Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

DNA gyrase subunit B (EC 5.99.1.3) (Type IIA topoisomerase subunit GyrB)

 GYRB_ECOLI              Reviewed;         804 AA.
P0AES6; O08438; P06982; Q2M811;
01-APR-1988, integrated into UniProtKB/Swiss-Prot.
23-JAN-2007, sequence version 2.
22-NOV-2017, entry version 122.
RecName: Full=DNA gyrase subunit B {ECO:0000255|HAMAP-Rule:MF_01898};
EC=5.99.1.3 {ECO:0000255|HAMAP-Rule:MF_01898, ECO:0000269|PubMed:12051842, ECO:0000269|PubMed:12051843, ECO:0000269|PubMed:18642932, ECO:0000269|PubMed:186775, ECO:0000269|PubMed:19965760};
AltName: Full=Type IIA topoisomerase subunit GyrB;
Name=gyrB {ECO:0000255|HAMAP-Rule:MF_01898};
Synonyms=acrB {ECO:0000303|PubMed:9148951}, cou, himB, hisU, nalC,
parA, pcbA; OrderedLocusNames=b3699, JW5625;
Escherichia coli (strain K12).
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales;
Enterobacteriaceae; Escherichia.
NCBI_TaxID=83333;
[1]
NUCLEOTIDE SEQUENCE [GENOMIC DNA].
STRAIN=K12;
PubMed=3020376; DOI=10.1007/BF00331012;
Yamagishi J., Yoshida H., Yamayoshi M., Nakamura S.;
"Nalidixic acid-resistant mutations of the gyrB gene of Escherichia
coli.";
Mol. Gen. Genet. 204:367-373(1986).
[2]
NUCLEOTIDE SEQUENCE [GENOMIC DNA].
STRAIN=K12;
PubMed=3029692; DOI=10.1093/nar/15.2.771;
Adachi T., Mizuuchi M., Robinson E.A., Appella E., O'Dea M.H.,
Gellert M., Mizuuchi K.;
"DNA sequence of the E. coli gyrB gene: application of a new
sequencing strategy.";
Nucleic Acids Res. 15:771-784(1987).
[3]
NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF VARIANT ACRB, FUNCTION, ENZYME
REGULATION, SUBUNIT, DNA-BINDING, AND ACRIDINE SENSITIVITY.
STRAIN=K12 / N2879;
PubMed=9148951; DOI=10.1074/jbc.272.20.13302;
Funatsuki K., Tanaka R., Inagaki S., Konno H., Katoh K., Nakamura H.;
"acrB mutation located at carboxyl-terminal region of gyrase B subunit
reduces DNA binding of DNA gyrase.";
J. Biol. Chem. 272:13302-13308(1997).
[4]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
STRAIN=K12 / MG1655 / ATCC 47076;
PubMed=7686882; DOI=10.1006/geno.1993.1230;
Burland V.D., Plunkett G. III, Daniels D.L., Blattner F.R.;
"DNA sequence and analysis of 136 kilobases of the Escherichia coli
genome: organizational symmetry around the origin of replication.";
Genomics 16:551-561(1993).
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
STRAIN=K12 / MG1655 / ATCC 47076;
PubMed=9278503; DOI=10.1126/science.277.5331.1453;
Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V.,
Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F.,
Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J.,
Mau B., Shao Y.;
"The complete genome sequence of Escherichia coli K-12.";
Science 277:1453-1462(1997).
[6]
SEQUENCE REVISION TO 385.
PubMed=16397293; DOI=10.1093/nar/gkj405;
Riley M., Abe T., Arnaud M.B., Berlyn M.K.B., Blattner F.R.,
Chaudhuri R.R., Glasner J.D., Horiuchi T., Keseler I.M., Kosuge T.,
Mori H., Perna N.T., Plunkett G. III, Rudd K.E., Serres M.H.,
Thomas G.H., Thomson N.R., Wishart D., Wanner B.L.;
"Escherichia coli K-12: a cooperatively developed annotation snapshot
-- 2005.";
Nucleic Acids Res. 34:1-9(2006).
[7]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
STRAIN=K12 / W3110 / ATCC 27325 / DSM 5911;
PubMed=16738553; DOI=10.1038/msb4100049;
Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S.,
Ohtsubo E., Baba T., Wanner B.L., Mori H., Horiuchi T.;
"Highly accurate genome sequences of Escherichia coli K-12 strains
MG1655 and W3110.";
Mol. Syst. Biol. 2:E1-E5(2006).
[8]
NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-106.
STRAIN=K12;
PubMed=6089112; DOI=10.1093/nar/12.16.6389;
Adachi T., Mizuuchi K., Menzel R., Gellert M.;
"DNA sequence and transcription of the region upstream of the E. coli
gyrB gene.";
Nucleic Acids Res. 12:6389-6395(1984).
[9]
NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-22.
PubMed=3029031; DOI=10.1128/jb.169.3.1272-1278.1987;
Menzel R., Gellert M.;
"Fusions of the Escherichia coli gyrA and gyrB control regions to the
galactokinase gene are inducible by coumermycin treatment.";
J. Bacteriol. 169:1272-1278(1987).
[10]
PROTEIN SEQUENCE OF 93-129, AND ATP-BINDING.
PubMed=2174443;
Tamura J.K., Gellert M.;
"Characterization of the ATP binding site on Escherichia coli DNA
gyrase. Affinity labeling of Lys-103 and Lys-110 of the B subunit by
pyridoxal 5'-diphospho-5'-adenosine.";
J. Biol. Chem. 265:21342-21349(1990).
[11]
FUNCTION IN GENERATING NEGATIVELY SUPERCOILED DNA, CATALYTIC ACTIVITY,
AND ATP-DEPENDENCE.
PubMed=186775; DOI=10.1073/pnas.73.11.3872;
Gellert M., Mizuuchi K., O'Dea M.H., Nash H.A.;
"DNA gyrase: an enzyme that introduces superhelical turns into DNA.";
Proc. Natl. Acad. Sci. U.S.A. 73:3872-3876(1976).
[12]
FUNCTION IN RELAXING SUPERCOILED DNA, AND ENZYME REGULATION.
PubMed=337300; DOI=10.1073/pnas.74.11.4772;
Gellert M., Mizuuchi K., O'Dea M.H., Itoh T., Tomizawa J.I.;
"Nalidixic acid resistance: a second genetic character involved in DNA
gyrase activity.";
Proc. Natl. Acad. Sci. U.S.A. 74:4772-4776(1977).
[13]
REACTION MECHANISM, AND DNA-BINDING.
PubMed=3031051;
Horowitz D.S., Wang J.C.;
"Mapping the active site tyrosine of Escherichia coli DNA gyrase.";
J. Biol. Chem. 262:5339-5344(1987).
[14]
MUTANTS MICROCIN B17 RESISTANT.
PubMed=1846808;
Vizan J.L., Hernandez-Chico C., del Castillo I., Moreno F.;
"The peptide antibiotic microcin B17 induces double-strand cleavage of
DNA mediated by E. coli DNA gyrase.";
EMBO J. 10:467-476(1991).
[15]
FUNCTION, MUTAGENESIS OF ARG-136 AND GLY-164, AND ANTIBIOTIC
RESISTANCE.
PubMed=1323022; DOI=10.1111/j.1365-2958.1992.tb00886.x;
Contreras A., Maxwell A.;
"gyrB mutations which confer coumarin resistance also affect DNA
supercoiling and ATP hydrolysis by Escherichia coli DNA gyrase.";
Mol. Microbiol. 6:1617-1624(1992).
[16]
FUNCTION, ATPASE ACTIVE SITE, AND MUTAGENESIS OF HIS-38 AND GLU-42.
PubMed=8248233; DOI=10.1073/pnas.90.23.11232;
Jackson A.P., Maxwell A.;
"Identifying the catalytic residue of the ATPase reaction of DNA
gyrase.";
Proc. Natl. Acad. Sci. U.S.A. 90:11232-11236(1993).
[17]
FUNCTION, AND ENZYME REGULATION.
PubMed=7811004; DOI=10.1128/AAC.38.9.1966;
Nakada N., Gmuender H., Hirata T., Arisawa M.;
"Mechanism of inhibition of DNA gyrase by cyclothialidine, a novel DNA
gyrase inhibitor.";
Antimicrob. Agents Chemother. 38:1966-1973(1994).
[18]
FUNCTION, DOMAIN, AND MUTAGENESIS OF LYS-103 AND LYS-110.
PubMed=8621650; DOI=10.1074/jbc.271.16.9723;
O'Dea M.H., Tamura J.K., Gellert M.;
"Mutations in the B subunit of Escherichia coli DNA gyrase that affect
ATP-dependent reactions.";
J. Biol. Chem. 271:9723-9729(1996).
[19]
FUNCTION.
PubMed=8962066; DOI=10.1073/pnas.93.25.14416;
Kampranis S.C., Maxwell A.;
"Conversion of DNA gyrase into a conventional type II topoisomerase.";
Proc. Natl. Acad. Sci. U.S.A. 93:14416-14421(1996).
[20]
IDENTIFICATION BY 2D-GEL.
PubMed=9298644; DOI=10.1002/elps.1150180805;
VanBogelen R.A., Abshire K.Z., Moldover B., Olson E.R.,
Neidhardt F.C.;
"Escherichia coli proteome analysis using the gene-protein database.";
Electrophoresis 18:1243-1251(1997).
[21]
FUNCTION.
PubMed=9334322; DOI=10.1101/gad.11.19.2580;
Zechiedrich E.L., Khodursky A.B., Cozzarelli N.R.;
"Topoisomerase IV, not gyrase, decatenates products of site-specific
recombination in Escherichia coli.";
Genes Dev. 11:2580-2592(1997).
[22]
FUNCTION, DOMAIN, AND MUTAGENESIS OF GLN-335 AND LYS-337.
PubMed=9657678; DOI=10.1021/bi9801309;
Smith C.V., Maxwell A.;
"Identification of a residue involved in transition-state
stabilization in the ATPase reaction of DNA gyrase.";
Biochemistry 37:9658-9667(1998).
[23]
FUNCTION, CATALYTIC ACTIVITY, AND SUBUNIT.
PubMed=12051842; DOI=10.1016/S0022-2836(02)00048-7;
Hockings S.C., Maxwell A.;
"Identification of four GyrA residues involved in the DNA breakage-
reunion reaction of DNA gyrase.";
J. Mol. Biol. 318:351-359(2002).
[24]
FUNCTION, CATALYTIC ACTIVITY, COFACTOR, SUBUNIT, AND MUTAGENESIS OF
GLU-424; ASP-498; ASP-500 AND ASP-502.
PubMed=12051843; DOI=10.1016/S0022-2836(02)00049-9;
Noble C.G., Maxwell A.;
"The role of GyrB in the DNA cleavage-religation reaction of DNA
gyrase: a proposed two metal-ion mechanism.";
J. Mol. Biol. 318:361-371(2002).
[25]
FUNCTION.
PubMed=16332690; DOI=10.1074/jbc.M511160200;
Kramlinger V.M., Hiasa H.;
"The 'GyrA-box' is required for the ability of DNA gyrase to wrap DNA
and catalyze the supercoiling reaction.";
J. Biol. Chem. 281:3738-3742(2006).
[26]
FUNCTION, AND MUTAGENESIS OF ARG-436.
STRAIN=K12 / W3110 / ATCC 27325 / DSM 5911;
PubMed=17400739; DOI=10.1128/JB.00083-07;
Champion K., Higgins N.P.;
"Growth rate toxicity phenotypes and homeostatic supercoil control
differentiate Escherichia coli from Salmonella enterica serovar
Typhimurium.";
J. Bacteriol. 189:5839-5849(2007).
[27]
FUNCTION, CATALYTIC ACTIVITY, COFACTOR, AND SUBUNIT.
PubMed=18642932; DOI=10.1021/bi800480j;
Sissi C., Chemello A., Vazquez E., Mitchenall L.A., Maxwell A.,
Palumbo M.;
"DNA gyrase requires DNA for effective two-site coordination of
divalent metal ions: further insight into the mechanism of enzyme
action.";
Biochemistry 47:8538-8545(2008).
[28]
FUNCTION, AND ENZYME REGULATION.
PubMed=19060136; DOI=10.1128/JB.01205-08;
Merens A., Matrat S., Aubry A., Lascols C., Jarlier V., Soussy C.J.,
Cavallo J.D., Cambau E.;
"The pentapeptide repeat proteins MfpAMt and QnrB4 exhibit opposite
effects on DNA gyrase catalytic reactions and on the ternary gyrase-
DNA-quinolone complex.";
J. Bacteriol. 191:1587-1594(2009).
[29]
FUNCTION, CATALYTIC ACTIVITY, AND SUBUNIT.
PubMed=19965760; DOI=10.1126/science.1179123;
Edwards M.J., Flatman R.H., Mitchenall L.A., Stevenson C.E., Le T.B.,
Clarke T.A., McKay A.R., Fiedler H.P., Buttner M.J., Lawson D.M.,
Maxwell A.;
"A crystal structure of the bifunctional antibiotic simocyclinone D8,
bound to DNA gyrase.";
Science 326:1415-1418(2009).
[30]
FUNCTION, AND DNA-BINDING.
PubMed=22457353; DOI=10.1074/jbc.M112.345678;
Tretter E.M., Berger J.M.;
"Mechanisms for defining supercoiling set point of DNA gyrase
orthologs: I. A nonconserved acidic C-terminal tail modulates
Escherichia coli gyrase activity.";
J. Biol. Chem. 287:18636-18644(2012).
[31]
FUNCTION, AND DNA-BINDING.
PubMed=22457352; DOI=10.1074/jbc.M112.345736;
Tretter E.M., Berger J.M.;
"Mechanisms for defining supercoiling set point of DNA gyrase
orthologs: II. The shape of the GyrA subunit C-terminal domain (CTD)
is not a sole determinant for controlling supercoiling efficiency.";
J. Biol. Chem. 287:18645-18654(2012).
[32]
VARIANTS QUINOLONE-RESISTANT ASN-426 AND GLU-447.
STRAIN=K16;
PubMed=1656869; DOI=10.1128/AAC.35.8.1647;
Yoshida H., Bogaki M., Nakamura M., Yamanaka L.M., Nakamura S.;
"Quinolone resistance-determining region in the DNA gyrase gyrB gene
of Escherichia coli.";
Antimicrob. Agents Chemother. 35:1647-1650(1991).
[33]
FUNCTION, AND ENZYME REGULATION.
PubMed=23294697; DOI=10.1016/j.bmcl.2012.11.073;
Trzoss M., Bensen D.C., Li X., Chen Z., Lam T., Zhang J.,
Creighton C.J., Cunningham M.L., Kwan B., Stidham M., Nelson K.,
Brown-Driver V., Castellano A., Shaw K.J., Lightstone F.C., Wong S.E.,
Nguyen T.B., Finn J., Tari L.W.;
"Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase
IV (ParE), Part II: development of inhibitors with broad spectrum,
Gram-negative antibacterial activity.";
Bioorg. Med. Chem. Lett. 23:1537-1543(2013).
[34]
X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS) OF 1-393 IN COMPLEX WITH ATP
ANALOG, AND DOMAIN.
PubMed=1646964; DOI=10.1038/351624a0;
Wigley D.B., Davies G.J., Dodson E.J., Maxwell A., Dodson G.;
"Crystal structure of an N-terminal fragment of the DNA gyrase B
protein.";
Nature 351:624-629(1991).
[35]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 1-220 IN COMPLEX WITH
COUMARIN AND CYCLOTHIALIDINE ANTIBIOTICS, AND ENZYME REGULATION.
PubMed=8635474;
Lewis R.J., Singh O.M., Smith C.V., Skarzynski T., Maxwell A.,
Wonacott A.J., Wigley D.B.;
"The nature of inhibition of DNA gyrase by the coumarins and the
cyclothialidines revealed by X-ray crystallography.";
EMBO J. 15:1412-1420(1996).
[36]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 1-220 IN COMPLEX WITH
CHLOROBIOCIN.
PubMed=9144789;
DOI=10.1002/(SICI)1097-0134(199705)28:1<41::AID-PROT4>3.3.CO;2-B;
Tsai F.T., Singh O.M., Skarzynski T., Wonacott A.J., Weston S.,
Tucker A., Pauptit R.A., Breeze A.L., Poyser J.P., O'Brien R.,
Ladbury J.E., Wigley D.B.;
"The high-resolution crystal structure of a 24-kDa gyrase B fragment
from E. coli complexed with one of the most potent coumarin
inhibitors, clorobiocin.";
Proteins 28:41-52(1997).
[37]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 2-220 OF MUTANT HIS-136 IN
COMPLEX WITH NOVOBIOCIN.
PubMed=9245398; DOI=10.1021/bi970294+;
Holdgate G.A., Tunnicliffe A., Ward W.H., Weston S.A., Rosenbrock G.,
Barth P.T., Taylor I.W., Pauptit R.A., Timms D.;
"The entropic penalty of ordered water accounts for weaker binding of
the antibiotic novobiocin to a resistant mutant of DNA gyrase: a
thermodynamic and crystallographic study.";
Biochemistry 36:9663-9673(1997).
[38]
X-RAY CRYSTALLOGRAPHY (2.30 ANGSTROMS) OF 2-392 OF MUTANT SER-5 IN
COMPLEX WITH ATP ANALOG, ACTIVE SITE, DOMAIN, MUTAGENESIS OF
1-MET--LYS-14; TYR-5 AND ILE-10, AND ATP-BINDING.
PubMed=10734094; DOI=10.1074/jbc.275.13.9468;
Brino L., Urzhumtsev A., Mousli M., Bronner C., Mitschler A.,
Oudet P., Moras D.;
"Dimerization of Escherichia coli DNA-gyrase B provides a structural
mechanism for activating the ATPase catalytic center.";
J. Biol. Chem. 275:9468-9475(2000).
[39]
X-RAY CRYSTALLOGRAPHY (2.30 ANGSTROMS) OF 15-219 IN COMPLEX WITH
CLOROBIOCIN.
PubMed=12044152; DOI=10.1021/bi0159837;
Lafitte D., Lamour V., Tsvetkov P.O., Makarov A.A., Klich M.,
Deprez P., Moras D., Briand C., Gilli R.;
"DNA gyrase interaction with coumarin-based inhibitors: the role of
the hydroxybenzoate isopentenyl moiety and the 5'-methyl group of the
noviose.";
Biochemistry 41:7217-7223(2002).
[40]
X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 15-217 IN COMPLEX WITH
PYRAZOLTHIAZOLE INHIBITOR, FUNCTION, AND ENZYME REGULATION.
PubMed=20356737; DOI=10.1016/j.bmcl.2010.03.052;
Ronkin S.M., Badia M., Bellon S., Grillot A.L., Gross C.H.,
Grossman T.H., Mani N., Parsons J.D., Stamos D., Trudeau M., Wei Y.,
Charifson P.S.;
"Discovery of pyrazolthiazoles as novel and potent inhibitors of
bacterial gyrase.";
Bioorg. Med. Chem. Lett. 20:2828-2831(2010).
[41]
X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) OF 388-804, FUNCTION, CATALYTIC
ACTIVITY, AND SUBUNIT.
PubMed=20675723; DOI=10.1093/nar/gkq665;
Schoeffler A.J., May A.P., Berger J.M.;
"A domain insertion in Escherichia coli GyrB adopts a novel fold that
plays a critical role in gyrase function.";
Nucleic Acids Res. 38:7830-7844(2010).
[42]
X-RAY CRYSTALLOGRAPHY (1.5 ANGSTROMS) OF 1-220, AND CATALYTIC
ACTIVITY.
PubMed=22731783; DOI=10.1021/jm300395d;
Brvar M., Perdih A., Renko M., Anderluh G., Turk D., Solmajer T.;
"Structure-based discovery of substituted 4,5'-bithiazoles as novel
DNA gyrase inhibitors.";
J. Med. Chem. 55:6413-6426(2012).
[43]
X-RAY CRYSTALLOGRAPHY (2.60 ANGSTROMS) OF 15-220 IN COMPLEX WITH
INHIBITOR, FUNCTION, AND ENZYME REGULATION.
PubMed=23352267; DOI=10.1016/j.bmcl.2012.11.032;
Tari L.W., Trzoss M., Bensen D.C., Li X., Chen Z., Lam T., Zhang J.,
Creighton C.J., Cunningham M.L., Kwan B., Stidham M., Shaw K.J.,
Lightstone F.C., Wong S.E., Nguyen T.B., Nix J., Finn J.;
"Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase
IV (ParE). Part I: Structure guided discovery and optimization of dual
targeting agents with potent, broad-spectrum enzymatic activity.";
Bioorg. Med. Chem. Lett. 23:1529-1536(2013).
[44]
X-RAY CRYSTALLOGRAPHY (1.60 ANGSTROMS) OF 15-220 IN COMPLEX WITH
INHIBITOR, FUNCTION, AND ENZYME REGULATION.
PubMed=24386374; DOI=10.1371/journal.pone.0084409;
Tari L.W., Li X., Trzoss M., Bensen D.C., Chen Z., Lam T., Zhang J.,
Lee S.J., Hough G., Phillipson D., Akers-Rodriguez S.,
Cunningham M.L., Kwan B.P., Nelson K.J., Castellano A., Locke J.B.,
Brown-Driver V., Murphy T.M., Ong V.S., Pillar C.M., Shinabarger D.L.,
Nix J., Lightstone F.C., Wong S.E., Nguyen T.B., Shaw K.J., Finn J.;
"Tricyclic GyrB/ParE (TriBE) inhibitors: a new class of broad-spectrum
dual-targeting antibacterial agents.";
PLoS ONE 8:E84409-E84409(2013).
[45]
X-RAY CRYSTALLOGRAPHY (1.80 ANGSTROMS) OF 2-392 IN OPEN; SEMI-OPEN AND
CLOSED STATES IN COMPLEX WITH ADP AND ATP ANALOGS, ATPASE ACTIVITY,
PROBABLE MECHANISM, DOMAIN, AND ATP-BINDING.
PubMed=25202966; DOI=10.1371/journal.pone.0107289;
Stanger F.V., Dehio C., Schirmer T.;
"Structure of the N-terminal Gyrase B fragment in complex with ADPPi
reveals rigid-body motion induced by ATP hydrolysis.";
PLoS ONE 9:E107289-E107289(2014).
[46]
X-RAY CRYSTALLOGRAPHY (1.75 ANGSTROMS) OF 2-393 IN COMPLEX WITH ATP
ANALOG AND MONOVALENT CATIONS, AND ATPASE ACTIVITY.
PubMed=25849408; DOI=10.1107/S1399004715002916;
Hearnshaw S.J., Chung T.T., Stevenson C.E., Maxwell A., Lawson D.M.;
"The role of monovalent cations in the ATPase reaction of DNA
gyrase.";
Acta Crystallogr. D 71:996-1005(2015).
-!- FUNCTION: DNA gyrase negatively supercoils closed circular double-
stranded DNA in an ATP-dependent manner to maintain chromosomes in
an underwound state (PubMed:186775, PubMed:3031051,
PubMed:1323022, PubMed:8248233, PubMed:7811004, PubMed:8621650,
PubMed:9657678, PubMed:12051842, PubMed:12051843, PubMed:18642932,
PubMed:19060136, PubMed:19965760, PubMed:22457353,
PubMed:23294697, PubMed:20356737, PubMed:20675723,
PubMed:23352267, PubMed:24386374, PubMed:25202966,
PubMed:25849408). This makes better substrates for topoisomerase 4
(ParC and ParE) which is the main enzyme that unlinks newly
replicated chromosomes in E.coli (PubMed:9334322). Gyrase
catalyzes the interconversion of other topological isomers of
double-stranded DNA rings, including catenanes (PubMed:22457352).
Relaxes negatively supercoiled DNA in an ATP-independent manner
(PubMed:337300). E.coli gyrase has higher supercoiling activity
than other characterized bacterial gyrases; at comparable
concentrations E.coli gyrase introduces more supercoils faster
than M.tuberculosis gyrase, while M.tuberculosis gyrase has higher
decatenation than supercoiling activity compared to E.coli
(PubMed:22457352). E.coli makes 15% more negative supercoils in
pBR322 plasmid DNA than S.typhimurium; the S.typhimurium GyrB
subunit is toxic in E.coli, while the E.coli copy can be expressed
in S.typhimurium even though the 2 subunits have 777/804 residues
identical (PubMed:17400739). The enzymatic differences between
E.coli gyrase and topoisomerase IV are largely due to the GyrA C-
terminal domain (approximately residues 524-841) and specifically
the GyrA-box (PubMed:8962066, PubMed:16332690).
{ECO:0000269|PubMed:12051842, ECO:0000269|PubMed:12051843,
ECO:0000269|PubMed:1323022, ECO:0000269|PubMed:16332690,
ECO:0000269|PubMed:17400739, ECO:0000269|PubMed:18642932,
ECO:0000269|PubMed:186775, ECO:0000269|PubMed:19060136,
ECO:0000269|PubMed:19965760, ECO:0000269|PubMed:20356737,
ECO:0000269|PubMed:20675723, ECO:0000269|PubMed:22457352,
ECO:0000269|PubMed:22457353, ECO:0000269|PubMed:23294697,
ECO:0000269|PubMed:23352267, ECO:0000269|PubMed:24386374,
ECO:0000269|PubMed:25202966, ECO:0000269|PubMed:25849408,
ECO:0000269|PubMed:3031051, ECO:0000269|PubMed:337300,
ECO:0000269|PubMed:7811004, ECO:0000269|PubMed:8248233,
ECO:0000269|PubMed:8621650, ECO:0000269|PubMed:8962066,
ECO:0000269|PubMed:9148951, ECO:0000269|PubMed:9334322,
ECO:0000269|PubMed:9657678}.
-!- CATALYTIC ACTIVITY: ATP-dependent breakage, passage and rejoining
of double-stranded DNA. {ECO:0000255|HAMAP-Rule:MF_01898,
ECO:0000269|PubMed:12051842, ECO:0000269|PubMed:12051843,
ECO:0000269|PubMed:18642932, ECO:0000269|PubMed:186775,
ECO:0000269|PubMed:19965760, ECO:0000269|PubMed:20675723,
ECO:0000269|PubMed:22731783}.
-!- COFACTOR:
Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
Evidence={ECO:0000255|HAMAP-Rule:MF_01898,
ECO:0000269|PubMed:12051843, ECO:0000269|PubMed:18642932};
Name=Mn(2+); Xref=ChEBI:CHEBI:29035;
Evidence={ECO:0000255|HAMAP-Rule:MF_01898,
ECO:0000269|PubMed:12051843, ECO:0000269|PubMed:18642932};
Name=Ca(2+); Xref=ChEBI:CHEBI:29108;
Evidence={ECO:0000255|HAMAP-Rule:MF_01898,
ECO:0000269|PubMed:12051843, ECO:0000269|PubMed:18642932};
Note=Binds two Mg(2+) per subunit. The magnesium ions form salt
bridges with both the protein and the DNA. Can also accept other
divalent metal cations, such as Mn(2+) or Ca(2+) (PubMed:12051843,
PubMed:18642932). {ECO:0000255|HAMAP-Rule:MF_01898,
ECO:0000269|PubMed:12051843, ECO:0000269|PubMed:18642932};
-!- COFACTOR:
Name=K(+); Xref=ChEBI:CHEBI:29103;
Evidence={ECO:0000269|PubMed:25849408};
Note=Binds one K(+) per subunit which interacts with the alpha-
phosphate of ATP analog and stimulates ATPase activity of the N-
terminal fragment; Na(+) or water bind less well
(PubMed:25849408). {ECO:0000269|PubMed:25849408};
-!- COFACTOR:
Name=Na(+); Xref=ChEBI:CHEBI:29101;
Evidence={ECO:0000269|PubMed:25849408};
Note=Binds one Na(+) per subunit, with 4 ligands provided by
water; may be able to bind K(+), the functional significance of
this ion is unclear (PubMed:25849408).
{ECO:0000269|PubMed:25849408};
-!- ENZYME REGULATION: Gyrase is the target of many classes of
inhibitors, including coumarins, cyclothialidines,
pyrrolopyrimidines, pyrazolthiazoles and (fluoro)quinolones.
Coumarins bind to GyrB and are competitive inhibitors of its
ATPase activity (PubMed:7811004). Cyclothialidines also bind GyrB
and are ATPase competitive inhibitors; they seem to act
differently from coumarins (PubMed:7811004, PubMed:8635474).
Pyrrolopyrimidines inhibit both GyrB and its paralog in
topoisomerase 4 (parE) (PubMed:23294697, PubMed:23352267,
PubMed:24386374). Pyrazolthiazoles also inhibit the ATPase
activity of GyrB (PubMed:20356737). Quinolones bind GyrA when the
enzyme is complexed with DNA and trap the enzyme in a covalent
reaction intermediate with DNA (PubMed:3031051, PubMed:12051842,
PubMed:337300). Acriflavine inhibits DNA supercoiling and DNA-
stimulated ATPase activity (PubMed:9148951). DNA supercoiling
activity is protected from fluoroquinolone inhibition by QnrB4;
QnrB4 has no effect on supercoiling activity alone
(PubMed:19060136). {ECO:0000269|PubMed:19060136,
ECO:0000269|PubMed:20356737, ECO:0000269|PubMed:23294697,
ECO:0000269|PubMed:23352267, ECO:0000269|PubMed:24386374,
ECO:0000269|PubMed:3031051, ECO:0000269|PubMed:337300,
ECO:0000269|PubMed:7811004, ECO:0000269|PubMed:8635474,
ECO:0000269|PubMed:9148951, ECO:0000305|PubMed:12051842}.
-!- SUBUNIT: Heterotetramer, composed of two GyrA and two GyrB chains
(PubMed:9148951, PubMed:12051842). In the heterotetramer, GyrA
contains the active site tyrosine that forms a transient covalent
intermediate with the DNA, while GyrB binds cofactors and
catalyzes ATP hydrolysis (PubMed:12051843, PubMed:18642932,
PubMed:20675723, PubMed:19965760). {ECO:0000255|HAMAP-
Rule:MF_01898, ECO:0000269|PubMed:12051842,
ECO:0000269|PubMed:12051843, ECO:0000269|PubMed:18642932,
ECO:0000269|PubMed:19965760, ECO:0000269|PubMed:20675723,
ECO:0000269|PubMed:9148951}.
-!- INTERACTION:
P0AES4:gyrA; NbExp=7; IntAct=EBI-541911, EBI-547129;
-!- SUBCELLULAR LOCATION: Cytoplasm {ECO:0000255|HAMAP-Rule:MF_01898}.
-!- DOMAIN: Consists of 3 domains; the ATPase domain (residues 1-220),
the transducer domain (221-392) and the toprim domain (393-804)
(PubMed:1646964, PubMed:10734094). ATP-binding is cooperative, and
both subunits must be wild-type at residue 103 for supercoiling to
occur (PubMed:8621650). Non-hydrolyzable ATP analogs (and ATP-
binding) induce dimerization and enhance ATPase activity
(PubMed:10734094, PubMed:9657678). ATP hydrolysis induces domain
shifts that are probably part of the mechanism of DNA cleavage and
rejoining (PubMed:25202966). {ECO:0000269|PubMed:10734094,
ECO:0000269|PubMed:1646964, ECO:0000269|PubMed:8621650,
ECO:0000305|PubMed:25202966, ECO:0000305|PubMed:9657678}.
-!- MISCELLANEOUS: When the enzyme transiently cleaves DNA a
phosphotyrosine bond is formed between GyrA and DNA in an ATP-
independent manner (PubMed:3031051). In the presence of quinolones
this intermediate can be trapped and is used as an indicator of
drug toxicity (PubMed:12051842). {ECO:0000269|PubMed:3031051,
ECO:0000305|PubMed:12051842}.
-!- SIMILARITY: Belongs to the type II topoisomerase family.
{ECO:0000255|HAMAP-Rule:MF_01898}.
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; X04341; CAA27871.1; -; Genomic_DNA.
EMBL; D87842; BAA20341.1; -; Genomic_DNA.
EMBL; L10328; AAA62050.1; -; Genomic_DNA.
EMBL; U00096; AAT48201.1; -; Genomic_DNA.
EMBL; AP009048; BAE77595.1; -; Genomic_DNA.
EMBL; M15548; AAA23949.1; -; Genomic_DNA.
PIR; D65172; ISECTB.
RefSeq; WP_000072067.1; NZ_LN832404.1.
RefSeq; YP_026241.1; NC_000913.3.
PDB; 1AJ6; X-ray; 2.30 A; A=2-220.
PDB; 1EI1; X-ray; 2.30 A; A/B=2-392.
PDB; 1KZN; X-ray; 2.30 A; A=15-219.
PDB; 3G7E; X-ray; 2.20 A; A=15-217.
PDB; 3NUH; X-ray; 3.10 A; B=389-804.
PDB; 4DUH; X-ray; 1.50 A; A/B=1-220.
PDB; 4HYP; X-ray; 2.60 A; A/B/C/D=15-220.
PDB; 4KFG; X-ray; 1.60 A; A/B=15-220.
PDB; 4PRV; X-ray; 2.00 A; A=2-392.
PDB; 4PRX; X-ray; 1.80 A; A=2-392.
PDB; 4PU9; X-ray; 2.40 A; A=2-392.
PDB; 4WUB; X-ray; 1.75 A; A=2-393.
PDB; 4WUC; X-ray; 1.90 A; A=2-393.
PDB; 4WUD; X-ray; 1.95 A; A=2-393.
PDB; 4XTJ; X-ray; 1.92 A; A=2-392.
PDB; 4ZVI; X-ray; 2.20 A; A=16-392.
PDB; 5L3J; X-ray; 2.83 A; A=15-392.
PDB; 5MMN; X-ray; 1.90 A; A=1-220.
PDB; 5MMO; X-ray; 1.81 A; A=1-220.
PDB; 5MMP; X-ray; 2.05 A; A=1-220.
PDBsum; 1AJ6; -.
PDBsum; 1EI1; -.
PDBsum; 1KZN; -.
PDBsum; 3G7E; -.
PDBsum; 3NUH; -.
PDBsum; 4DUH; -.
PDBsum; 4HYP; -.
PDBsum; 4KFG; -.
PDBsum; 4PRV; -.
PDBsum; 4PRX; -.
PDBsum; 4PU9; -.
PDBsum; 4WUB; -.
PDBsum; 4WUC; -.
PDBsum; 4WUD; -.
PDBsum; 4XTJ; -.
PDBsum; 4ZVI; -.
PDBsum; 5L3J; -.
PDBsum; 5MMN; -.
PDBsum; 5MMO; -.
PDBsum; 5MMP; -.
ProteinModelPortal; P0AES6; -.
SMR; P0AES6; -.
BioGrid; 4259537; 154.
DIP; DIP-48005N; -.
IntAct; P0AES6; 20.
STRING; 316407.85676345; -.
BindingDB; P0AES6; -.
ChEMBL; CHEMBL1826; -.
DrugBank; DB05488; 99mTc-ciprofloxacin.
DrugBank; DB03966; Clorobiocin.
DrugBank; DB04395; Phosphoaminophosphonic Acid-Adenylate Ester.
DrugBank; DB00817; Rosoxacin.
PaxDb; P0AES6; -.
PRIDE; P0AES6; -.
EnsemblBacteria; AAT48201; AAT48201; b3699.
EnsemblBacteria; BAE77595; BAE77595; BAE77595.
GeneID; 948211; -.
KEGG; ecj:JW5625; -.
KEGG; eco:b3699; -.
PATRIC; fig|511145.12.peg.3823; -.
EchoBASE; EB0419; -.
EcoGene; EG10424; gyrB.
eggNOG; ENOG4105C7D; Bacteria.
eggNOG; COG0187; LUCA.
HOGENOM; HOG000075155; -.
InParanoid; P0AES6; -.
KO; K02470; -.
PhylomeDB; P0AES6; -.
BioCyc; EcoCyc:EG10424-MONOMER; -.
BioCyc; MetaCyc:EG10424-MONOMER; -.
BRENDA; 5.99.1.3; 2026.
EvolutionaryTrace; P0AES6; -.
PRO; PR:P0AES6; -.
Proteomes; UP000000318; Chromosome.
Proteomes; UP000000625; Chromosome.
GO; GO:0005694; C:chromosome; IEA:InterPro.
GO; GO:0005737; C:cytoplasm; IDA:EcoliWiki.
GO; GO:0005829; C:cytosol; IDA:EcoCyc.
GO; GO:0009330; C:DNA topoisomerase complex (ATP-hydrolyzing); IDA:EcoliWiki.
GO; GO:0009295; C:nucleoid; IBA:GO_Central.
GO; GO:0005524; F:ATP binding; IDA:EcoliWiki.
GO; GO:0003677; F:DNA binding; IDA:EcoliWiki.
GO; GO:0034335; F:DNA supercoiling activity; IDA:UniProtKB.
GO; GO:0003918; F:DNA topoisomerase type II (ATP-hydrolyzing) activity; IDA:EcoliWiki.
GO; GO:0008094; F:DNA-dependent ATPase activity; IDA:EcoliWiki.
GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
GO; GO:0007059; P:chromosome segregation; IBA:GO_Central.
GO; GO:0006265; P:DNA topological change; IMP:EcoliWiki.
GO; GO:0046677; P:response to antibiotic; IEA:UniProtKB-KW.
GO; GO:0042493; P:response to drug; IDA:EcoliWiki.
GO; GO:0006351; P:transcription, DNA-templated; IMP:EcoliWiki.
CDD; cd00075; HATPase_c; 1.
CDD; cd03366; TOPRIM_TopoIIA_GyrB; 1.
Gene3D; 3.30.230.10; -; 1.
Gene3D; 3.30.565.10; -; 1.
Gene3D; 3.40.50.670; -; 1.
HAMAP; MF_01898; GyrB; 1.
InterPro; IPR002288; DNA_gyrase_B_C.
InterPro; IPR011557; GyrB.
InterPro; IPR003594; HATPase_C.
InterPro; IPR036890; HATPase_C_sf.
InterPro; IPR020568; Ribosomal_S5_D2-typ_fold.
InterPro; IPR014721; Ribosomal_S5_D2-typ_fold_subgr.
InterPro; IPR001241; Topo_IIA.
InterPro; IPR013760; Topo_IIA-like_dom_sf.
InterPro; IPR013759; Topo_IIA_B_C.
InterPro; IPR013506; Topo_IIA_bsu_dom2.
InterPro; IPR018522; TopoIIA_CS.
InterPro; IPR006171; TOPRIM_domain.
InterPro; IPR034160; TOPRIM_GyrB.
PANTHER; PTHR10169; PTHR10169; 1.
Pfam; PF00204; DNA_gyraseB; 1.
Pfam; PF00986; DNA_gyraseB_C; 1.
Pfam; PF02518; HATPase_c; 1.
Pfam; PF01751; Toprim; 1.
SMART; SM00387; HATPase_c; 1.
SMART; SM00433; TOP2c; 1.
SUPFAM; SSF54211; SSF54211; 1.
SUPFAM; SSF55874; SSF55874; 1.
SUPFAM; SSF56719; SSF56719; 2.
TIGRFAMs; TIGR01059; gyrB; 1.
PROSITE; PS00177; TOPOISOMERASE_II; 1.
PROSITE; PS50880; TOPRIM; 1.
1: Evidence at protein level;
3D-structure; Antibiotic resistance; ATP-binding; Complete proteome;
Cytoplasm; Direct protein sequencing; DNA-binding; Isomerase;
Magnesium; Metal-binding; Nucleotide-binding; Potassium;
Reference proteome; Sodium; Topoisomerase.
INIT_MET 1 1 Removed. {ECO:0000305|PubMed:1646964}.
CHAIN 2 804 DNA gyrase subunit B.
/FTId=PRO_0000145309.
DOMAIN 418 533 Toprim. {ECO:0000255|HAMAP-
Rule:MF_01898}.
NP_BIND 102 103 ATP. {ECO:0000269|PubMed:10734094,
ECO:0000269|PubMed:25202966,
ECO:0000269|PubMed:25849408}.
NP_BIND 115 120 ATP. {ECO:0000269|PubMed:10734094,
ECO:0000269|PubMed:25202966,
ECO:0000269|PubMed:25849408}.
NP_BIND 335 337 ATP. {ECO:0000269|PubMed:10734094,
ECO:0000269|PubMed:25849408}.
REGION 2 220 ATPase domain.
{ECO:0000305|PubMed:10734094,
ECO:0000305|PubMed:1646964}.
REGION 221 392 Transducer domain.
{ECO:0000305|PubMed:10734094,
ECO:0000305|PubMed:1646964}.
ACT_SITE 42 42 Proton acceptor (ATPase activity).
{ECO:0000305|PubMed:10734094,
ECO:0000305|PubMed:8248233}.
METAL 94 94 Potassium; via carbonyl oxygen.
{ECO:0000269|PubMed:25849408}.
METAL 97 97 Potassium; via carbonyl oxygen.
{ECO:0000269|PubMed:25849408}.
METAL 100 100 Potassium; via carbonyl oxygen.
{ECO:0000269|PubMed:25849408}.
METAL 103 103 Sodium. {ECO:0000269|PubMed:25849408}.
METAL 105 105 Sodium. {ECO:0000269|PubMed:25849408}.
METAL 117 117 Potassium; via carbonyl oxygen.
{ECO:0000269|PubMed:25849408}.
METAL 121 121 Potassium. {ECO:0000269|PubMed:25849408}.
METAL 424 424 Magnesium 1; catalytic.
{ECO:0000255|HAMAP-Rule:MF_01898,
ECO:0000305|PubMed:12051843,
ECO:0000305|PubMed:18642932}.
METAL 498 498 Magnesium 1; catalytic.
{ECO:0000255|HAMAP-Rule:MF_01898,
ECO:0000305|PubMed:12051843,
ECO:0000305|PubMed:18642932}.
METAL 498 498 Magnesium 2. {ECO:0000255|HAMAP-
Rule:MF_01898,
ECO:0000305|PubMed:12051843,
ECO:0000305|PubMed:18642932}.
METAL 500 500 Magnesium 2. {ECO:0000255|HAMAP-
Rule:MF_01898,
ECO:0000305|PubMed:12051843,
ECO:0000305|PubMed:18642932}.
BINDING 5 5 ATP. {ECO:0000269|PubMed:25202966,
ECO:0000269|PubMed:25849408,
ECO:0000305|PubMed:10734094}.
BINDING 46 46 ADP. {ECO:0000269|PubMed:10734094,
ECO:0000269|PubMed:25202966,
ECO:0000269|PubMed:25849408}.
BINDING 73 73 ATP. {ECO:0000269|PubMed:10734094,
ECO:0000269|PubMed:25202966,
ECO:0000269|PubMed:25849408}.
BINDING 109 109 ATP. {ECO:0000269|PubMed:10734094,
ECO:0000269|PubMed:25202966,
ECO:0000269|PubMed:25849408}.
SITE 337 337 Transition state stabilizer.
{ECO:0000305|PubMed:9657678}.
SITE 449 449 Interaction with DNA. {ECO:0000255|HAMAP-
Rule:MF_01898}.
SITE 452 452 Interaction with DNA. {ECO:0000255|HAMAP-
Rule:MF_01898}.
VARIANT 426 426 D -> N (in nal-24, nal-102, nal-103, nal-
107, nal-108, nal-111, nal-114, en-2 and
en-5 mutants; resistant to nalidixic acid
and to enoxacin).
{ECO:0000269|PubMed:1656869}.
VARIANT 447 447 K -> E (in nal-31, nal-109, nal-115 and
nal-120 mutants; resistant to nalidixic
acid). {ECO:0000269|PubMed:1656869}.
VARIANT 751 751 W -> R (in microcin B17 resistant
mutant). {ECO:0000269|PubMed:1846808}.
VARIANT 759 760 SR -> RC (in acriflavine susceptible
mutant acrB, decreased supercoiling
activity, ATPase activity no longer
stimulated by DNA, decreased DNA-binding,
bind GyrA normally).
{ECO:0000269|PubMed:9148951}.
MUTAGEN 1 14 Missing: No dimerization of residues 15-
393, fragment has no ATPase activity.
{ECO:0000269|PubMed:10734094}.
MUTAGEN 5 5 Y->F,S: 5- to 10-fold reduced
dimerization of residues 2-393, fragment
has 3- to 5-fold reduced ATPase activity.
Fragment dimerizes upon crystallization.
{ECO:0000269|PubMed:10734094}.
MUTAGEN 10 10 I->G: No dimerization of residues 2-393,
fragment has significantly decreased
ATPase activity.
{ECO:0000269|PubMed:10734094}.
MUTAGEN 38 38 H->A: 0.2% supercoiling activity, 7% DNA-
dependent ATPase activity, binds ATP
normally, complements the N4177 ts
mutant. {ECO:0000269|PubMed:8248233}.
MUTAGEN 42 42 E->A: No supercoiling or DNA-dependent
ATPase activity, 25% fluoroquinolone-
induced DNA cleavage, 50% ATP-independent
DNA relaxation, binds ATP normally, does
not complement the N4177 ts mutant.
{ECO:0000269|PubMed:8248233}.
MUTAGEN 42 42 E->D: 7% supercoiling activity, 16% DNA-
dependent ATPase activity,
fluoroquinolone-induced DNA cleavage
normal, 40% ATP-independent DNA
relaxation, binds ATP normally,
complements the N4177 ts mutant.
{ECO:0000269|PubMed:8248233}.
MUTAGEN 42 42 E->Q: No supercoiling or DNA-dependent
ATPase activity, binds ATP normally, does
not complement the N4177 ts mutant.
{ECO:0000269|PubMed:8248233}.
MUTAGEN 103 103 K->E,I,T: Retains ATP-independent DNA
relaxation and quinolone-induced DNA
cleavage; loss of supercoiling activity,
loss of ATPase, does not bind ATP
analogs. {ECO:0000269|PubMed:8621650}.
MUTAGEN 110 110 K->E,V: Binds about 50% ATP analog, 2- to
3-fold decreased ATPase, retains ATP-
independent DNA relaxation, quinolone-
induced DNA cleavage and negative
supercoiling activity.
{ECO:0000269|PubMed:8621650}.
MUTAGEN 136 136 R->C,H,S: Resistance to coumarin
antibiotics, decreased ATPase and DNA
supercoiling.
{ECO:0000269|PubMed:1323022}.
MUTAGEN 164 164 G->V: Resistance to coumarin antibiotics,
decreased ATPase and DNA supercoiling.
{ECO:0000269|PubMed:1323022}.
MUTAGEN 335 335 Q->A: Wild-type ATP analog-binding and
ATPase activity in N-terminal fragment
GyrB43 (residues 2-393), in whole protein
wild-type DNA supercoiling and ATP-
independent DNA relaxation, 50% ATPase
activity which is not stimulated by DNA,
complements the N4177 ts mutant.
{ECO:0000269|PubMed:9657678}.
MUTAGEN 337 337 K->Q: Binds about 60% ATP analog but
strongly decreased enzyme turnover for
ATPase activity in N-terminal fragment
GyrB43 (residues 2-393), in whole protein
<1% DNA supercoiling and ATPase activity
not stimulated by DNA, wild-type ATP-
independent DNA relaxation and quinolone-
induced DNA cleavage, does not complement
the N4177 ts mutant.
{ECO:0000269|PubMed:9657678}.
MUTAGEN 424 424 E->A,Q: Strongly reduced DNA supercoiling
and relaxation activity. Reduces ATP
hydrolysis in response to DNA binding,
but has only minor effect on the basal
rate of ATP hydrolysis.
{ECO:0000269|PubMed:12051843}.
MUTAGEN 436 436 R->S: Cannot be made, suggesting it is
lethal. This is temperature-sensitive in
S.typhimurium, but not lethal.
{ECO:0000269|PubMed:17400739}.
MUTAGEN 498 498 D->A,N: Strongly reduced DNA supercoiling
and relaxation activity. Reduces ATP
hydrolysis in response to DNA binding,
but has only minor effect on the basal
rate of ATP hydrolysis.
{ECO:0000269|PubMed:12051843}.
MUTAGEN 500 500 D->A: Strongly reduced DNA supercoiling
and relaxation activity. Reduces ATP
hydrolysis in response to DNA binding,
but has only minor effect on the basal
rate of ATP hydrolysis.
{ECO:0000269|PubMed:12051843}.
MUTAGEN 500 500 D->C,H: Alters metal-dependency of ATP-
independent DNA relaxation, prefers
Mn(2+) and Co(2+) over wild-type Mg(2+).
{ECO:0000269|PubMed:12051843}.
MUTAGEN 502 502 D->A: Strongly reduced DNA supercoiling
and relaxation activity. Reduces ATP
hydrolysis in response to DNA binding,
but has only minor effect on the basal
rate of ATP hydrolysis.
{ECO:0000269|PubMed:12051843}.
MUTAGEN 502 502 D->C,H: Alters metal-dependency of ATP-
independent DNA relaxation, prefers
Mn(2+) and Co(2+) over wild-type Mg(2+).
{ECO:0000269|PubMed:12051843}.
CONFLICT 385 385 A -> P (in Ref. 4; AAA62050).
{ECO:0000305}.
CONFLICT 436 436 R -> G (in Ref. 3; BAA20341).
{ECO:0000305}.
HELIX 7 9 {ECO:0000244|PDB:4WUB}.
HELIX 16 21 {ECO:0000244|PDB:4DUH}.
HELIX 24 27 {ECO:0000244|PDB:4DUH}.
STRAND 30 33 {ECO:0000244|PDB:4DUH}.
HELIX 34 53 {ECO:0000244|PDB:4DUH}.
STRAND 58 63 {ECO:0000244|PDB:4DUH}.
TURN 65 67 {ECO:0000244|PDB:1AJ6}.
STRAND 69 73 {ECO:0000244|PDB:4DUH}.
STRAND 81 83 {ECO:0000244|PDB:4DUH}.
TURN 84 87 {ECO:0000244|PDB:4DUH}.
HELIX 90 96 {ECO:0000244|PDB:4DUH}.
TURN 98 101 {ECO:0000244|PDB:1AJ6}.
STRAND 104 108 {ECO:0000244|PDB:4WUB}.
STRAND 113 115 {ECO:0000244|PDB:4HYP}.
HELIX 120 125 {ECO:0000244|PDB:4DUH}.
STRAND 127 136 {ECO:0000244|PDB:4DUH}.
STRAND 139 146 {ECO:0000244|PDB:4DUH}.
STRAND 149 153 {ECO:0000244|PDB:4DUH}.
STRAND 155 159 {ECO:0000244|PDB:4DUH}.
STRAND 164 171 {ECO:0000244|PDB:4DUH}.
TURN 173 175 {ECO:0000244|PDB:4DUH}.
HELIX 184 197 {ECO:0000244|PDB:4DUH}.
TURN 198 200 {ECO:0000244|PDB:4KFG}.
STRAND 201 207 {ECO:0000244|PDB:4DUH}.
TURN 208 210 {ECO:0000244|PDB:4DUH}.
STRAND 213 216 {ECO:0000244|PDB:4DUH}.
HELIX 221 230 {ECO:0000244|PDB:4WUB}.
STRAND 231 233 {ECO:0000244|PDB:4PU9}.
STRAND 235 238 {ECO:0000244|PDB:4WUB}.
STRAND 241 247 {ECO:0000244|PDB:4WUB}.
STRAND 250 262 {ECO:0000244|PDB:4WUB}.
STRAND 265 270 {ECO:0000244|PDB:4WUB}.
STRAND 273 279 {ECO:0000244|PDB:5L3J}.
HELIX 280 299 {ECO:0000244|PDB:4WUB}.
HELIX 302 306 {ECO:0000244|PDB:1EI1}.
HELIX 312 316 {ECO:0000244|PDB:4WUB}.
STRAND 319 326 {ECO:0000244|PDB:4WUB}.
STRAND 332 334 {ECO:0000244|PDB:4WUB}.
HELIX 343 363 {ECO:0000244|PDB:4WUB}.
HELIX 365 391 {ECO:0000244|PDB:4WUB}.
STRAND 419 424 {ECO:0000244|PDB:3NUH}.
HELIX 425 435 {ECO:0000244|PDB:3NUH}.
TURN 438 440 {ECO:0000244|PDB:3NUH}.
STRAND 441 446 {ECO:0000244|PDB:3NUH}.
HELIX 465 474 {ECO:0000244|PDB:3NUH}.
STRAND 491 495 {ECO:0000244|PDB:3NUH}.
TURN 501 504 {ECO:0000244|PDB:3NUH}.
HELIX 505 517 {ECO:0000244|PDB:3NUH}.
HELIX 519 523 {ECO:0000244|PDB:3NUH}.
STRAND 527 530 {ECO:0000244|PDB:3NUH}.
STRAND 534 539 {ECO:0000244|PDB:3NUH}.
STRAND 542 546 {ECO:0000244|PDB:3NUH}.
HELIX 549 561 {ECO:0000244|PDB:3NUH}.
STRAND 564 571 {ECO:0000244|PDB:3NUH}.
STRAND 573 576 {ECO:0000244|PDB:3NUH}.
HELIX 577 596 {ECO:0000244|PDB:3NUH}.
TURN 597 600 {ECO:0000244|PDB:3NUH}.
HELIX 603 611 {ECO:0000244|PDB:3NUH}.
HELIX 617 621 {ECO:0000244|PDB:3NUH}.
HELIX 623 640 {ECO:0000244|PDB:3NUH}.
STRAND 646 653 {ECO:0000244|PDB:3NUH}.
STRAND 660 667 {ECO:0000244|PDB:3NUH}.
STRAND 669 676 {ECO:0000244|PDB:3NUH}.
HELIX 679 683 {ECO:0000244|PDB:3NUH}.
HELIX 685 699 {ECO:0000244|PDB:3NUH}.
TURN 700 703 {ECO:0000244|PDB:3NUH}.
STRAND 704 711 {ECO:0000244|PDB:3NUH}.
STRAND 713 718 {ECO:0000244|PDB:3NUH}.
HELIX 719 730 {ECO:0000244|PDB:3NUH}.
TURN 731 733 {ECO:0000244|PDB:3NUH}.
STRAND 735 738 {ECO:0000244|PDB:3NUH}.
HELIX 742 744 {ECO:0000244|PDB:3NUH}.
HELIX 747 754 {ECO:0000244|PDB:3NUH}.
TURN 757 759 {ECO:0000244|PDB:3NUH}.
STRAND 762 764 {ECO:0000244|PDB:3NUH}.
HELIX 767 780 {ECO:0000244|PDB:3NUH}.
SEQUENCE 804 AA; 89950 MW; D831B95FFB3A7EE3 CRC64;
MSNSYDSSSI KVLKGLDAVR KRPGMYIGDT DDGTGLHHMV FEVVDNAIDE ALAGHCKEII
VTIHADNSVS VQDDGRGIPT GIHPEEGVSA AEVIMTVLHA GGKFDDNSYK VSGGLHGVGV
SVVNALSQKL ELVIQREGKI HRQIYEHGVP QAPLAVTGET EKTGTMVRFW PSLETFTNVT
EFEYEILAKR LRELSFLNSG VSIRLRDKRD GKEDHFHYEG GIKAFVEYLN KNKTPIHPNI
FYFSTEKDGI GVEVALQWND GFQENIYCFT NNIPQRDGGT HLAGFRAAMT RTLNAYMDKE
GYSKKAKVSA TGDDAREGLI AVVSVKVPDP KFSSQTKDKL VSSEVKSAVE QQMNELLAEY
LLENPTDAKI VVGKIIDAAR AREAARRARE MTRRKGALDL AGLPGKLADC QERDPALSEL
YLVEGDSAGG SAKQGRNRKN QAILPLKGKI LNVEKARFDK MLSSQEVATL ITALGCGIGR
DEYNPDKLRY HSIIIMTDAD VDGSHIRTLL LTFFYRQMPE IVERGHVYIA QPPLYKVKKG
KQEQYIKDDE AMDQYQISIA LDGATLHTNA SAPALAGEAL EKLVSEYNAT QKMINRMERR
YPKAMLKELI YQPTLTEADL SDEQTVTRWV NALVSELNDK EQHGSQWKFD VHTNAEQNLF
EPIVRVRTHG VDTDYPLDHE FITGGEYRRI CTLGEKLRGL LEEDAFIERG ERRQPVASFE
QALDWLVKES RRGLSIQRYK GLGEMNPEQL WETTMDPESR RMLRVTVKDA IAADQLFTTL
MGDAVEPRRA FIEENALKAA NIDI


Related products :

Catalog number Product name Quantity
EIAAB32718 HC9,Homo sapiens,Human,Macropain subunit C9,Multicatalytic endopeptidase complex subunit C9,Proteasome component C9,Proteasome subunit alpha type-4,Proteasome subunit L,PSC9,PSMA4
EIAAB32716 Macropain subunit C9,Multicatalytic endopeptidase complex subunit C9,Proteasome component C9,Proteasome subunit alpha type-4,Proteasome subunit L,Psma4,Rat,Rattus norvegicus
EIAAB32715 Macropain subunit C9,Mouse,Multicatalytic endopeptidase complex subunit C9,Mus musculus,Proteasome component C9,Proteasome subunit alpha type-4,Proteasome subunit L,Psma4
EIAAB32714 Macropain subunit C8,Mouse,Multicatalytic endopeptidase complex subunit C8,Mus musculus,Proteasome component C8,Proteasome subunit alpha type-3,Proteasome subunit K,Psma3
EIAAB32711 Macropain subunit C8,Multicatalytic endopeptidase complex subunit C8,Proteasome component C8,Proteasome subunit alpha type-3,Proteasome subunit K,Psma3,Rat,Rattus norvegicus
EIAAB32776 Homo sapiens,Human,LMP7,Low molecular mass protein 7,Macropain subunit C13,Multicatalytic endopeptidase complex subunit C13,Proteasome component C13,Proteasome subunit beta type-8,Proteasome subunit b
EIAAB45652 Atp6a1,Atp6a2,Atp6v1a,Atp6v1a1,Mouse,Mus musculus,Vacuolar proton pump subunit alpha,V-ATPase 69 kDa subunit,V-ATPase subunit A,V-type proton ATPase catalytic subunit A
EIAAB45577 ATP6V0E2,ATP6V0E2L,C7orf32,Homo sapiens,Human,Lysosomal 9 kDa H(+)-transporting ATPase V0 subunit e2,Vacuolar proton pump subunit e 2,V-ATPase subunit e 2,V-type proton ATPase subunit e 2
orb60899 Nalidixic acid Nalidixic acid(NegGram) is a synthetic 1,8-naphthyridine antimicrobial agent with a limited bacteriocidal spectrum. It is an inhibitor of the A subunit of bacterial DNA gyrase. For rese 10 mg
EIAAB45686 ATP6G,ATP6G2,ATP6V1G2,Homo sapiens,Human,NG38,Vacuolar proton pump subunit G 2,V-ATPase 13 kDa subunit 2,V-ATPase subunit G 2,V-type proton ATPase subunit G 2
EIAAB45651 ATP6A1,ATP6V1A,ATP6V1A1,Bos taurus,Bovine,Vacuolar proton pump subunit alpha,V-ATPase 69 kDa subunit,V-ATPase subunit A,V-type proton ATPase catalytic subunit A
EIAAB45650 ATP6A1,ATP6V1A,ATP6V1A1,Pig,Sus scrofa,Vacuolar proton pump subunit alpha,V-ATPase 69 kDa subunit,V-ATPase subunit A,V-type proton ATPase catalytic subunit A
EIAAB45678 ATP6S14,ATP6V1F,Homo sapiens,Human,Vacuolar proton pump subunit F,VATF,V-ATPase 14 kDa subunit,V-ATPase subunit F,V-type proton ATPase subunit F
EIAAB45673 ATP6E,ATP6E2,ATP6V1E1,Homo sapiens,Human,p31,Vacuolar proton pump subunit E 1,V-ATPase 31 kDa subunit,V-ATPase subunit E 1,V-type proton ATPase subunit E 1
EIAAB32777 Macropain subunit C13,Multicatalytic endopeptidase complex subunit C13,Proteasome component C13,Proteasome subunit beta type-8,Proteasome subunit beta-5i,Psmb8,Rat,Rattus norvegicus
EIAAB45680 Atp6s14,Atp6v1f,Rat,Rattus norvegicus,Vacuolar proton pump subunit F,Vatf,V-ATPase 14 kDa subunit,V-ATPase subunit F,V-type proton ATPase subunit F
EIAAB45679 Atp6s14,Atp6v1f,Mouse,Mus musculus,Vacuolar proton pump subunit F,Vatf,V-ATPase 14 kDa subunit,V-ATPase subunit F,V-type proton ATPase subunit F
EIAAB45681 ATP6S14,ATP6V1F,Bos taurus,Bovine,Vacuolar proton pump subunit F,VATF,V-ATPase 14 kDa subunit,V-ATPase subunit F,V-type proton ATPase subunit F
EIAAB32773 Macropain subunit C13,Multicatalytic endopeptidase complex subunit C13,Pig,Proteasome component C13,Proteasome subunit beta type-8,Proteasome subunit beta-5i,PSMB8,Sus scrofa
EIAAB45672 Atp6e,Atp6e2,Atp6v1e1,Mouse,Mus musculus,p31,Vacuolar proton pump subunit E 1,V-ATPase 31 kDa subunit,V-ATPase subunit E 1,V-type proton ATPase subunit E 1
EIAAB45688 Atp6g2,Atp6v1g2,Mouse,Mus musculus,Ng38,Vacuolar proton pump subunit G 2,V-ATPase 13 kDa subunit 2,V-ATPase subunit G 2,V-type proton ATPase subunit G 2
EIAAB45689 ATP6G3,ATP6V1G3,Homo sapiens,Human,Vacuolar proton pump subunit G 3,V-ATPase 13 kDa subunit 3,V-ATPase subunit G 3,V-type proton ATPase subunit G 3
EIAAB45573 ATP6H,ATP6V0E,ATP6V0E1,Homo sapiens,Human,Vacuolar proton pump subunit e 1,V-ATPase 9.2 kDa membrane accessory protein,V-ATPase M9.2 subunit,V-ATPase subunit e 1,V-type proton ATPase subunit e 1
EIAAB45629 ATP6AP1,ATP6IP1,ATP6S1,Bos taurus,Bovine,Vacuolar proton pump subunit S1,V-ATPase Ac45 subunit,V-ATPase S1 accessory protein,V-ATPase subunit S1,V-type proton ATPase subunit S1
EIAAB45562 Atp6d,Atp6v0d1,Mouse,Mus musculus,P39,Physophilin,Vacuolar proton pump subunit d 1,V-ATPase 40 kDa accessory protein,V-ATPase AC39 subunit,V-ATPase subunit d 1,V-type proton ATPase subunit d 1


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur