Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Cryptochrome-1

 CRY1_MOUSE              Reviewed;         606 AA.
P97784;
28-NOV-2006, integrated into UniProtKB/Swiss-Prot.
01-MAY-1997, sequence version 1.
18-JUL-2018, entry version 153.
RecName: Full=Cryptochrome-1;
Name=Cry1;
Mus musculus (Mouse).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;
Muroidea; Muridae; Murinae; Mus; Mus.
NCBI_TaxID=10090;
[1]
NUCLEOTIDE SEQUENCE [MRNA], SUBCELLULAR LOCATION, AND TISSUE
SPECIFICITY.
TISSUE=Brain, Keratinocyte, and Liver;
PubMed=9801304; DOI=10.1093/nar/26.22.5086;
Kobayashi K., Kanno S., Smit B., van der Horst G.T.J., Takao M.,
Yasui A.;
"Characterization of photolyase/blue-light receptor homologs in mouse
and human cells.";
Nucleic Acids Res. 26:5086-5092(1998).
[2]
NUCLEOTIDE SEQUENCE [MRNA].
STRAIN=C57BL/6J;
Kume K., Reppert S.M.;
"Analysis of mouse cryptochromes.";
Submitted (JUN-1999) to the EMBL/GenBank/DDBJ databases.
[3]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
STRAIN=C57BL/6J; TISSUE=Embryo;
PubMed=16141072; DOI=10.1126/science.1112014;
Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N.,
Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K.,
Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M.,
Davis M.J., Wilming L.G., Aidinis V., Allen J.E.,
Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L.,
Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M.,
Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R.,
Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G.,
di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G.,
Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M.,
Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E.,
Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N.,
Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T.,
Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H.,
Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K.,
Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J.,
Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L.,
Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K.,
Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P.,
Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O.,
Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G.,
Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M.,
Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C.,
Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y.,
Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B.,
Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K.,
Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A.,
Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K.,
Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C.,
Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J.,
Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y.,
Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T.,
Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N.,
Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N.,
Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S.,
Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J.,
Hayashizaki Y.;
"The transcriptional landscape of the mammalian genome.";
Science 309:1559-1563(2005).
[4]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
STRAIN=C57BL/6J, and FVB/N;
TISSUE=Brain, Embryonic brain, and Mammary tumor;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[5]
TISSUE SPECIFICITY, AND INDUCTION.
PubMed=9600923; DOI=10.1073/pnas.95.11.6097;
Miyamoto Y., Sancar A.;
"Vitamin B2-based blue-light photoreceptors in the retinohypothalamic
tract as the photoactive pigments for setting the circadian clock in
mammals.";
Proc. Natl. Acad. Sci. U.S.A. 95:6097-6102(1998).
[6]
FUNCTION, INTERACTION WITH PER1; PER2; PER3 AND TIMELESS, SUBCELLULAR
LOCATION, TISSUE SPECIFICITY, AND INDUCTION.
PubMed=10428031; DOI=10.1016/S0092-8674(00)81014-4;
Kume K., Zylka M.J., Sriram S., Shearman L.P., Weaver D.R., Jin X.,
Maywood E.S., Hastings M.H., Reppert S.M.;
"mCRY1 and mCRY2 are essential components of the negative limb of the
circadian clock feedback loop.";
Cell 98:193-205(1999).
[7]
TISSUE SPECIFICITY, AND INDUCTION.
PubMed=10521578; DOI=10.1016/S0169-328X(99)00192-8;
Miyamoto Y., Sancar A.;
"Circadian regulation of cryptochrome genes in the mouse.";
Brain Res. Mol. Brain Res. 71:238-243(1999).
[8]
INTERACTION WITH PER2, SUBCELLULAR LOCATION, AND UBIQUITINATION.
PubMed=11889036; DOI=10.1093/emboj/21.6.1301;
Yagita K., Tamanini F., Yasuda M., Hoeijmakers J.H.,
van der Horst G.T., Okamura H.;
"Nucleocytoplasmic shuttling and mCRY-dependent inhibition of
ubiquitylation of the mPER2 clock protein.";
EMBO J. 21:1301-1314(2002).
[9]
INTERACTION WITH PER1 AND PER2, PHOSPHORYLATION, AND SUBCELLULAR
LOCATION.
PubMed=11875063; DOI=10.1074/jbc.M111466200;
Eide E.J., Vielhaber E.L., Hinz W.A., Virshup D.M.;
"The circadian regulatory proteins BMAL1 and cryptochromes are
substrates of casein kinase Iepsilon.";
J. Biol. Chem. 277:17248-17254(2002).
[10]
PHOSPHORYLATION AT SER-247, AND MUTAGENESIS OF SER-247.
PubMed=15298678; DOI=10.1111/j.1356-9597.2004.00758.x;
Sanada K., Harada Y., Sakai M., Todo T., Fukada Y.;
"Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated
protein kinase.";
Genes Cells 9:697-708(2004).
[11]
INTERACTION WITH PER1; PER2 AND PER3.
PubMed=14701732; DOI=10.1128/MCB.24.2.584-594.2004;
Lee C., Weaver D.R., Reppert S.M.;
"Direct association between mouse PERIOD and CKIepsilon is critical
for a functioning circadian clock.";
Mol. Cell. Biol. 24:584-594(2004).
[12]
FUNCTION AS TRANSCRIPTION REPRESSOR, AND INTERACTION WITH HDAC1; HDAC2
AND SIN3B.
PubMed=15226430; DOI=10.1128/MCB.24.14.6278-6287.2004;
Naruse Y., Oh-hashi K., Iijima N., Naruse M., Yoshioka H., Tanaka M.;
"Circadian and light-induced transcription of clock gene Per1 depends
on histone acetylation and deacetylation.";
Mol. Cell. Biol. 24:6278-6287(2004).
[13]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=16628007; DOI=10.4161/cc.5.8.2684;
Kondratov R.V., Kondratova A.A., Lee C., Gorbacheva V.Y.,
Chernov M.V., Antoch M.P.;
"Post-translational regulation of circadian transcriptional
CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES.";
Cell Cycle 5:890-895(2006).
[14]
INTERACTION WITH EZH2; CLOCK AND ARNTL.
PubMed=16717091; DOI=10.1074/jbc.M603722200;
Etchegaray J.P., Yang X., DeBruyne J.P., Peters A.H., Weaver D.R.,
Jenuwein T., Reppert S.M.;
"The polycomb group protein EZH2 is required for mammalian circadian
clock function.";
J. Biol. Chem. 281:21209-21215(2006).
[15]
FUNCTION, INTERACTION WITH PER1 AND PER2, AND SUBCELLULAR LOCATION.
PubMed=16478995; DOI=10.1128/MCB.26.5.1743-1753.2006;
Chaves I., Yagita K., Barnhoorn S., Okamura H., van der Horst G.T.J.,
Tamanini F.;
"Functional evolution of the photolyase/cryptochrome protein family:
importance of the C terminus of mammalian CRY1 for circadian core
oscillator performance.";
Mol. Cell. Biol. 26:1743-1753(2006).
[16]
TISSUE SPECIFICITY, AND INDUCTION.
PubMed=16790549; DOI=10.1073/pnas.0604138103;
Partch C.L., Shields K.F., Thompson C.L., Selby C.P., Sancar A.;
"Posttranslational regulation of the mammalian circadian clock by
cryptochrome and protein phosphatase 5.";
Proc. Natl. Acad. Sci. U.S.A. 103:10467-10472(2006).
[17]
INTERACTION WITH FBXL3, AND UBIQUITINATION.
PubMed=17462724; DOI=10.1016/j.cell.2007.04.030;
Siepka S.M., Yoo S.H., Park J., Song W., Kumar V., Hu Y., Lee C.,
Takahashi J.S.;
"Circadian mutant Overtime reveals F-box protein FBXL3 regulation of
cryptochrome and period gene expression.";
Cell 129:1011-1023(2007).
[18]
FUNCTION.
PubMed=17310242; DOI=10.1038/ncb1539;
Zhao W.N., Malinin N., Yang F.C., Staknis D., Gekakis N., Maier B.,
Reischl S., Kramer A., Weitz C.J.;
"CIPC is a mammalian circadian clock protein without invertebrate
homologues.";
Nat. Cell Biol. 9:268-275(2007).
[19]
INTERACTION WITH FBXL21, AND UBIQUITINATION.
PubMed=18953409; DOI=10.1371/journal.pone.0003530;
Dardente H., Mendoza J., Fustin J.M., Challet E., Hazlerigg D.G.;
"Implication of the F-Box Protein FBXL21 in circadian pacemaker
function in mammals.";
PLoS ONE 3:E3530-E3530(2008).
[20]
INTERACTION WITH ARNTL AND CLOCK, AND INDUCTION.
PubMed=19917250; DOI=10.1016/j.molcel.2009.10.012;
Chen R., Schirmer A., Lee Y., Lee H., Kumar V., Yoo S.H.,
Takahashi J.S., Lee C.;
"Rhythmic PER abundance defines a critical nodal point for negative
feedback within the circadian clock mechanism.";
Mol. Cell 36:417-430(2009).
[21]
FUNCTION, SUBCELLULAR LOCATION, AND INTERACTION WITH MYBBP1A; DOCK7;
HNRNPU; RPL7A; RPL8 AND RPS3.
PubMed=19129230; DOI=10.1093/nar/gkn1013;
Hara Y., Onishi Y., Oishi K., Miyazaki K., Fukamizu A., Ishida N.;
"Molecular characterization of Mybbp1a as a co-repressor on the
Period2 promoter.";
Nucleic Acids Res. 37:1115-1126(2009).
[22]
PHOSPHORYLATION AT SER-71 AND SER-280, AND MUTAGENESIS OF SER-71 AND
SER-280.
PubMed=19833968; DOI=10.1126/science.1172156;
Lamia K.A., Sachdeva U.M., DiTacchio L., Williams E.C., Alvarez J.G.,
Egan D.F., Vasquez D.S., Juguilon H., Panda S., Shaw R.J.,
Thompson C.B., Evans R.M.;
"AMPK regulates the circadian clock by cryptochrome phosphorylation
and degradation.";
Science 326:437-440(2009).
[23]
FUNCTION.
PubMed=19299583; DOI=10.1126/science.1171641;
Ramsey K.M., Yoshino J., Brace C.S., Abrassart D., Kobayashi Y.,
Marcheva B., Hong H.K., Chong J.L., Buhr E.D., Lee C., Takahashi J.S.,
Imai S., Bass J.;
"Circadian clock feedback cycle through NAMPT-mediated NAD+
biosynthesis.";
Science 324:651-654(2009).
[24]
INTERACTION WITH PER2.
PubMed=20159955; DOI=10.1101/gad.564110;
Schmutz I., Ripperger J.A., Baeriswyl-Aebischer S., Albrecht U.;
"The mammalian clock component PERIOD2 coordinates circadian output by
interaction with nuclear receptors.";
Genes Dev. 24:345-357(2010).
[25]
FUNCTION, AND INDUCTION.
PubMed=20385766; DOI=10.1128/MCB.01141-09;
Guillaumond F., Grechez-Cassiau A., Subramaniam M., Brangolo S.,
Peteri-Brunback B., Staels B., Fievet C., Spelsberg T.C., Delaunay F.,
Teboul M.;
"Kruppel-like factor KLF10 is a link between the circadian clock and
metabolism in liver.";
Mol. Cell. Biol. 30:3059-3070(2010).
[26]
FUNCTION IN GLUCONEOGENESIS, AND DISRUPTION PHENOTYPE.
PubMed=20852621; DOI=10.1038/nm.2214;
Zhang E.E., Liu Y., Dentin R., Pongsawakul P.Y., Liu A.C., Hirota T.,
Nusinow D.A., Sun X., Landais S., Kodama Y., Brenner D.A.,
Montminy M., Kay S.A.;
"Cryptochrome mediates circadian regulation of cAMP signaling and
hepatic gluconeogenesis.";
Nat. Med. 16:1152-1156(2010).
[27]
FUNCTION IN CIRCADIAN RHYTHMS REGULATION, AND INDUCTION.
PubMed=21236481; DOI=10.1016/j.cell.2010.12.019;
Ukai-Tadenuma M., Yamada R.G., Xu H., Ripperger J.A., Liu A.C.,
Ueda H.R.;
"Delay in feedback repression by cryptochrome 1 is required for
circadian clock function.";
Cell 144:268-281(2011).
[28]
INTERACTION WITH ARNTL; CLOCK AND PER2.
PubMed=21613214; DOI=10.1074/jbc.M111.254680;
Ye R., Selby C.P., Ozturk N., Annayev Y., Sancar A.;
"Biochemical analysis of the canonical model for the mammalian
circadian clock.";
J. Biol. Chem. 286:25891-25902(2011).
[29]
FUNCTION.
PubMed=21768648; DOI=10.1074/jbc.M111.258970;
Koyanagi S., Hamdan A.M., Horiguchi M., Kusunose N., Okamoto A.,
Matsunaga N., Ohdo S.;
"cAMP-response element (CRE)-mediated transcription by activating
transcription factor-4 (ATF4) is essential for circadian expression of
the Period2 gene.";
J. Biol. Chem. 286:32416-32423(2011).
[30]
FUNCTION AS NR3C1 REPRESSOR, INTERACTION WITH AR; NR1D1; NR3C1; RORA
AND RORC, AND DISRUPTION PHENOTYPE.
PubMed=22170608; DOI=10.1038/nature10700;
Lamia K.A., Papp S.J., Yu R.T., Barish G.D., Uhlenhaut N.H.,
Jonker J.W., Downes M., Evans R.M.;
"Cryptochromes mediate rhythmic repression of the glucocorticoid
receptor.";
Nature 480:552-556(2011).
[31]
FUNCTION, INDUCTION, AND INTERACTION WITH PRMT5.
PubMed=23133559; DOI=10.1371/journal.pone.0048152;
Na J., Lee K., Kim H.G., Shin J.Y., Na W., Jeong H., Lee J.W., Cho S.,
Kim W.S., Ju B.G.;
"Role of type II protein arginine methyltransferase 5 in the
regulation of Circadian Per1 gene.";
PLoS ONE 7:E48152-E48152(2012).
[32]
ENZYME REGULATION.
PubMed=22798407; DOI=10.1126/science.1223710;
Hirota T., Lee J.W., St John P.C., Sawa M., Iwaisako K., Noguchi T.,
Pongsawakul P.Y., Sonntag T., Welsh D.K., Brenner D.A.,
Doyle F.J. III, Schultz P.G., Kay S.A.;
"Identification of small molecule activators of cryptochrome.";
Science 337:1094-1097(2012).
[33]
FUNCTION IN METABOLISM, AND DISRUPTION PHENOTYPE.
PubMed=23531614; DOI=10.1152/ajpendo.00512.2012;
Barclay J.L., Shostak A., Leliavski A., Tsang A.H., Johren O.,
Muller-Fielitz H., Landgraf D., Naujokat N., van der Horst G.T.,
Oster H.;
"High-fat diet-induced hyperinsulinemia and tissue-specific insulin
resistance in Cry-deficient mice.";
Am. J. Physiol. 304:E1053-E1063(2013).
[34]
UBIQUITINATION BY THE SCF(FBXL3) AND SCF(FBXL21) COMPLEXES,
INTERACTION WITH FBXL3 AND FBXL21, AND UBIQUITINATION AT LYS-11.
PubMed=23452855; DOI=10.1016/j.cell.2013.01.055;
Yoo S.H., Mohawk J.A., Siepka S.M., Shan Y., Huh S.K., Hong H.K.,
Kornblum I., Kumar V., Koike N., Xu M., Nussbaum J., Liu X., Chen Z.,
Chen Z.J., Green C.B., Takahashi J.S.;
"Competing E3 ubiquitin ligases govern circadian periodicity by
degradation of CRY in nucleus and cytoplasm.";
Cell 152:1091-1105(2013).
[35]
UBIQUITINATION BY THE SCF(FBXL3) AND SCF(FBXL21) COMPLEXES,
UBIQUITINATION AT LYS-107; LYS-159; LYS-329 AND LYS-485, INTERACTION
WITH FBXL3 AND FBXL21, AND MUTAGENESIS OF LYS-107.
PubMed=23452856; DOI=10.1016/j.cell.2013.01.054;
Hirano A., Yumimoto K., Tsunematsu R., Matsumoto M., Oyama M.,
Kozuka-Hata H., Nakagawa T., Lanjakornsiripan D., Nakayama K.I.,
Fukada Y.;
"FBXL21 regulates oscillation of the circadian clock through
ubiquitination and stabilization of cryptochromes.";
Cell 152:1106-1118(2013).
[36]
FUNCTION IN CIRCADIAN CLOCK, INTERACTION WITH PRKDC, PHOSPHORYLATION
AT SER-588, AND MUTAGENESIS OF SER-551; SER-564 AND SER-588.
PubMed=24158435; DOI=10.1074/jbc.M113.509604;
Gao P., Yoo S.H., Lee K.J., Rosensweig C., Takahashi J.S., Chen B.P.,
Green C.B.;
"Phosphorylation of the cryptochrome 1 C-terminal tail regulates
circadian period length.";
J. Biol. Chem. 288:35277-35286(2013).
[37]
FUNCTION IN CIRCADIAN CLOCK, AND DISRUPTION PHENOTYPE.
PubMed=23616524; DOI=10.1523/JNEUROSCI.4950-12.2013;
Anand S.N., Maywood E.S., Chesham J.E., Joynson G., Banks G.T.,
Hastings M.H., Nolan P.M.;
"Distinct and separable roles for endogenous CRY1 and CRY2 within the
circadian molecular clockwork of the suprachiasmatic nucleus, as
revealed by the Fbxl3(Afh) mutation.";
J. Neurosci. 33:7145-7153(2013).
[38]
FUNCTION IN CIRCADIAN CLOCK.
PubMed=23575670; DOI=10.1038/ncomms2670;
Ono D., Honma S., Honma K.;
"Cryptochromes are critical for the development of coherent circadian
rhythms in the mouse suprachiasmatic nucleus.";
Nat. Commun. 4:1666-1666(2013).
[39]
FUNCTION.
PubMed=24089055; DOI=10.1038/ncomms3545;
Li D.Q., Pakala S.B., Reddy S.D., Peng S., Balasenthil S., Deng C.X.,
Lee C.C., Rea M.A., Kumar R.;
"Metastasis-associated protein 1 is an integral component of the
circadian molecular machinery.";
Nat. Commun. 4:2545-2545(2013).
[40]
INTERACTION WITH TIMELESS AND PER2, AND SUBCELLULAR LOCATION.
PubMed=23418588; DOI=10.1371/journal.pone.0056623;
Engelen E., Janssens R.C., Yagita K., Smits V.A., van der Horst G.T.,
Tamanini F.;
"Mammalian TIMELESS is involved in period determination and DNA
damage-dependent phase advancing of the circadian clock.";
PLoS ONE 8:E56623-E56623(2013).
[41]
REVIEW.
PubMed=23303907; DOI=10.1152/physrev.00016.2012;
Eckel-Mahan K., Sassone-Corsi P.;
"Metabolism and the circadian clock converge.";
Physiol. Rev. 93:107-135(2013).
[42]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=24385426; DOI=10.1074/jbc.M113.534651;
Annayev Y., Adar S., Chiou Y.Y., Lieb J., Sancar A., Ye R.;
"Gene model 129 (Gm129) encodes a novel transcriptional repressor that
modulates circadian gene expression.";
J. Biol. Chem. 289:5013-5024(2014).
[43]
FUNCTION IN GR REPRESSION.
PubMed=24378737; DOI=10.1016/j.mce.2013.12.013;
Han D.H., Lee Y.J., Kim K., Kim C.J., Cho S.;
"Modulation of glucocorticoid receptor induction properties by core
circadian clock proteins.";
Mol. Cell. Endocrinol. 383:170-180(2014).
[44]
FUNCTION IN DNA DAMAGE CHECKPOINT, INTERACTION WITH TIMELESS, AND
SUBCELLULAR LOCATION.
PubMed=24489120; DOI=10.1093/nar/gku094;
Kang T.H., Leem S.H.;
"Modulation of ATR-mediated DNA damage checkpoint response by
cryptochrome 1.";
Nucleic Acids Res. 42:4427-4434(2014).
[45]
REVIEW.
PubMed=23916625; DOI=10.1016/j.tcb.2013.07.002;
Partch C.L., Green C.B., Takahashi J.S.;
"Molecular architecture of the mammalian circadian clock.";
Trends Cell Biol. 24:90-99(2014).
[46]
X-RAY CRYSTALLOGRAPHY (2.65 ANGSTROMS) OF APOPROTEIN, INTERACTION WITH
ARNTL; PER2 AND FBXL3, FUNCTION, AND MUTAGENESIS OF HIS-224; SER-247;
382-GLU-GLU-383; PHE-405 AND LYS-485.
PubMed=23746849; DOI=10.1016/j.cell.2013.05.011;
Czarna A., Berndt A., Singh H.R., Grudziecki A., Ladurner A.G.,
Timinszky G., Kramer A., Wolf E.;
"Structures of Drosophila cryptochrome and mouse cryptochrome1 provide
insight into circadian function.";
Cell 153:1394-1405(2013).
-!- FUNCTION: Transcriptional repressor which forms a core component
of the circadian clock. The circadian clock, an internal time-
keeping system, regulates various physiological processes through
the generation of approximately 24 hour circadian rhythms in gene
expression, which are translated into rhythms in metabolism and
behavior. It is derived from the Latin roots 'circa' (about) and
'diem' (day) and acts as an important regulator of a wide array of
physiological functions including metabolism, sleep, body
temperature, blood pressure, endocrine, immune, cardiovascular,
and renal function. Consists of two major components: the central
clock, residing in the suprachiasmatic nucleus (SCN) of the brain,
and the peripheral clocks that are present in nearly every tissue
and organ system. Both the central and peripheral clocks can be
reset by environmental cues, also known as Zeitgebers (German for
'timegivers'). The predominant Zeitgeber for the central clock is
light, which is sensed by retina and signals directly to the SCN.
The central clock entrains the peripheral clocks through neuronal
and hormonal signals, body temperature and feeding-related cues,
aligning all clocks with the external light/dark cycle. Circadian
rhythms allow an organism to achieve temporal homeostasis with its
environment at the molecular level by regulating gene expression
to create a peak of protein expression once every 24 hours to
control when a particular physiological process is most active
with respect to the solar day. Transcription and translation of
core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2,
PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm
generation, whereas delays imposed by post-translational
modifications (PTMs) are important for determining the period
(tau) of the rhythms (tau refers to the period of a rhythm and is
the length, in time, of one complete cycle). A diurnal rhythm is
synchronized with the day/night cycle, while the ultradian and
infradian rhythms have a period shorter and longer than 24 hours,
respectively. Disruptions in the circadian rhythms contribute to
the pathology of cardiovascular diseases, cancer, metabolic
syndromes and aging. A transcription/translation feedback loop
(TTFL) forms the core of the molecular circadian clock mechanism.
Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or
ARNTL2/BMAL2, form the positive limb of the feedback loop, act in
the form of a heterodimer and activate the transcription of core
clock genes and clock-controlled genes (involved in key metabolic
processes), harboring E-box elements (5'-CACGTG-3') within their
promoters. The core clock genes: PER1/2/3 and CRY1/2 which are
transcriptional repressors form the negative limb of the feedback
loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2
heterodimer inhibiting its activity and thereby negatively
regulating their own expression. This heterodimer also activates
nuclear receptors NR1D1/2 and RORA/B/G, which form a second
feedback loop and which activate and repress ARNTL/BMAL1
transcription, respectively. CRY1 and CRY2 have redundant
functions but also differential and selective contributions at
least in defining the pace of the SCN circadian clock and its
circadian transcriptional outputs. More potent transcriptional
repressor in cerebellum and liver than CRY2, though more effective
in lengthening the period of the SCN oscillator. On its side, CRY2
seems to play a critical role in tuning SCN circadian period by
opposing the action of CRY1. With CRY2, is dispensable for
circadian rhythm generation but necessary for the development of
intercellular networks for rhythm synchrony. Capable of
translocating circadian clock core proteins such as PER proteins
to the nucleus. Interacts with CLOCK-ARNTL/BMAL1 independently of
PER proteins and is found atCLOCK-ARNTL/BMAL1-bound sites,
suggesting that CRY may act as a molecular gatekeeper to maintain
CLOCK-ARNTL/BMAL1 in a poised and repressed state until the proper
time for transcriptional activation. Represses the CLOCK-
ARNTL/BMAL1 induced transcription of BHLHE40/DEC1, ATF4, MTA1,
KLF10 and NAMPT. May repress circadian target genes expression in
collaboration with HDAC1 and HDAC2 through histone deacetylation.
Mediates the clock-control activation of ATR and modulates ATR-
mediated DNA damage checkpoint. In liver, mediates circadian
regulation of cAMP signaling and gluconeogenesis by binding to
membrane-coupled G proteins and blocking glucagon-mediated
increases in intracellular cAMP concentrations and CREB1
phosphorylation. Besides its role in the maintenance of the
circadian clock, is also involved in the regulation of other
processes. Represses glucocorticoid receptor NR3C1/GR-induced
transcriptional activity by binding to glucocorticoid response
elements (GREs). Plays a key role in glucose and lipid metabolism
modulation, in part, through the transcriptional regulation of
genes involved in these pathways, such as LEP or ACSL4.
{ECO:0000269|PubMed:10428031, ECO:0000269|PubMed:15226430,
ECO:0000269|PubMed:16478995, ECO:0000269|PubMed:16628007,
ECO:0000269|PubMed:17310242, ECO:0000269|PubMed:19129230,
ECO:0000269|PubMed:19299583, ECO:0000269|PubMed:20385766,
ECO:0000269|PubMed:20852621, ECO:0000269|PubMed:21236481,
ECO:0000269|PubMed:21768648, ECO:0000269|PubMed:22170608,
ECO:0000269|PubMed:23133559, ECO:0000269|PubMed:23531614,
ECO:0000269|PubMed:23575670, ECO:0000269|PubMed:23616524,
ECO:0000269|PubMed:23746849, ECO:0000269|PubMed:24089055,
ECO:0000269|PubMed:24158435, ECO:0000269|PubMed:24378737,
ECO:0000269|PubMed:24385426, ECO:0000269|PubMed:24489120}.
-!- COFACTOR:
Name=FAD; Xref=ChEBI:CHEBI:57692; Evidence={ECO:0000250};
Note=Binds 1 FAD per subunit. Only a minority of the protein
molecules contain bound FAD. Contrary to the situation in
photolyases, the FAD is bound in a shallow, surface-exposed
pocket. {ECO:0000250};
-!- COFACTOR:
Name=(6R)-5,10-methylene-5,6,7,8-tetrahydrofolate;
Xref=ChEBI:CHEBI:15636; Evidence={ECO:0000250};
Note=Binds 1 5,10-methenyltetrahydrofolate (MTHF) non-covalently
per subunit. {ECO:0000250};
-!- ENZYME REGULATION: KL001 (N-[3-(9H-carbazol-9-yl)-2-
hydroxypropyl]-N-(2-furanylmethyl)-methanesulfonamide) binds to
CRY1 and stabilizes it by inhibiting FBXL3- and ubiquitin-
dependent degradation of CRY1 resulting in lengthening of the
circadian periods. KL001-mediated CRY1 stabilization can inhibit
glucagon-induced gluconeogenesis in primary hepatocytes.
{ECO:0000269|PubMed:22798407}.
-!- SUBUNIT: Component of the circadian core oscillator, which
includes the CRY proteins, CLOCK or NPAS2, ARNTL/BMAL1 or
ARNTL2/BMAL2, CSNK1D and/or CSNK1E, TIMELESS, and the PER
proteins. Interacts directly with TIMELESS. Interacts directly
with PER1 and PER2 C-terminal domains. Interaction with PER2
inhibits its ubiquitination and vice versa. Interacts with FBXL21.
Interacts with FBXL3. Interacts with PPP5C (via TPR repeats).
Interacts with the CLOCK-ARNTL/BMAL1 independently of PER2 and
DNA. Interacts with HDAC1, HDAC2 and SIN3B. Interacts with nuclear
receptors AR, NR1D1, NR3C1/GR, RORA and RORC; the interaction with
at least NR3C1/GR is ligand dependent. Interacts with PRKDC.
Interacts with the G protein subunit alpha GNAS; the interaction
may block GPCR-mediated regulation of cAMP concentrations.
Interacts with PRMT5. Interacts with EZH2. Interacts with MYBBP1A,
DOCK7, HNRNPU, RPL7A, RPL8 and RPS3. {ECO:0000269|PubMed:10428031,
ECO:0000269|PubMed:11875063, ECO:0000269|PubMed:11889036,
ECO:0000269|PubMed:14701732, ECO:0000269|PubMed:15226430,
ECO:0000269|PubMed:16478995, ECO:0000269|PubMed:16717091,
ECO:0000269|PubMed:17462724, ECO:0000269|PubMed:18953409,
ECO:0000269|PubMed:19129230, ECO:0000269|PubMed:19917250,
ECO:0000269|PubMed:20159955, ECO:0000269|PubMed:21613214,
ECO:0000269|PubMed:22170608, ECO:0000269|PubMed:23133559,
ECO:0000269|PubMed:23418588, ECO:0000269|PubMed:23452855,
ECO:0000269|PubMed:23452856, ECO:0000269|PubMed:23746849,
ECO:0000269|PubMed:24158435, ECO:0000269|PubMed:24489120}.
-!- INTERACTION:
Q9WTL8:Arntl; NbExp=23; IntAct=EBI-1266607, EBI-644534;
Q9WTL8-2:Arntl; NbExp=4; IntAct=EBI-1266607, EBI-644559;
Q9WTL8-4:Arntl; NbExp=4; IntAct=EBI-1266607, EBI-644568;
Q2VPD4:Arntl2; NbExp=3; IntAct=EBI-1266607, EBI-9696862;
O08785:Clock; NbExp=10; IntAct=EBI-1266607, EBI-79859;
P67870:CSNK2B (xeno); NbExp=2; IntAct=EBI-1266607, EBI-348169;
P67871:Csnk2b; NbExp=4; IntAct=EBI-1266607, EBI-348179;
Q8BFZ4:Fbxl21; NbExp=10; IntAct=EBI-1266607, EBI-6898235;
Q8C4V4:Fbxl3; NbExp=12; IntAct=EBI-1266607, EBI-1266589;
P06537-1:Nr3c1; NbExp=3; IntAct=EBI-1266607, EBI-15959147;
O35973:Per1; NbExp=3; IntAct=EBI-1266607, EBI-1266764;
O54943:Per2; NbExp=22; IntAct=EBI-1266607, EBI-1266779;
-!- SUBCELLULAR LOCATION: Cytoplasm. Nucleus
{ECO:0000269|PubMed:19129230}. Note=Transloctaed to the nucleus
through interaction with other clock proteins such as PER2 or
ARNTL/BMAL1.
-!- TISSUE SPECIFICITY: Expressed in all tissues examined including
heart, brain, spleen, lung, liver, skeletal muscle, kidney and
testis. Higher levels in brain, liver and testis. In the retina,
highly expressed in the ganglion cell layer (GCL) and in the inner
nuclear layer (INL). Evenly distributed in central and peripheral
retina. In the brain, highly expressed in the suprachiasmatic
nucleus (SCN). High levels in cerebral cortical layers
particularly in the pyramidial cell layer of the hippocampus, the
granular cell layer of the dentate gyrus (DG) and the pyramidal
cell layer of the piriform cortex (PFC).
{ECO:0000269|PubMed:10428031, ECO:0000269|PubMed:10521578,
ECO:0000269|PubMed:16790549, ECO:0000269|PubMed:9600923,
ECO:0000269|PubMed:9801304}.
-!- INDUCTION: Oscillates diurnally, rhythmic expression in the early
night is critical for clock function (at protein level). In SCN,
exhibits circadian rhythm expression with highest levels during
the light phase at CT10. No detectable expression after 8 hours in
the dark. Circadian oscillations also observed in liver, skeletal
muscle and cerebellum, but not in testis.
{ECO:0000269|PubMed:10428031, ECO:0000269|PubMed:10521578,
ECO:0000269|PubMed:16790549, ECO:0000269|PubMed:19917250,
ECO:0000269|PubMed:20385766, ECO:0000269|PubMed:21236481,
ECO:0000269|PubMed:23133559, ECO:0000269|PubMed:9600923}.
-!- PTM: Phosphorylation on Ser-247 by MAPK is important for the
inhibition of CLOCK-ARNTL/BMAL1-mediated transcriptional activity.
Phosphorylation by CSNK1E requires interaction with PER1 or PER2.
Phosphorylation at Ser-71 and Ser-280 by AMPK decreases protein
stability. Phosphorylation at Ser-588 exhibits a robust circadian
rhythm with a peak at CT8, increases protein stability, prevents
SCF(FBXL3)-mediated degradation and is antagonized by interaction
with PRKDC. {ECO:0000269|PubMed:11875063,
ECO:0000269|PubMed:15298678, ECO:0000269|PubMed:19833968,
ECO:0000269|PubMed:24158435}.
-!- PTM: Ubiquitinated by the SCF(FBXL3) and SCF(FBXL21) complexes,
regulating the balance between degradation and stabilization. The
SCF(FBXL3) complex is mainly nuclear and mediates ubiquitination
and subsequent degradation of CRY1. In contrast, cytoplasmic
SCF(FBXL21) complex-mediated ubiquitination leads to stabilize
CRY1 and counteract the activity of the SCF(FBXL3) complex. The
SCF(FBXL3) and SCF(FBXL21) complexes probably mediate
ubiquitination at different Lys residues. Ubiquitination at Lys-11
and Lys-107 are specifically ubiquitinated by the SCF(FBXL21)
complex but not by the SCF(FBXL3) complex. Ubiquitination may be
inhibited by PER2. {ECO:0000269|PubMed:11889036,
ECO:0000269|PubMed:17462724, ECO:0000269|PubMed:18953409,
ECO:0000269|PubMed:23452855, ECO:0000269|PubMed:23452856}.
-!- DISRUPTION PHENOTYPE: Mice show an advanced phase shift (around 4
hours) in the expression of DBP, NR1D1 and PER1 genes in the
liver. Double knockouts of CRY1 and CRY2 show slightly decrease
body weight and lose the cycling rhythmicity of feeding behavior,
energy expenditure and glucocorticoids expression. Glucose
homeostasis is severely disrupted and animals exhibit elevated
blood glucose in response to acute feeding after an overnight fast
as well as severely impaired glucose clearance in a glucose
tolerance test. When challenged with high-fat diet, animals
rapidly gain weight and surpass that of wild-type mice, despite
displaying hypophagia. They exhibit hyperinsulinemia and selective
insulin resistance in the liver and muscle but show high insulin
sensitivity in adipose tissue and consequent increased lipid
uptake. Mice display enlarged gonadal, subcutaneous and perirenal
fat deposits with adipocyte hypertrophy and increased lipied
accumulation in liver. {ECO:0000269|PubMed:20852621,
ECO:0000269|PubMed:22170608, ECO:0000269|PubMed:23531614,
ECO:0000269|PubMed:23616524, ECO:0000269|PubMed:24385426}.
-!- SIMILARITY: Belongs to the DNA photolyase class-1 family.
{ECO:0000305}.
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
Distributed under the Creative Commons Attribution (CC BY 4.0) License
-----------------------------------------------------------------------
EMBL; AB000777; BAA19175.1; -; mRNA.
EMBL; AF156986; AAD39548.1; -; mRNA.
EMBL; AK162460; BAE36931.1; -; mRNA.
EMBL; BC022174; AAH22174.1; -; mRNA.
EMBL; BC085499; AAH85499.1; -; mRNA.
CCDS; CCDS24089.1; -.
RefSeq; NP_031797.1; NM_007771.3.
UniGene; Mm.26237; -.
PDB; 4CT0; X-ray; 2.45 A; A=1-496.
PDB; 4K0R; X-ray; 2.65 A; A=1-606.
PDB; 5T5X; X-ray; 1.84 A; A=1-491.
PDBsum; 4CT0; -.
PDBsum; 4K0R; -.
PDBsum; 5T5X; -.
ProteinModelPortal; P97784; -.
SMR; P97784; -.
BioGrid; 198906; 28.
ComplexPortal; CPX-3209; Cry1-Per2 complex.
ComplexPortal; CPX-3216; Cry1-Per1 complex.
ComplexPortal; CPX-3217; Cry1-Per3 complex.
DIP; DIP-38515N; -.
IntAct; P97784; 44.
MINT; P97784; -.
STRING; 10090.ENSMUSP00000020227; -.
iPTMnet; P97784; -.
PhosphoSitePlus; P97784; -.
EPD; P97784; -.
MaxQB; P97784; -.
PaxDb; P97784; -.
PeptideAtlas; P97784; -.
PRIDE; P97784; -.
Ensembl; ENSMUST00000020227; ENSMUSP00000020227; ENSMUSG00000020038.
GeneID; 12952; -.
KEGG; mmu:12952; -.
UCSC; uc007gle.1; mouse.
CTD; 1407; -.
MGI; MGI:1270841; Cry1.
eggNOG; KOG0133; Eukaryota.
eggNOG; COG0415; LUCA.
GeneTree; ENSGT00500000044813; -.
HOGENOM; HOG000245622; -.
HOVERGEN; HBG053470; -.
InParanoid; P97784; -.
KO; K02295; -.
OMA; YWFRTDL; -.
OrthoDB; EOG091G07M3; -.
PhylomeDB; P97784; -.
TreeFam; TF323191; -.
PRO; PR:P97784; -.
Proteomes; UP000000589; Chromosome 10.
Bgee; ENSMUSG00000020038; -.
CleanEx; MM_CRY1; -.
ExpressionAtlas; P97784; baseline and differential.
Genevisible; P97784; MM.
GO; GO:0005829; C:cytosol; TAS:Reactome.
GO; GO:0005739; C:mitochondrion; IDA:UniProtKB.
GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0003690; F:double-stranded DNA binding; IDA:UniProtKB.
GO; GO:0070888; F:E-box binding; IDA:UniProtKB.
GO; GO:0042826; F:histone deacetylase binding; IPI:UniProtKB.
GO; GO:0019900; F:kinase binding; IPI:UniProtKB.
GO; GO:0035257; F:nuclear hormone receptor binding; IPI:UniProtKB.
GO; GO:0000166; F:nucleotide binding; IEA:UniProtKB-KW.
GO; GO:0019902; F:phosphatase binding; ISO:MGI.
GO; GO:0009881; F:photoreceptor activity; IEA:UniProtKB-KW.
GO; GO:0019901; F:protein kinase binding; IPI:UniProtKB.
GO; GO:0000989; F:transcription factor activity, transcription factor binding; ISO:MGI.
GO; GO:0008134; F:transcription factor binding; IPI:UniProtKB.
GO; GO:0032922; P:circadian regulation of gene expression; IMP:UniProtKB.
GO; GO:0007623; P:circadian rhythm; IDA:MGI.
GO; GO:0006975; P:DNA damage induced protein phosphorylation; IDA:UniProtKB.
GO; GO:0043153; P:entrainment of circadian clock by photoperiod; IMP:UniProtKB.
GO; GO:0006094; P:gluconeogenesis; IMP:UniProtKB.
GO; GO:0042593; P:glucose homeostasis; IGI:UniProtKB.
GO; GO:0019915; P:lipid storage; IGI:UniProtKB.
GO; GO:0042754; P:negative regulation of circadian rhythm; IDA:UniProtKB.
GO; GO:0045744; P:negative regulation of G-protein coupled receptor protein signaling pathway; IMP:UniProtKB.
GO; GO:2000323; P:negative regulation of glucocorticoid receptor signaling pathway; IDA:UniProtKB.
GO; GO:2000850; P:negative regulation of glucocorticoid secretion; IGI:UniProtKB.
GO; GO:0031397; P:negative regulation of protein ubiquitination; IDA:UniProtKB.
GO; GO:0000122; P:negative regulation of transcription by RNA polymerase II; IMP:UniProtKB.
GO; GO:0045892; P:negative regulation of transcription, DNA-templated; IDA:UniProtKB.
GO; GO:0018298; P:protein-chromophore linkage; IEA:UniProtKB-KW.
GO; GO:0042752; P:regulation of circadian rhythm; IMP:UniProtKB.
GO; GO:2000001; P:regulation of DNA damage checkpoint; IDA:UniProtKB.
GO; GO:0033762; P:response to glucagon; IMP:UniProtKB.
GO; GO:0032868; P:response to insulin; IGI:UniProtKB.
GO; GO:0006351; P:transcription, DNA-templated; IEA:UniProtKB-KW.
Gene3D; 3.40.50.620; -; 1.
InterPro; IPR036134; Crypto/Photolyase_FAD-like_sf.
InterPro; IPR036155; Crypto/Photolyase_N_sf.
InterPro; IPR005101; Cryptochr/Photolyase_FAD-bd.
InterPro; IPR006050; DNA_photolyase_N.
InterPro; IPR014729; Rossmann-like_a/b/a_fold.
Pfam; PF00875; DNA_photolyase; 1.
Pfam; PF03441; FAD_binding_7; 1.
SUPFAM; SSF48173; SSF48173; 1.
SUPFAM; SSF52425; SSF52425; 1.
PROSITE; PS51645; PHR_CRY_ALPHA_BETA; 1.
1: Evidence at protein level;
3D-structure; Biological rhythms; Chromophore; Complete proteome;
Cytoplasm; FAD; Flavoprotein; Isopeptide bond; Nucleotide-binding;
Nucleus; Phosphoprotein; Photoreceptor protein; Receptor;
Reference proteome; Repressor; Sensory transduction; Transcription;
Transcription regulation; Ubl conjugation.
CHAIN 1 606 Cryptochrome-1.
/FTId=PRO_0000261142.
DOMAIN 3 132 Photolyase/cryptochrome alpha/beta.
NP_BIND 387 389 FAD. {ECO:0000250}.
REGION 371 470 Required for inhibition of CLOCK-
ARNTL/BMAL1-mediated transcription.
REGION 471 493 Interaction with TIMELESS.
BINDING 252 252 FAD; via amide nitrogen. {ECO:0000250}.
BINDING 289 289 FAD. {ECO:0000250}.
BINDING 355 355 FAD. {ECO:0000250}.
MOD_RES 71 71 Phosphoserine; by AMPK.
{ECO:0000269|PubMed:19833968}.
MOD_RES 247 247 Phosphoserine; by MAPK.
{ECO:0000269|PubMed:15298678}.
MOD_RES 280 280 Phosphoserine; by AMPK.
{ECO:0000269|PubMed:19833968}.
MOD_RES 588 588 Phosphoserine.
{ECO:0000269|PubMed:24158435}.
CROSSLNK 11 11 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in ubiquitin).
{ECO:0000305|PubMed:23452855}.
CROSSLNK 107 107 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in ubiquitin).
{ECO:0000269|PubMed:23452856}.
CROSSLNK 159 159 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in ubiquitin).
{ECO:0000269|PubMed:23452856}.
CROSSLNK 329 329 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in ubiquitin).
{ECO:0000269|PubMed:23452856}.
CROSSLNK 485 485 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in ubiquitin).
{ECO:0000269|PubMed:23452856}.
MUTAGEN 71 71 S->A: Phosphomimetic mutant that leads to
stabilization of the protein; when
associated with A-280.
{ECO:0000269|PubMed:19833968}.
MUTAGEN 71 71 S->D: Phosphomimetic mutant that leads to
destabilization of the protein and
abolishes ability to bind PER2; when
associated with D-280.
{ECO:0000269|PubMed:19833968}.
MUTAGEN 107 107 K->R: Sensitive to FBXL3-ediated
degradation but noz affected by
expression of FBXL21.
{ECO:0000269|PubMed:23452856}.
MUTAGEN 224 224 H->E: Reduces affinity for FBXL3.
{ECO:0000269|PubMed:23746849}.
MUTAGEN 247 247 S->A: Reduced MAPK-catalyzed in vitro
phosphorylation. No effect on inhibition
of CLOCK-ARNTL/BMAL1-mediated
transcriptional activity.
{ECO:0000269|PubMed:15298678,
ECO:0000269|PubMed:23746849}.
MUTAGEN 247 247 S->D: Reduced inhibition of CLOCK-
ARNTL/BMAL1-mediated transcriptional
activity. {ECO:0000269|PubMed:15298678,
ECO:0000269|PubMed:23746849}.
MUTAGEN 280 280 S->A: Phosphomimetic mutant that leads to
stabilization of the protein; when
associated with A-71.
{ECO:0000269|PubMed:19833968}.
MUTAGEN 280 280 S->D: Phosphomimetic mutant that leads to
destabilization of the protein and
abolishes ability to bind PER2; when
associated with D-71.
{ECO:0000269|PubMed:19833968}.
MUTAGEN 336 336 G->D: Abolishes transcriptional
repression of target genes. Abolishes
interaction with PER2.
MUTAGEN 382 383 EE->RR: Decreases transcriptional
repression of target genes. Decreases
FBXL3 binding. Increases PER2 binding.
{ECO:0000269|PubMed:23746849}.
MUTAGEN 405 405 F->A: Decreases affinity for FBXL3.
Slightly increases affinity for PER2.
{ECO:0000269|PubMed:23746849}.
MUTAGEN 485 485 K->D,E: Strongly reduces FBXL3 binding.
Reduces PER2 binding.
{ECO:0000269|PubMed:23746849}.
MUTAGEN 551 551 S->A: No effect on circadian period
length and protein stability.
{ECO:0000269|PubMed:24158435}.
MUTAGEN 551 551 S->D: No effect on circadian period
length and protein stability.
{ECO:0000269|PubMed:24158435}.
MUTAGEN 564 564 S->A: No effect on circadian period
length and protein stability.
{ECO:0000269|PubMed:24158435}.
MUTAGEN 564 564 S->D: No effect on circadian period
length and protein stability.
{ECO:0000269|PubMed:24158435}.
MUTAGEN 588 588 S->A: No effect on circadian period
length and protein stability.
{ECO:0000269|PubMed:24158435}.
MUTAGEN 588 588 S->D: Lengthen circadian period. No
effect on repressive activity. Increases
protein stability.
{ECO:0000269|PubMed:24158435}.
STRAND 4 11 {ECO:0000244|PDB:5T5X}.
STRAND 14 17 {ECO:0000244|PDB:5T5X}.
HELIX 19 25 {ECO:0000244|PDB:5T5X}.
STRAND 29 37 {ECO:0000244|PDB:5T5X}.
TURN 39 44 {ECO:0000244|PDB:4CT0}.
HELIX 49 67 {ECO:0000244|PDB:5T5X}.
TURN 68 70 {ECO:0000244|PDB:5T5X}.
STRAND 73 78 {ECO:0000244|PDB:5T5X}.
HELIX 80 91 {ECO:0000244|PDB:5T5X}.
STRAND 93 99 {ECO:0000244|PDB:5T5X}.
HELIX 104 119 {ECO:0000244|PDB:5T5X}.
STRAND 123 127 {ECO:0000244|PDB:5T5X}.
STRAND 130 133 {ECO:0000244|PDB:5T5X}.
HELIX 135 141 {ECO:0000244|PDB:5T5X}.
HELIX 150 158 {ECO:0000244|PDB:5T5X}.
TURN 174 177 {ECO:0000244|PDB:5T5X}.
HELIX 186 190 {ECO:0000244|PDB:5T5X}.
TURN 195 199 {ECO:0000244|PDB:5T5X}.
HELIX 214 229 {ECO:0000244|PDB:5T5X}.
HELIX 241 244 {ECO:0000244|PDB:5T5X}.
HELIX 252 256 {ECO:0000244|PDB:5T5X}.
HELIX 262 277 {ECO:0000244|PDB:5T5X}.
HELIX 284 287 {ECO:0000244|PDB:5T5X}.
HELIX 288 300 {ECO:0000244|PDB:5T5X}.
TURN 304 307 {ECO:0000244|PDB:5T5X}.
HELIX 324 332 {ECO:0000244|PDB:5T5X}.
HELIX 338 350 {ECO:0000244|PDB:5T5X}.
HELIX 355 365 {ECO:0000244|PDB:5T5X}.
TURN 366 370 {ECO:0000244|PDB:5T5X}.
HELIX 374 384 {ECO:0000244|PDB:5T5X}.
HELIX 390 400 {ECO:0000244|PDB:5T5X}.
HELIX 417 422 {ECO:0000244|PDB:5T5X}.
HELIX 427 432 {ECO:0000244|PDB:5T5X}.
HELIX 434 436 {ECO:0000244|PDB:5T5X}.
TURN 441 445 {ECO:0000244|PDB:5T5X}.
HELIX 447 449 {ECO:0000244|PDB:5T5X}.
HELIX 452 457 {ECO:0000244|PDB:5T5X}.
TURN 462 464 {ECO:0000244|PDB:5T5X}.
HELIX 473 487 {ECO:0000244|PDB:5T5X}.
SEQUENCE 606 AA; 68001 MW; 2F2B8DD53F0A9AF9 CRC64;
MGVNAVHWFR KGLRLHDNPA LKECIQGADT IRCVYILDPW FAGSSNVGIN RWRFLLQCLE
DLDANLRKLN SRLFVIRGQP ADVFPRLFKE WNITKLSIEY DSEPFGKERD AAIKKLATEA
GVEVIVRISH TLYDLDKIIE LNGGQPPLTY KRFQTLVSKM EPLEMPADTI TSDVIGKCMT
PLSDDHDEKY GVPSLEELGF DTDGLSSAVW PGGETEALTR LERHLERKAW VANFERPRMN
ANSLLASPTG LSPYLRFGCL SCRLFYFKLT DLYKKVKKNS SPPLSLYGQL LWREFFYTAA
TNNPRFDKME GNPICVQIPW DKNPEALAKW AEGRTGFPWI DAIMTQLRQE GWIHHLARHA
VACFLTRGDL WISWEEGMKV FEELLLDADW SINAGSWMWL SCSSFFQQFF HCYCPVGFGR
RTDPNGDYIR RYLPVLRGFP AKYIYDPWNA PEGIQKVAKC LIGVNYPKPM VNHAEASRLN
IERMKQIYQQ LSRYRGLGLL ASVPSNSNGN GGLMGYAPGE NVPSCSSSGN GGLMGYAPGE
NVPSCSGGNC SQGSGILHYA HGDSQQTHSL KQGRSSAGTG LSSGKRPSQE EDAQSVGPKV
QRQSSN


Related products :

Catalog number Product name Quantity
LF-PA40292 anti-Cryptochrome 2 (CRY2) , Rabbit polyclonal to Cryptochrome 2 (CRY2), Isotype IgG, Host Rabbit 50 ug
MCA4878Z MOUSE ANTI HUMAN CRYPTOCHROME 1 Azide free, Product Type Monoclonal Antibody, Specificity CRYPTOCHROME 1, Target Species Human, Host Mouse, Format Azide Free, Isotypes IgG1, Applications IF, P, 0.1 mg
YF-MA12536 anti-Cryptochrome I (2G4-1F6) 100 ug
YF-PA11099 anti-Cryptochrome I 50 ug
EH2887 Cryptochrome 1 Elisa Kit 96T
E02C0568 Rat Cryptochrome 1 ELISA 96T/kit
E07C0568 Porcine Cryptochrome 1 ELISA 96T/kit
E09C0568 Monkey Cryptochrome 1 ELISA 96T/kit
E03C0568 Mouse Cryptochrome 1 ELISA 96T/kit
E01C0568 Human Cryptochrome 1 ELISA 96T/kit
E05C0568 Guinea Pig Cryptochrome 1 ELISA 96T/kit
E06C0568 Goat Cryptochrome 1 ELISA 96T/kit
E-EL-R0282 Rat CRY1 (Cryptochrome 1) ELISA Kit 96T
E12C0568 Chicken Cryptochrome 1 ELISA 96T/kit
E08C0568 Canine Cryptochrome 1 ELISA 96T/kit
E11C0568 Bovine Cryptochrome 1 ELISA 96T/kit
E02C0568 Rat Cryptochrome 1 ELISA , CRY1 96 Tests/kit
E02C0568 Rat Cryptochrome 1 ELISA , CRY1
CRY2_HUMAN Human ELISA Kit FOR Cryptochrome-2 96T
E92407Hu ELISA Kit for Cryptochrome 1 (CRY1) 96T/Kit
E02C0568 Rat Cryptochrome 1 Elisa Kit (CRY1) 96 Tests/kit
E14C0568 Sheep Cryptochrome 1 ELISA 96T/kit
CSB-EL006006RA Rat Cryptochrome-2(CRY2) ELISA kit 96T
NBL1-09495 Cryptochrome I Lysate 0.1 mg
E11753h Human Cryptochrome 2 ELISA Kit 96T


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur