOI=10.1074/jbc.M110.175182;
Ward S.M., Fernando S.J., Hou T.Y., Duffield G.E.;
"The transcriptional repressor ID2 can interact with the canonical
clock components CLOCK and BMAL1 and mediate inhibitory effects on
mPer1 expression.";
J. Biol. Chem. 285:38987-39000(2010).
[32]
FUNCTION, AND INDUCTION.
PubMed=20385766; DOI=10.1128/MCB.01141-09;
Guillaumond F., Grechez-Cassiau A., Subramaniam M., Brangolo S.,
Peteri-Brunback B., Staels B., Fievet C., Spelsberg T.C., Delaunay F.,
Teboul M.;
"Kruppel-like factor KLF10 is a link between the circadian clock and
metabolism in liver.";
Mol. Cell. Biol. 30:3059-3070(2010).
[33]
INTERACTION WITH KMT2A.
PubMed=21113167; DOI=10.1038/nsmb.1961;
Katada S., Sassone-Corsi P.;
"The histone methyltransferase MLL1 permits the oscillation of
circadian gene expression.";
Nat. Struct. Mol. Biol. 17:1414-1421(2010).
[34]
FUNCTION.
PubMed=20562852; DOI=10.1038/nature09253;
Marcheva B., Ramsey K.M., Buhr E.D., Kobayashi Y., Su H., Ko C.H.,
Ivanova G., Omura C., Mo S., Vitaterna M.H., Lopez J.P.,
Philipson L.H., Bradfield C.A., Crosby S.D., Je Bailey L., Wang X.,
Takahashi J.S., Bass J.;
"Disruption of the clock components CLOCK and BMAL1 leads to
hypoinsulinaemia and diabetes.";
Nature 466:627-631(2010).
[35]
PHOSPHORYLATION AT SER-17 AND THR-21, AND INTERACTION WITH GSK3B.
PubMed=20049328; DOI=10.1371/journal.pone.0008561;
Sahar S., Zocchi L., Kinoshita C., Borrelli E., Sassone-Corsi P.;
"Regulation of BMAL1 protein stability and circadian function by
GSK3beta-mediated phosphorylation.";
PLoS ONE 5:E8561-E8561(2010).
[36]
FUNCTION.
PubMed=20956306; DOI=10.1073/pnas.1014523107;
Andrews J.L., Zhang X., McCarthy J.J., McDearmon E.L.,
Hornberger T.A., Russell B., Campbell K.S., Arbogast S., Reid M.B.,
Walker J.R., Hogenesch J.B., Takahashi J.S., Esser K.A.;
"CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of
skeletal muscle phenotype and function.";
Proc. Natl. Acad. Sci. U.S.A. 107:19090-19095(2010).
[37]
INTERACTION WITH RACK1 AND PRKCA, SUBCELLULAR LOCATION, AND
IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=20093473; DOI=10.1126/science.1180067;
Robles M.S., Boyault C., Knutti D., Padmanabhan K., Weitz C.J.;
"Identification of RACK1 and protein kinase Calpha as integral
components of the mammalian circadian clock.";
Science 327:463-466(2010).
[38]
INTERACTION WITH AHR.
PubMed=20106950; DOI=10.1093/toxsci/kfq022;
Xu C.X., Krager S.L., Liao D.F., Tischkau S.A.;
"Disruption of CLOCK-BMAL1 transcriptional activity is responsible for
aryl hydrocarbon receptor-mediated regulation of Period1 gene.";
Toxicol. Sci. 115:98-108(2010).
[39]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=22101268; DOI=10.4161/cc.10.23.18381;
Khapre R.V., Kondratova A.A., Susova O., Kondratov R.V.;
"Circadian clock protein BMAL1 regulates cellular senescence in
vivo.";
Cell Cycle 10:4162-4169(2011).
[40]
FUNCTION.
PubMed=22045262; DOI=10.4161/isl.3.6.18157;
Lee J., Kim M.S., Li R., Liu V.Y., Fu L., Moore D.D., Ma K.,
Yechoor V.K.;
"Loss of Bmal1 leads to uncoupling and impaired glucose-stimulated
insulin secretion in beta-cells.";
Islets 3:381-388(2011).
[41]
INTERACTION WITH CLOCK; CRY1 AND PER2.
PubMed=21613214; DOI=10.1074/jbc.M111.254680;
Ye R., Selby C.P., Ozturk N., Annayev Y., Sancar A.;
"Biochemical analysis of the canonical model for the mammalian
circadian clock.";
J. Biol. Chem. 286:25891-25902(2011).
[42]
FUNCTION.
PubMed=21768648; DOI=10.1074/jbc.M111.258970;
Koyanagi S., Hamdan A.M., Horiguchi M., Kusunose N., Okamoto A.,
Matsunaga N., Ohdo S.;
"cAMP-response element (CRE)-mediated transcription by activating
transcription factor-4 (ATF4) is essential for circadian expression of
the Period2 gene.";
J. Biol. Chem. 286:32416-32423(2011).
[43]
FUNCTION.
PubMed=20658528; DOI=10.1002/jcp.22314;
Somanath P.R., Podrez E.A., Chen J., Ma Y., Marchant K., Antoch M.,
Byzova T.V.;
"Deficiency in core circadian protein Bmal1 is associated with a
prothrombotic and vascular phenotype.";
J. Cell. Physiol. 226:132-140(2011).
[44]
INTERACTION WITH MAGEL2, AND SUBCELLULAR LOCATION.
PubMed=22208286; DOI=10.1186/1740-3391-9-12;
Devos J., Weselake S.V., Wevrick R.;
"Magel2, a Prader-Willi syndrome candidate gene, modulates the
activities of circadian rhythm proteins in cultured cells.";
J. Circadian. Rhythms. 9:12-12(2011).
[45]
FUNCTION.
PubMed=21966465; DOI=10.1371/journal.pone.0025231;
Shimba S., Ogawa T., Hitosugi S., Ichihashi Y., Nakadaira Y.,
Kobayashi M., Tezuka M., Kosuge Y., Ishige K., Ito Y., Komiyama K.,
Okamatsu-Ogura Y., Kimura K., Saito M.;
"Deficient of a clock gene, brain and muscle Arnt-like protein-1
(BMAL1), induces dyslipidemia and ectopic fat formation.";
PLoS ONE 6:E25231-E25231(2011).
[46]
INTERACTION WITH KDM5A.
PubMed=21960634; DOI=10.1126/science.1206022;
DiTacchio L., Le H.D., Vollmers C., Hatori M., Witcher M., Secombe J.,
Panda S.;
"Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and
influences the circadian clock.";
Science 333:1881-1885(2011).
[47]
INTERACTION WITH RELB.
PubMed=22894897; DOI=10.4161/cc.21669;
Bellet M.M., Zocchi L., Sassone-Corsi P.;
"The RelB subunit of NFkappaB acts as a negative regulator of
circadian gene expression.";
Cell Cycle 11:3304-3311(2012).
[48]
FUNCTION.
PubMed=22611086; DOI=10.1096/fj.12-205781;
Guo B., Chatterjee S., Li L., Kim J.M., Lee J., Yechoor V.K.,
Minze L.J., Hsueh W., Ma K.;
"The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis
via Wnt signaling pathway.";
FASEB J. 26:3453-3463(2012).
[49]
FUNCTION.
PubMed=22981862; DOI=10.1016/j.molcel.2012.08.012;
Stratmann M., Suter D.M., Molina N., Naef F., Schibler U.;
"Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK
interaction with E boxes and requires the proteasome.";
Mol. Cell 48:277-287(2012).
[50]
FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, AND INTERACTION
WITH DDX4.
PubMed=22900038; DOI=10.1371/journal.pone.0042695;
Peruquetti R.L., de Mateo S., Sassone-Corsi P.;
"Circadian proteins CLOCK and BMAL1 in the chromatoid body, a RNA
processing granule of male germ cells.";
PLoS ONE 7:E42695-E42695(2012).
[51]
INTERACTION WITH PRKCG, UBIQUITINATION, AND PROTEASOMAL DEGRADATION.
PubMed=23185022; DOI=10.1073/pnas.1218699110;
Zhang L., Abraham D., Lin S.T., Oster H., Eichele G., Fu Y.H.,
Ptacek L.J.;
"PKCgamma participates in food entrainment by regulating BMAL1.";
Proc. Natl. Acad. Sci. U.S.A. 109:20679-20684(2012).
[52]
INTERACTION WITH PER1, AND TISSUE SPECIFICITY.
PubMed=24154698; DOI=10.1152/ajprenal.00472.2013;
Richards J., Cheng K.Y., All S., Skopis G., Jeffers L., Lynch I.J.,
Wingo C.S., Gumz M.L.;
"A role for the circadian clock protein Per1 in the regulation of
aldosterone levels and renal Na+ retention.";
Am. J. Physiol. 305:F1697-F1704(2013).
[53]
TISSUE SPECIFICITY, AND INDUCTION.
PubMed=23531614; DOI=10.1152/ajpendo.00512.2012;
Barclay J.L., Shostak A., Leliavski A., Tsang A.H., Johren O.,
Muller-Fielitz H., Landgraf D., Naujokat N., van der Horst G.T.,
Oster H.;
"High-fat diet-induced hyperinsulinemia and tissue-specific insulin
resistance in Cry-deficient mice.";
Am. J. Physiol. 304:E1053-E1063(2013).
[54]
REVIEW.
PubMed=23576606; DOI=10.1152/ajpregu.00066.2013;
Richards J., Gumz M.L.;
"Mechanism of the circadian clock in physiology.";
Am. J. Physiol. 304:R1053-R1064(2013).
[55]
FUNCTION.
PubMed=23955654; DOI=10.1007/s00403-013-1403-0;
Watabe Y., Tomioka M., Watabe A., Aihara M., Shimba S., Inoue H.;
"The clock gene brain and muscle Arnt-like protein-1 (BMAL1) is
involved in hair growth.";
Arch. Dermatol. Res. 305:755-761(2013).
[56]
FUNCTION.
PubMed=23291174; DOI=10.1016/j.bbrc.2012.12.098;
Oishi K., Koyanagi S., Ohkura N.;
"The molecular clock regulates circadian transcription of tissue
factor gene.";
Biochem. Biophys. Res. Commun. 431:332-335(2013).
[57]
GLYCOSYLATION, AND INTERACTION WITH OGT.
PubMed=23337503; DOI=10.1016/j.bbrc.2013.01.043;
Ma Y.T., Luo H., Guan W.J., Zhang H., Chen C., Wang Z., Li J.D.;
"O-GlcNAcylation of BMAL1 regulates circadian rhythms in NIH3T3
fibroblasts.";
Biochem. Biophys. Res. Commun. 431:382-387(2013).
[58]
DNA-BINDING.
PubMed=23831463; DOI=10.1016/j.bbrc.2013.06.086;
Yoshii K., Ishijima S., Sagami I.;
"Effects of NAD(P)H and its derivatives on the DNA-binding activity of
NPAS2, a mammalian circadian transcription factor.";
Biochem. Biophys. Res. Commun. 437:386-391(2013).
[59]
GLYCOSYLATION, UBIQUITINATION, AND MUTAGENESIS OF SER-418.
PubMed=23395176; DOI=10.1016/j.cmet.2012.12.015;
Li M.D., Ruan H.B., Hughes M.E., Lee J.S., Singh J.P., Jones S.P.,
Nitabach M.N., Yang X.;
"O-GlcNAc signaling entrains the circadian clock by inhibiting
BMAL1/CLOCK ubiquitination.";
Cell Metab. 17:303-310(2013).
[60]
FUNCTION.
PubMed=24268780; DOI=10.1016/j.celrep.2013.10.037;
Bouchard-Cannon P., Mendoza-Viveros L., Yuen A., Kaern M., Cheng H.Y.;
"The circadian molecular clock regulates adult hippocampal
neurogenesis by controlling the timing of cell-cycle entry and exit.";
Cell Rep. 5:961-973(2013).
[61]
FUNCTION.
PubMed=23525013; DOI=10.1242/jcs.120519;
Chatterjee S., Nam D., Guo B., Kim J.M., Winnier G.E., Lee J.,
Berdeaux R., Yechoor V.K., Ma K.;
"Brain and muscle Arnt-like 1 is a key regulator of myogenesis.";
J. Cell Sci. 126:2213-2224(2013).
[62]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=24270424; DOI=10.1172/JCI70317;
Musiek E.S., Lim M.M., Yang G., Bauer A.Q., Qi L., Lee Y., Roh J.H.,
Ortiz-Gonzalez X., Dearborn J.T., Culver J.P., Herzog E.D.,
Hogenesch J.B., Wozniak D.F., Dikranian K., Giasson B.I., Weaver D.R.,
Holtzman D.M., Fitzgerald G.A.;
"Circadian clock proteins regulate neuronal redox homeostasis and
neurodegeneration.";
J. Clin. Invest. 123:5389-5400(2013).
[63]
FUNCTION.
PubMed=24048828; DOI=10.1523/JNEUROSCI.2039-13.2013;
Hwang C.K., Chaurasia S.S., Jackson C.R., Chan G.C., Storm D.R.,
Iuvone P.M.;
"Circadian rhythm of contrast sensitivity is regulated by a dopamine-
neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in
retinal ganglion cells.";
J. Neurosci. 33:14989-14997(2013).
[64]
FUNCTION.
PubMed=23547261; DOI=10.1128/MCB.01421-12;
Lee J., Moulik M., Fang Z., Saha P., Zou F., Xu Y., Nelson D.L.,
Ma K., Moore D.D., Yechoor V.K.;
"Bmal1 and beta-cell clock are required for adaptation to circadian
disruption, and their loss of function leads to oxidative stress-
induced beta-cell failure in mice.";
Mol. Cell. Biol. 33:2327-2338(2013).
[65]
FUNCTION, AND INTERACTION WITH MTA1.
PubMed=24089055; DOI=10.1038/ncomms3545;
Li D.Q., Pakala S.B., Reddy S.D., Peng S., Balasenthil S., Deng C.X.,
Lee C.C., Rea M.A., Kumar R.;
"Metastasis-associated protein 1 is an integral component of the
circadian molecular machinery.";
Nat. Commun. 4:2545-2545(2013).
[66]
FUNCTION.
PubMed=23750248; DOI=10.1371/journal.pone.0065255;
Kennaway D.J., Varcoe T.J., Voultsios A., Boden M.J.;
"Global loss of Bmal1 expression alters adipose tissue hormones, gene
expression and glucose metabolism.";
PLoS ONE 8:E65255-E65255(2013).
[67]
REVIEW.
PubMed=23303907; DOI=10.1152/physrev.00016.2012;
Eckel-Mahan K., Sassone-Corsi P.;
"Metabolism and the circadian clock converge.";
Physiol. Rev. 93:107-135(2013).
[68]
INTERACTION WITH THRAP3.
PubMed=24043798; DOI=10.1073/pnas.1305980110;
Lande-Diner L., Boyault C., Kim J.Y., Weitz C.J.;
"A positive feedback loop links circadian clock factor CLOCK-BMAL1 to
the basic transcriptional machinery.";
Proc. Natl. Acad. Sci. U.S.A. 110:16021-16026(2013).
[69]
FUNCTION, AND INTERACTION WITH CLOCK; EED; EZH2 AND SUZ12.
PubMed=23970558; DOI=10.1126/science.1240636;
Nguyen K.D., Fentress S.J., Qiu Y., Yun K., Cox J.S., Chawla A.;
"Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi)
inflammatory monocytes.";
Science 341:1483-1488(2013).
[70]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=24481314;
Khapre R.V., Kondratova A.A., Patel S., Dubrovsky Y., Wrobel M.,
Antoch M.P., Kondratov R.V.;
"BMAL1-dependent regulation of the mTOR signaling pathway delays
aging.";
Aging (Albany NY) 6:48-57(2014).
[71]
INTERACTION WITH NCOA2.
PubMed=24529706; DOI=10.1016/j.celrep.2014.01.027;
Stashi E., Lanz R.B., Mao J., Michailidis G., Zhu B., Kettner N.M.,
Putluri N., Reineke E.L., Reineke L.C., Dasgupta S., Dean A.,
Stevenson C.R., Sivasubramanian N., Sreekumar A., Demayo F., York B.,
Fu L., O'Malley B.W.;
"SRC-2 is an essential coactivator for orchestrating metabolism and
circadian rhythm.";
Cell Rep. 6:633-645(2014).
[72]
INDUCTION, AND TISSUE SPECIFICITY.
PubMed=24603368; DOI=10.1038/emm.2013.153;
Noh J.Y., Han D.H., Kim M.H., Ko I.G., Kim S.E., Park N.,
Kyoung Choe H., Kim K.H., Kim K., Kim C.J., Cho S.;
"Presence of multiple peripheral circadian oscillators in the tissues
controlling voiding function in mice.";
Exp. Mol. Med. 46:E81-E81(2014).
[73]
FUNCTION.
PubMed=24395244; DOI=10.1101/gad.228536.113;
Menet J.S., Pescatore S., Rosbash M.;
"CLOCK:BMAL1 is a pioneer-like transcription factor.";
Genes Dev. 28:8-13(2014).
[74]
FUNCTION.
PubMed=24442997; DOI=10.1002/hep.26992;
Zhou B., Zhang Y., Zhang F., Xia Y., Liu J., Huang R., Wang Y., Hu Y.,
Wu J., Dai C., Wang H., Tu Y., Peng X., Wang Y., Zhai Q.;
"CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin
sensitivity via SIRT1.";
Hepatology 59:2196-2206(2014).
[75]
FUNCTION, AND INTERACTION WITH CIART.
PubMed=24385426; DOI=10.1074/jbc.M113.534651;
Annayev Y., Adar S., Chiou Y.Y., Lieb J., Sancar A., Ye R.;
"Gene model 129 (Gm129) encodes a novel transcriptional repressor that
modulates circadian gene expression.";
J. Biol. Chem. 289:5013-5024(2014).
[76]
FUNCTION IN GR REPRESSION.
PubMed=24378737; DOI=10.1016/j.mce.2013.12.013;
Han D.H., Lee Y.J., Kim K., Kim C.J., Cho S.;
"Modulation of glucocorticoid receptor induction properties by core
circadian clock proteins.";
Mol. Cell. Endocrinol. 383:170-180(2014).
[77]
FUNCTION, AND INTERACTION WITH CIART.
PubMed=24736997; DOI=10.1371/journal.pbio.1001839;
Goriki A., Hatanaka F., Myung J., Kim J.K., Yoritaka T., Tanoue S.,
Abe T., Kiyonari H., Fujimoto K., Kato Y., Todo T., Matsubara A.,
Forger D., Takumi T.;
"A novel protein, CHRONO, functions as a core component of the
mammalian circadian clock.";
PLoS Biol. 12:E1001839-E1001839(2014).
[78]
REVIEW.
PubMed=23916625; DOI=10.1016/j.tcb.2013.07.002;
Partch C.L., Green C.B., Takahashi J.S.;
"Molecular architecture of the mammalian circadian clock.";
Trends Cell Biol. 24:90-99(2014).
[79]
X-RAY CRYSTALLOGRAPHY (2.27 ANGSTROMS) OF 69-453 IN COMPLEX WITH
CLOCK, FUNCTION, INTERACTION WITH CLOCK, AND MUTAGENESIS OF LEU-102;
LEU-122 AND ILE-323.
PubMed=22653727; DOI=10.1126/science.1222804;
Huang N., Chelliah Y., Shan Y., Taylor C.A., Yoo S.H., Partch C.,
Green C.B., Zhang H., Takahashi J.S.;
"Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional
activator complex.";
Science 337:189-194(2012).
-!- FUNCTION: Transcriptional activator which forms a core component
of the circadian clock. The circadian clock, an internal time-
keeping system, regulates various physiological processes through
the generation of approximately 24 hour circadian rhythms in gene
expression, which are translated into rhythms in metabolism and
behavior. It is derived from the Latin roots 'circa' (about) and
'diem' (day) and acts as an important regulator of a wide array of
physiological functions including metabolism, sleep, body
temperature, blood pressure, endocrine, immune, cardiovascular,
and renal function. Consists of two major components: the central
clock, residing in the suprachiasmatic nucleus (SCN) of the brain,
and the peripheral clocks that are present in nearly every tissue
and organ system. Both the central and peripheral clocks can be
reset by environmental cues, also known as Zeitgebers (German for
'timegivers'). The predominant Zeitgeber for the central clock is
light, which is sensed by retina and signals directly to the SCN.
The central clock entrains the peripheral clocks through neuronal
and hormonal signals, body temperature and feeding-related cues,
aligning all clocks with the external light/dark cycle. Circadian
rhythms allow an organism to achieve temporal homeostasis with its
environment at the molecular level by regulating gene expression
to create a peak of protein expression once every 24 hours to
control when a particular physiological process is most active
with respect to the solar day. Transcription and translation of
core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2,
PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm
generation, whereas delays imposed by post-translational
modifications (PTMs) are important for determining the period
(tau) of the rhythms (tau refers to the period of a rhythm and is
the length, in time, of one complete cycle). A diurnal rhythm is
synchronized with the day/night cycle, while the ultradian and
infradian rhythms have a period shorter and longer than 24 hours,
respectively. Disruptions in the circadian rhythms contribute to
the pathology of cardiovascular diseases, cancer, metabolic
syndromes and aging. A transcription/translation feedback loop
(TTFL) forms the core of the molecular circadian clock mechanism.
Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or
ARNTL2/BMAL2, form the positive limb of the feedback loop, act in
the form of a heterodimer and activate the transcription of core
clock genes and clock-controlled genes (involved in key metabolic
processes), harboring E-box elements (5'-CACGTG-3') within their
promoters. The core clock genes: PER1/2/3 and CRY1/2 which are
transcriptional repressors form the negative limb of the feedback
loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2
heterodimer inhibiting its activity and thereby negatively
regulating their own expression. This heterodimer also activates
nuclear receptors NR1D1/2 and RORA/B/G, which form a second
feedback loop and which activate and repress ARNTL/BMAL1
transcription, respectively. ARNTL/BMAL1 positively regulates
myogenesis and negatively regulates adipogenesis via the
transcriptional control of the genes of the canonical Wnt
signaling pathway. Plays a role in normal pancreatic beta-cell
function; regulates glucose-stimulated insulin secretion via the
regulation of antioxidant genes NFE2L2/NRF2 and its targets SESN2,
PRDX3, CCLC and CCLM. Negatively regulates the mTORC1 signaling
pathway; regulates the expression of MTOR and DEPTOR. Controls
diurnal oscillations of Ly6C inflammatory monocytes; rhythmic
recruitment of the PRC2 complex imparts diurnal variation to
chemokine expression that is necessary to sustain Ly6C monocyte
rhythms. Regulates the expression of HSD3B2, STAR, PTGS2, CYP11A1,
CYP19A1 and LHCGR in the ovary and also the genes involved in hair
growth. Plays an important role in adult hippocampal neurogenesis
by regulating the timely entry of neural stem/progenitor cells
(NSPCs) into the cell cycle and the number of cell divisions that
take place prior to cell-cycle exit. Regulates the circadian
expression of CIART and KLF11. The CLOCK-ARNTL/BMAL1 heterodimer
regulates the circadian expression of SERPINE1/PAI1, VWF, B3,
CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2,
F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes
implicated in glucose and lipid metabolism. Represses
glucocorticoid receptor NR3C1/GR-induced transcriptional activity
by reducing the association of NR3C1/GR to glucocorticoid response
elements (GREs) via the acetylation of multiple lysine residues
located in its hinge region. Promotes rhythmic chromatin opening,
regulating the DNA accessibility of other transcription factors.
May play a role in spermatogenesis; contributes to the chromatoid
body assembly and physiology. The NPAS2-ARNTL/BMAL1 heterodimer
positively regulates the expression of MAOA, F7 and LDHA and
modulates the circadian rhythm of daytime contrast sensitivity by
regulating the rhythmic expression of adenylate cyclase type 1
(ADCY1) in the retina. The preferred binding motif for the CLOCK-
ARNTL/BMAL1 heterodimer is 5'-CACGTGA-3', which contains a
flanking Ala residue in addition to the canonical 6-nucleotide E-
box sequence (By similarity). CLOCK specifically binds to the
half-site 5'-CAC-3', while ARNTL binds to the half-site 5'-GTGA-3'
(By similarity). The CLOCK-ARNTL/BMAL1 heterodimer also recognizes
the non-canonical E-box motifs 5'-AACGTGA-3' and 5'-CATGTGA-3' (By
similarity). {ECO:0000250|UniProtKB:O00327,
ECO:0000269|PubMed:14672706, ECO:0000269|PubMed:18258755,
ECO:0000269|PubMed:18316400, ECO:0000269|PubMed:19141540,
ECO:0000269|PubMed:19286518, ECO:0000269|PubMed:19299583,
ECO:0000269|PubMed:19605937, ECO:0000269|PubMed:20153195,
ECO:0000269|PubMed:20385766, ECO:0000269|PubMed:20430893,
ECO:0000269|PubMed:20562852, ECO:0000269|PubMed:20658528,
ECO:0000269|PubMed:20840750, ECO:0000269|PubMed:20956306,
ECO:0000269|PubMed:21768648, ECO:0000269|PubMed:21966465,
ECO:0000269|PubMed:22045262, ECO:0000269|PubMed:22101268,
ECO:0000269|PubMed:22611086, ECO:0000269|PubMed:22653727,
ECO:0000269|PubMed:22900038, ECO:0000269|PubMed:22981862,
ECO:0000269|PubMed:23291174, ECO:0000269|PubMed:23525013,
ECO:0000269|PubMed:23547261, ECO:0000269|PubMed:23750248,
ECO:0000269|PubMed:23955654, ECO:0000269|PubMed:23970558,
ECO:0000269|PubMed:24048828, ECO:0000269|PubMed:24089055,
ECO:0000269|PubMed:24268780, ECO:0000269|PubMed:24270424,
ECO:0000269|PubMed:24378737, ECO:0000269|PubMed:24385426,
ECO:0000269|PubMed:24395244, ECO:0000269|PubMed:24442997,
ECO:0000269|PubMed:24481314, ECO:0000269|PubMed:24736997}.
-!- ENZYME REGULATION: The redox state of the cell can modulate the
transcriptional activity of the CLOCK-ARNTL/BMAL1 and NPAS2-
ARNTL/BMAL1 heterodimers; NADH and NADPH enhance the DNA-binding
activity of the heterodimers. {ECO:0000250|UniProtKB:O00327}.
-!- SUBUNIT: Component of the circadian clock oscillator which
includes the CRY1/2 proteins, CLOCK or NPAS2, ARNTL/BMAL1 or
ARNTL2/BMAL2, CSNK1D and/or CSNK1E, TIMELESS and the PER1/2/3
proteins (PubMed:11779462). Forms a heterodimer with CLOCK
(PubMed:9616112, PubMed:16717091, PubMed:16980631,
PubMed:18662546, PubMed:19946213, PubMed:19330005,
PubMed:21613214, PubMed:23970558, PubMed:22653727). The CLOCK-
ARNTL/BMAL1 heterodimer is required for E-box-dependent
transactivation, for CLOCK nuclear translocation and degradation,
and, for phosphorylation of both CLOCK and ARNTL/BMAL1
(PubMed:11779462). Part of a nuclear complex which also includes
RACK1 and PRKCA; RACK1 and PRKCA are recruited to the complex in a
circadian manner (PubMed:20093473). Interacts with NPAS2
(PubMed:16628007). Interacts with EZH2 (PubMed:16717091,
PubMed:23970558). Interacts with SUMO3 (PubMed:18644859).
Interacts with SIRT1 (PubMed:18662546, PubMed:18662547,
PubMed:19299583). Interacts with AHR (PubMed:20106950). Interacts
with ID1, ID2 and ID3 (PubMed:20861012). Interacts with DDX4
(PubMed:22900038). Interacts with OGT (PubMed:23337503). Interacts
with EED and SUZ12 (PubMed:23970558). Interacts with MTA1
(PubMed:24089055). Interacts with CIART (PubMed:24385426,
PubMed:24736997). Interacts with HSP90 (By similarity). Interacts
with KAT2B and EP300 (By similarity). Interacts with BHLHE40/DEC1
and BHLHE41/DEC2 (PubMed:12397359). Interacts with RELB and the
interaction is enhanced in the presence of CLOCK
(PubMed:22894897). Interacts with PER1, PER2, CRY1 and CRY2 and
this interaction requires a translocation to the nucleus
(PubMed:18430226, PubMed:19605937, PubMed:20840750,
PubMed:21613214, PubMed:24154698). Interaction of the CLOCK-
ARNTL/BMAL1 heterodimer with PER or CRY inhibits transcription
activation (PubMed:21613214). Interaction of the CLOCK-ARNTL/BMAL1
with CRY1 is independent of DNA but with PER2 is off DNA
(PubMed:21613214). The CLOCK-ARNTL/BMAL1 heterodimer interacts
with GSK3B (PubMed:19946213, PubMed:20049328). Interacts with
KDM5A (PubMed:21960634). Interacts with KMT2A in a circadian
manner (PubMed:21113167). Interacts with UBE3A (By similarity).
Interacts with PRKCG (PubMed:23185022). Interacts with MAGEL2
(PubMed:22208286). Interacts with NCOA2 (PubMed:24529706).
Interacts with THRAP3 (PubMed:24043798). The CLOCK-ARNTL/BMAL1
heterodimer interacts with PASD1 (By similarity). Interacts with
PASD1 (By similarity). {ECO:0000250|UniProtKB:O00327,
ECO:0000250|UniProtKB:Q9WTL8, ECO:0000269|PubMed:12397359,
ECO:0000269|PubMed:16628007, ECO:0000269|PubMed:16717091,
ECO:0000269|PubMed:16980631, ECO:0000269|PubMed:18430226,
ECO:0000269|PubMed:18644859, ECO:0000269|PubMed:18662546,
ECO:0000269|PubMed:18662547, ECO:0000269|PubMed:19299583,
ECO:0000269|PubMed:19330005, ECO:0000269|PubMed:19605937,
ECO:0000269|PubMed:19946213, ECO:0000269|PubMed:20049328,
ECO:0000269|PubMed:20093473, ECO:0000269|PubMed:20106950,
ECO:0000269|PubMed:20840750, ECO:0000269|PubMed:20861012,
ECO:0000269|PubMed:21113167, ECO:0000269|PubMed:21613214,
ECO:0000269|PubMed:21960634, ECO:0000269|PubMed:22208286,
ECO:0000269|PubMed:22653727, ECO:0000269|PubMed:22894897,
ECO:0000269|PubMed:22900038, ECO:0000269|PubMed:23185022,
ECO:0000269|PubMed:23337503, ECO:0000269|PubMed:23970558,
ECO:0000269|PubMed:24043798, ECO:0000269|PubMed:24089055,
ECO:0000269|PubMed:24154698, ECO:0000269|PubMed:24385426,
ECO:0000269|PubMed:24529706, ECO:0000269|PubMed:24736997,
ECO:0000269|PubMed:9616112}.
-!- INTERACTION:
Q8N365:CIART (xeno); NbExp=6; IntAct=EBI-644534, EBI-10265133;
Q3TQ03:Ciart; NbExp=3; IntAct=EBI-644534, EBI-16101489;
O08785:Clock; NbExp=33; IntAct=EBI-644534, EBI-79859;
P45481:Crebbp; NbExp=2; IntAct=EBI-644568, EBI-296306;
P97784:Cry1; NbExp=23; IntAct=EBI-644534, EBI-1266607;
Q99JJ1:Cry2; NbExp=4; IntAct=EBI-644534, EBI-1794634;
Q9R194:Cry2; NbExp=12; IntAct=EBI-644534, EBI-1266619;
Q60737:Csnk2a1; NbExp=5; IntAct=EBI-644534, EBI-771698;
P67870:CSNK2B (xeno); NbExp=4; IntAct=EBI-644534, EBI-348169;
P67871:Csnk2b; NbExp=8; IntAct=EBI-644534, EBI-348179;
Q03164:KMT2A (xeno); NbExp=3; IntAct=EBI-644534, EBI-591370;
P11103:Parp1; NbExp=7; IntAct=EBI-644534, EBI-642213;
O54943:Per2; NbExp=9; IntAct=EBI-644534, EBI-1266779;
P62137:Ppp1ca; NbExp=2; IntAct=EBI-644534, EBI-357187;
P51449:RORC (xeno); NbExp=2; IntAct=EBI-644534, EBI-3908771;
P61964:WDR5 (xeno); NbExp=2; IntAct=EBI-644534, EBI-540834;
-!- SUBCELLULAR LOCATION: Nucleus {ECO:0000269|PubMed:16980631,
ECO:0000269|PubMed:22208286}. Cytoplasm
{ECO:0000269|PubMed:16980631}. Nucleus, PML body
{ECO:0000269|PubMed:18644859}. Note=Shuttles between the nucleus
and the cytoplasm and this nucleocytoplasmic shuttling is
essential for the nuclear accumulation of CLOCK, target gene
transcription and the degradation of the CLOCK-ARNTL/BMAL1
heterodimer. The sumoylated form localizes in the PML body.
Sequestered to the cytoplasm in the presence of ID2.
{ECO:0000269|PubMed:16980631, ECO:0000269|PubMed:18644859,
ECO:0000269|PubMed:20861012}.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing; Named isoforms=5;
Name=1; Synonyms=b';
IsoId=Q9WTL8-1; Sequence=Displayed;
Name=2; Synonyms=b;
IsoId=Q9WTL8-2; Sequence=VSP_007992;
Name=3;
IsoId=Q9WTL8-3; Sequence=VSP_007993, VSP_007994;
Name=4;
IsoId=Q9WTL8-4; Sequence=VSP_007992, VSP_007994;
Name=5; Synonyms=g';
IsoId=Q9WTL8-5; Sequence=VSP_007992, VSP_007995, VSP_007996;
-!- TISSUE SPECIFICITY: Expressed in liver and testis (at protein
level). {ECO:0000269|PubMed:16790549, ECO:0000269|PubMed:22900038,
ECO:0000269|PubMed:23531614, ECO:0000269|PubMed:24154698,
ECO:0000269|PubMed:24603368}.
-!- INDUCTION: Expressed in a circadian manner in the liver.
{ECO:0000269|PubMed:16790549, ECO:0000269|PubMed:20385766,
ECO:0000269|PubMed:23531614, ECO:0000269|PubMed:24603368}.
-!- PTM: Ubiquitinated, leading to its proteasomal degradation.
{ECO:0000269|PubMed:16980631, ECO:0000269|PubMed:18644859,
ECO:0000269|PubMed:23185022}.
-!- PTM: O-glycosylated; contains O-GlcNAc. O-glycosylation by OGT
prevents protein degradation by inhibiting ubiquitination. It also
stabilizes the CLOCK-ARNTL/BMAL1 heterodimer thereby increasing
CLOCK-ARNTL/BMAL1-mediated transcription of genes in the negative
loop of the circadian clock such as PER1/2/3 and CRY1/2.
{ECO:0000269|PubMed:23337503, ECO:0000269|PubMed:23395176}.
-!- PTM: Acetylated on Lys-544 upon dimerization with CLOCK.
Acetylation facilitates CRY1-mediated repression. Deacetylated by
SIRT1, which may result in decreased protein stability.
{ECO:0000269|PubMed:18075593, ECO:0000269|PubMed:18662547}.
-!- PTM: Phosphorylated upon dimerization with CLOCK. Phosphorylation
enhances the transcriptional activity, alters the subcellular
localization and decreases the stability of the CLOCK-ARNTL/BMAL1
heterodimer by promoting its degradation. Phosphorylation shows
circadian variations in the liver with a peak between CT10 to
CT14. Phosphorylation at Ser-97 by CK2 is essential for its
nuclear localization, its interaction with CLOCK and controls
CLOCK nuclear entry. Dephosphorylation at Ser-85 is important for
dimerization with CLOCK and transcriptional activity (By
similarity). {ECO:0000250|UniProtKB:O00327,
ECO:0000269|PubMed:11779462, ECO:0000269|PubMed:12897057,
ECO:0000269|PubMed:19330005, ECO:0000269|PubMed:19414601,
ECO:0000269|PubMed:19946213, ECO:0000269|PubMed:20049328}.
-!- PTM: Sumoylated on Lys-266 upon dimerization with CLOCK.
Predominantly conjugated to poly-SUMO2/3 rather than SUMO1 and the
level of these conjugates undergo rhythmic variation, peaking at
CT9-CT12. Sumoylation localizes it exclusively to the PML body and
promotes its ubiquitination in the PML body, ubiquitin-dependent
proteasomal degradation and the transcriptional activity of the
CLOCK-ARNTL/BMAL1 heterodimer. {ECO:0000269|PubMed:16109848,
ECO:0000269|PubMed:18644859}.
-!- DISRUPTION PHENOTYPE: Mice are characterized by reduced lifespan,
and the presence of a number of pathologies characteristic of pre-
mature aging and increased oxidative stress. They show impaired
functional connectivity, increased oxidative damage and severe
astrogliosis in the brain. They also exhibit accelerated
thrombosis with elevated levels of thrombogenic factors, including
VWF, SERPINE1/PAI1, and fibrinogen. Both male and female mice are
infertile and male mice have low testosterone and high luteinizing
hormone serum levels and a significant decrease in sperm count.
{ECO:0000269|PubMed:18258755, ECO:0000269|PubMed:22101268,
ECO:0000269|PubMed:24270424, ECO:0000269|PubMed:24481314}.
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; AB012601; BAA76414.1; -; mRNA.
EMBL; AB015203; BAA81898.1; -; mRNA.
EMBL; AB012602; BAA76415.1; -; mRNA.
EMBL; AB014494; BAA32208.1; -; mRNA.
EMBL; BC025973; AAH25973.1; -; mRNA.
EMBL; BC011080; AAH11080.1; -; mRNA.
CCDS; CCDS40092.1; -. [Q9WTL8-4]
CCDS; CCDS85390.1; -. [Q9WTL8-3]
PIR; JE0270; JE0270.
RefSeq; NP_001229977.1; NM_001243048.1. [Q9WTL8-3]
RefSeq; NP_031515.1; NM_007489.4. [Q9WTL8-4]
RefSeq; XP_006507314.1; XM_006507251.2. [Q9WTL8-1]
RefSeq; XP_017177438.1; XM_017321949.1. [Q9WTL8-2]
RefSeq; XP_017177439.1; XM_017321950.1. [Q9WTL8-2]
UniGene; Mm.33970; -.
UniGene; Mm.440371; -.
PDB; 4F3L; X-ray; 2.27 A; B=69-453.
PDBsum; 4F3L; -.
ProteinModelPortal; Q9WTL8; -.
SMR; Q9WTL8; -.
BioGrid; 198207; 17.
CORUM; Q9WTL8; -.
DIP; DIP-43977N; -.
IntAct; Q9WTL8; 31.
MINT; MINT-1657344; -.
STRING; 10090.ENSMUSP00000046235; -.
iPTMnet; Q9WTL8; -.
PhosphoSitePlus; Q9WTL8; -.
PaxDb; Q9WTL8; -.
PRIDE; Q9WTL8; -.
Ensembl; ENSMUST00000047321; ENSMUSP00000046235; ENSMUSG00000055116. [Q9WTL8-4]
Ensembl; ENSMUST00000210074; ENSMUSP00000147764; ENSMUSG00000055116. [Q9WTL8-3]
Ensembl; ENSMUST00000210238; ENSMUSP00000147989; ENSMUSG00000055116. [Q9WTL8-4]
GeneID; 11865; -.
KEGG; mmu:11865; -.
UCSC; uc009jhf.2; mouse. [Q9WTL8-3]
UCSC; uc009jhi.2; mouse. [Q9WTL8-2]
UCSC; uc009jhj.2; mouse. [Q9WTL8-1]
CTD; 406; -.
MGI; MGI:1096381; Arntl.
eggNOG; KOG3561; Eukaryota.
eggNOG; ENOG410XRJI; LUCA.
GeneTree; ENSGT00760000118788; -.
HOGENOM; HOG000234379; -.
HOVERGEN; HBG107503; -.
InParanoid; Q9WTL8; -.
KO; K02296; -.
PhylomeDB; Q9WTL8; -.
TreeFam; TF319983; -.
Reactome; R-MMU-1368092; Rora activates gene expression.
Reactome; R-MMU-1368110; Bmal1:Clock,Npas2 activates circadian gene expression.
Reactome; R-MMU-508751; Circadian Clock.
PRO; PR:Q9WTL8; -.
Proteomes; UP000000589; Chromosome 7.
Bgee; ENSMUSG00000055116; -.
ExpressionAtlas; Q9WTL8; baseline and differential.
Genevisible; Q9WTL8; MM.
GO; GO:0033391; C:chromatoid body; IDA:UniProtKB.
GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
GO; GO:0005829; C:cytosol; TAS:Reactome.
GO; GO:0043231; C:intracellular membrane-bounded organelle; ISO:MGI.
GO; GO:0016604; C:nuclear body; IDA:MGI.
GO; GO:0005654; C:nucleoplasm; ISO:MGI.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0016605; C:PML body; IEA:UniProtKB-SubCell.
GO; GO:0005667; C:transcription factor complex; IDA:UniProtKB.
GO; GO:0017162; F:aryl hydrocarbon receptor binding; ISO:MGI.
GO; GO:0043425; F:bHLH transcription factor binding; IPI:BHF-UCL.
GO; GO:0001047; F:core promoter binding; IDA:UniProtKB.
GO; GO:0001046; F:core promoter sequence-specific DNA binding; IDA:UniProtKB.
GO; GO:0003677; F:DNA binding; IDA:UniProtKB.
GO; GO:0070888; F:E-box binding; IDA:UniProtKB.
GO; GO:0051879; F:Hsp90 protein binding; ISO:MGI.
GO; GO:0046982; F:protein heterodimerization activity; IPI:BHF-UCL.
GO; GO:0070491; F:repressing transcription factor binding; ISO:MGI.
GO; GO:0043565; F:sequence-specific DNA binding; IDA:UniProtKB.
GO; GO:0000982; F:transcription factor activity, RNA polymerase II core promoter proximal region sequence-specific binding; IDA:BHF-UCL.
GO; GO:0003700; F:transcription factor activity, sequence-specific DNA binding; IDA:MGI.
GO; GO:0008134; F:transcription factor binding; ISA:MGI.
GO; GO:0000976; F:transcription regulatory region sequence-specific DNA binding; IDA:UniProtKB.
GO; GO:0001077; F:transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding; IC:BHF-UCL.
GO; GO:0001190; F:transcriptional activator activity, RNA polymerase II transcription factor binding; IDA:BHF-UCL.
GO; GO:0032922; P:circadian regulation of gene expression; IDA:UniProtKB.
GO; GO:0007623; P:circadian rhythm; IDA:MGI.
GO; GO:0060137; P:maternal process involved in parturition; IMP:CACAO.
GO; GO:0045599; P:negative regulation of fat cell differentiation; IMP:UniProtKB.
GO; GO:2000323; P:negative regulation of glucocorticoid receptor signaling pathway; IMP:UniProtKB.
GO; GO:0032007; P:negative regulation of TOR signaling; IMP:UniProtKB.
GO; GO:0045892; P:negative regulation of transcription, DNA-templated; IDA:UniProtKB.
GO; GO:0090403; P:oxidative stress-induced premature senescence; IMP:UniProtKB.
GO; GO:0090263; P:positive regulation of canonical Wnt signaling pathway; IMP:UniProtKB.
GO; GO:0042753; P:positive regulation of circadian rhythm; IMP:UniProtKB.
GO; GO:2001016; P:positive regulation of skeletal muscle cell differentiation; IMP:UniProtKB.
GO; GO:0045944; P:positive regulation of transcription from RNA polymerase II promoter; IDA:BHF-UCL.
GO; GO:0045893; P:positive regulation of transcription, DNA-templated; IDA:UniProtKB.
GO; GO:0043161; P:proteasome-mediated ubiquitin-dependent protein catabolic process; IMP:UniProtKB.
GO; GO:0000060; P:protein import into nucleus, translocation; IDA:MGI.
GO; GO:0051726; P:regulation of cell cycle; IMP:UniProtKB.
GO; GO:2000772; P:regulation of cellular senescence; IMP:UniProtKB.
GO; GO:0042634; P:regulation of hair cycle; ISS:UniProtKB.
GO; GO:0050796; P:regulation of insulin secretion; IMP:UniProtKB.
GO; GO:0050767; P:regulation of neurogenesis; IMP:UniProtKB.
GO; GO:0042176; P:regulation of protein catabolic process; IDA:MGI.
GO; GO:0006355; P:regulation of transcription, DNA-templated; IDA:UniProtKB.
GO; GO:2000074; P:regulation of type B pancreatic cell development; IMP:UniProtKB.
GO; GO:0051775; P:response to redox state; IDA:UniProtKB.
GO; GO:0007283; P:spermatogenesis; IMP:UniProtKB.
CDD; cd00083; HLH; 1.
CDD; cd00130; PAS; 2.
Gene3D; 4.10.280.10; -; 1.
InterPro; IPR011598; bHLH_dom.
InterPro; IPR036638; HLH_DNA-bd_sf.
InterPro; IPR001067; Nuc_translocat.
InterPro; IPR001610; PAC.
InterPro; IPR000014; PAS.
InterPro; IPR035965; PAS-like_dom_sf.
InterPro; IPR013767; PAS_fold.
Pfam; PF00010; HLH; 1.
Pfam; PF00989; PAS; 1.
PRINTS; PR00785; NCTRNSLOCATR.
SMART; SM00353; HLH; 1.
SMART; SM00086; PAC; 1.
SMART; SM00091; PAS; 2.
SUPFAM; SSF47459; SSF47459; 1.
SUPFAM; SSF55785; SSF55785; 3.
TIGRFAMs; TIGR00229; sensory_box; 1.
PROSITE; PS50888; BHLH; 1.
PROSITE; PS50112; PAS; 2.
1: Evidence at protein level;
3D-structure; Acetylation; Activator; Alternative splicing;
Biological rhythms; Complete proteome; Cytoplasm; DNA-binding;
Glycoprotein; Isopeptide bond; Nucleus; Phosphoprotein;
Reference proteome; Repeat; Transcription; Transcription regulation;
Ubl conjugation.
CHAIN 1 632 Aryl hydrocarbon receptor nuclear
translocator-like protein 1.
/FTId=PRO_0000127158.
DOMAIN 79 132 bHLH. {ECO:0000255|PROSITE-
ProRule:PRU00981}.
DOMAIN 150 222 PAS 1. {ECO:0000255|PROSITE-
ProRule:PRU00140}.
DOMAIN 333 403 PAS 2. {ECO:0000255|PROSITE-
ProRule:PRU00140}.
DOMAIN 408 451 PAC.
REGION 514 594 Interaction with CIART.
MOTIF 36 41 Nuclear localization signal.
{ECO:0000269|PubMed:16980631}.
MOTIF 149 159 Nuclear export signal 1.
{ECO:0000269|PubMed:16980631}.
MOTIF 367 375 Nuclear export signal 2.
{ECO:0000269|PubMed:16980631}.
SITE 84 84 Interaction with E-box DNA.
{ECO:0000250|UniProtKB:O00327}.
SITE 87 87 Interaction with E-box DNA.
{ECO:0000250|UniProtKB:O00327}.
SITE 88 88 Interaction with E-box DNA.
{ECO:0000250|UniProtKB:O00327}.
SITE 92 92 Interaction with E-box DNA.
{ECO:0000250|UniProtKB:O00327}.
SITE 132 132 Important for interaction with CLOCK.
{ECO:0000250|UniProtKB:O00327}.
MOD_RES 17 17 Phosphoserine; by GSK3-beta.
{ECO:0000269|PubMed:20049328}.
MOD_RES 21 21 Phosphothreonine; by GSK3-beta.
{ECO:0000269|PubMed:20049328}.
MOD_RES 97 97 Phosphoserine; by CK2.
{ECO:0000269|PubMed:19330005}.
MOD_RES 544 544 N6-acetyllysine.
{ECO:0000269|PubMed:18075593}.
CROSSLNK 259 259 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO2 and
SUMO3). {ECO:0000269|PubMed:18644859}.
CROSSLNK 266 266 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO);
alternate. {ECO:0000269|PubMed:16109848}.
CROSSLNK 266 266 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO2);
alternate.
{ECO:0000250|UniProtKB:O00327}.
VAR_SEQ 48 54 Missing (in isoform 2, isoform 4 and
isoform 5). {ECO:0000303|PubMed:10403839,
ECO:0000303|PubMed:15489334,
ECO:0000303|PubMed:9704006}.
/FTId=VSP_007992.
VAR_SEQ 49 68 Missing (in isoform 3).
{ECO:0000303|PubMed:15489334}.
/FTId=VSP_007993.
VAR_SEQ 161 483 AADGFLFVVGCDRGKILFVSESVFKILNYSQNDLIGQSLFD
YLHPKDIAKVKEQLSSSDTAPRERLIDAKTGLPVKTDITPG
PSRLCSGARRSFFCRMKCNRPSVKVEDKDFASTCSKKKDRK
SFCTIHSTGYLKSWPPTKMGLDEDNEPDNEGCNLSCLVAIG
RLHSHMVPQPANGEIRVKSMEYVSRHAIDGKFVFVDQRATA
ILAYLPQELLGTSCYEYFHQDDIGHLAECHRQVLQTREKIT
TNCYKFKIKDGSFITLRSRWFSFMNPWTKEVEYIVSTNTVV
LANVLEGGDPTFPQLTAPPHSMDSMLPSGEGGPKRT -> D
VTEGRSSLSPSLSSRSSIIARMTLLARACLTTCIQKILPKL
RNSYLPRTLRPGSDSLMPRLDFRLKRI (in isoform
5). {ECO:0000303|PubMed:10403839}.
/FTId=VSP_007995.
VAR_SEQ 280 280 K -> KA (in isoform 3 and isoform 4).
{ECO:0000303|PubMed:15489334,
ECO:0000303|PubMed:9704006}.
/FTId=VSP_007994.
VAR_SEQ 484 632 Missing (in isoform 5).
{ECO:0000303|PubMed:10403839}.
/FTId=VSP_007996.
MUTAGEN 38 39 KR->AA: Loss of nuclear localization.
{ECO:0000269|PubMed:16980631}.
MUTAGEN 97 97 S->A: Impaired nuclear accumulation,
decreased interaction with CLOCK and
disruption of circadian clock function.
{ECO:0000269|PubMed:19330005}.
MUTAGEN 102 102 L->E: Reduced CLOCK binding. Abolishes
transcriptional activation by the CLOCK-
ARNTL/BMAL1 heterodimer.
{ECO:0000269|PubMed:22653727}.
MUTAGEN 122 122 L->E: Reduced CLOCK binding. Abolishes
transcriptional activation by the CLOCK-
ARNTL/BMAL1 heterodimer.
{ECO:0000269|PubMed:22653727}.
MUTAGEN 154 154 L->A: Significant reduction in
nucleocytoplasmic shuttling; when
associated with A-157.
{ECO:0000269|PubMed:16980631}.
MUTAGEN 157 157 L->A: Significant reduction in
nucleocytoplasmic shuttling; when
associated with A-154.
{ECO:0000269|PubMed:16980631}.
MUTAGEN 230 230 K->R: No effect on sumoylation.
{ECO:0000269|PubMed:16109848}.
MUTAGEN 236 236 K->R: No effect on sumoylation.
{ECO:0000269|PubMed:16109848}.
MUTAGEN 259 259 K->R: Significant decrease in;
transcriptional activity, localization in
PML body, ubiquitination and proteasome-
mediated proteolysis.
{ECO:0000269|PubMed:18644859}.
MUTAGEN 266 266 K->R: Abolishes sumoylation.
{ECO:0000269|PubMed:16109848}.
MUTAGEN 279 279 K->R: No effect on sumoylation.
{ECO:0000269|PubMed:16109848}.
MUTAGEN 323 323 I->D: Reduced CLOCK binding. Slightly
reduced transcriptional activation by the
CLOCK-ARNTL/BMAL1 heterodimer. Impairs
regulation of circadian clock.
{ECO:0000269|PubMed:22653727}.
MUTAGEN 370 370 L->A: Significant reduction in
nucleocytoplasmic shuttling; when
associated with A-374.
{ECO:0000269|PubMed:16980631}.
MUTAGEN 374 374 L->A: Significant reduction in
nucleocytoplasmic shuttling; when
associated with A-370.
{ECO:0000269|PubMed:16980631}.
MUTAGEN 418 418 S->A: Decreases without abolishing O-
GlcNAcylation.
{ECO:0000269|PubMed:23395176}.
CONFLICT 254 254 F -> L (in Ref. 1; BAA76414/BAA81898).
{ECO:0000305}.
HELIX 79 105 {ECO:0000244|PDB:4F3L}.
HELIX 107 111 {ECO:0000244|PDB:4F3L}.
HELIX 118 133 {ECO:0000244|PDB:4F3L}.
HELIX 151 160 {ECO:0000244|PDB:4F3L}.
STRAND 164 170 {ECO:0000244|PDB:4F3L}.
TURN 171 173 {ECO:0000244|PDB:4F3L}.
STRAND 175 179 {ECO:0000244|PDB:4F3L}.
HELIX 183 187 {ECO:0000244|PDB:4F3L}.
HELIX 191 194 {ECO:0000244|PDB:4F3L}.
HELIX 199 202 {ECO:0000244|PDB:4F3L}.
HELIX 205 207 {ECO:0000244|PDB:4F3L}.
HELIX 208 215 {ECO:0000244|PDB:4F3L}.
HELIX 248 250 {ECO:0000244|PDB:4F3L}.
STRAND 251 259 {ECO:0000244|PDB:4F3L}.
STRAND 284 295 {ECO:0000244|PDB:4F3L}.
STRAND 319 326 {ECO:0000244|PDB:4F3L}.
STRAND 337 339 {ECO:0000244|PDB:4F3L}.
STRAND 345 350 {ECO:0000244|PDB:4F3L}.
STRAND 354 359 {ECO:0000244|PDB:4F3L}.
HELIX 362 367 {ECO:0000244|PDB:4F3L}.
HELIX 371 374 {ECO:0000244|PDB:4F3L}.
HELIX 379 381 {ECO:0000244|PDB:4F3L}.
HELIX 385 398 {ECO:0000244|PDB:4F3L}.
STRAND 410 413 {ECO:0000244|PDB:4F3L}.
STRAND 419 431 {ECO:0000244|PDB:4F3L}.
TURN 432 435 {ECO:0000244|PDB:4F3L}.
STRAND 436 446 {ECO:0000244|PDB:4F3L}.
SEQUENCE 632 AA; 69452 MW; 9669C3712A95C2DE CRC64;
MADQRMDISS TISDFMSPGP TDLLSGSLGT SGVDCNRKRK GSATDYQLDD FAFEESMDTD
KDDPHGRLEY AEHQGRIKNA REAHSQIEKR RRDKMNSFID ELASLVPTCN AMSRKLDKLT
VLRMAVQHMK TLRGATNPYT EANYKPTFLS DDELKHLILR AADGFLFVVG CDRGKILFVS
ESVFKILNYS QNDLIGQSLF DYLHPKDIAK VKEQLSSSDT APRERLIDAK TGLPVKTDIT
PGPSRLCSGA RRSFFCRMKC NRPSVKVEDK DFASTCSKKK DRKSFCTIHS TGYLKSWPPT
KMGLDEDNEP DNEGCNLSCL VAIGRLHSHM VPQPANGEIR VKSMEYVSRH AIDGKFVFVD
QRATAILAYL PQELLGTSCY EYFHQDDIGH LAECHRQVLQ TREKITTNCY KFKIKDGSFI
TLRSRWFSFM NPWTKEVEYI VSTNTVVLAN VLEGGDPTFP QLTAPPHSMD SMLPSGEGGP
KRTHPTVPGI PGGTRAGAGK IGRMIAEEIM EIHRIRGSSP SSCGSSPLNI TSTPPPDASS
PGGKKILNGG TPDIPSTGLL PGQAQETPGY PYSDSSSILG ENPHIGIDMI DNDQGSSSPS
NDEAAMAVIM SLLEADAGLG GPVDFSDLPW PL


Related products :

Catalog number Product name Quantity
20-372-60154 aryl hydrocarbon receptor nuclear translocator-like. mRNA (cDNA clone MGC 47515 IMAGE 5753529) - Mouse monoclonal anti-human ARNTL antibody; Brain and muscle ARNT-like 1; Member of PAS protein 3; Basi 0.1 mg
18-003-42135 Aryl hydrocarbon receptor nuclear translocator-like protein 1 - Brain and muscle ARNT-like 1; Member of PAS protein 3; Basic-helix-loop-helix-PAS orphan MOP3; bHLH-PAS protein JAP3 Polyclonal 0.1 mg Protein A
20-372-60066 aryl hydrocarbon receptor nuclear translocator-like 2 - Mouse monoclonal anti-human ARNTL2 antibody; Brain and muscle ARNT-like 2; Member of PAS protein 9; Basic-helix-loop-helix-PAS protein MOP9; CYC 0.1 mg
U2286Rb CLIA ARNT,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Oryctolagus cuniculus,Rabbit 96T
U2286Rb CLIA kit ARNT,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Oryctolagus cuniculus,Rabbit 96T
E2286Rb ELISA kit ARNT,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Oryctolagus cuniculus,Rabbit 96T
E2286Rb ELISA ARNT,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Oryctolagus cuniculus,Rabbit 96T
U2286r CLIA kit Arnt,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Rat,Rattus norvegicus 96T
E2286m ELISA Arnt,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Mouse,Mus musculus 96T
E2286r ELISA Arnt,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Rat,Rattus norvegicus 96T
E2286Rb ARNT,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Oryctolagus cuniculus,Rabbit
E2286r ELISA kit Arnt,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Rat,Rattus norvegicus 96T
E2286m ELISA kit Arnt,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Mouse,Mus musculus 96T
U2286r CLIA Arnt,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Rat,Rattus norvegicus 96T
U2286m CLIA Arnt,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Mouse,Mus musculus 96T
U2286m CLIA kit Arnt,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Mouse,Mus musculus 96T
E2286r Arnt,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Rat,Rattus norvegicus
E2286m Arnt,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Hypoxia-inducible factor 1-beta,Mouse,Mus musculus
E2286b ARNT,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Bos taurus,Bovine
E2286b ELISA ARNT,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Bos taurus,Bovine 96T
U2286b CLIA kit ARNT,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Bos taurus,Bovine 96T
U2286b CLIA ARNT,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Bos taurus,Bovine 96T
E2286b ELISA kit ARNT,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,Bos taurus,Bovine 96T
DL-ARNT-Mu Mouse Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) ELISA Kit 96T
U2286h CLIA kit ARNT,ARNT protein,Aryl hydrocarbon receptor nuclear translocator,bHLHe2,BHLHE2,Class E basic helix-loop-helix protein 2,Dioxin receptor, nuclear translocator,HIF-1-beta,HIF1-beta,Homo sapien 96T


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur