Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Gag-Pol polyprotein (Pr160Gag-Pol) [Cleaved into: Matrix protein p17 (MA); Capsid protein p24 (CA); Spacer peptide 1 (SP1) (p2); Nucleocapsid protein p7 (NC); Transframe peptide (TF); p6-pol (p6*); Protease (EC 3.4.23.16) (PR) (Retropepsin); Reverse transcriptase/ribonuclease H (EC 2.7.7.49) (EC 2.7.7.7) (EC 3.1.26.13) (Exoribonuclease H) (EC 3.1.13.2) (p66 RT); p51 RT; p15; Integrase (IN) (EC 2.7.7.-) (EC 3.1.-.-)]

 POL_HV1B1               Reviewed;        1447 AA.
P03366; P03368;
21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
23-JAN-2007, sequence version 3.
07-JUN-2017, entry version 215.
RecName: Full=Gag-Pol polyprotein;
AltName: Full=Pr160Gag-Pol;
Contains:
RecName: Full=Matrix protein p17;
Short=MA;
Contains:
RecName: Full=Capsid protein p24;
Short=CA;
Contains:
RecName: Full=Spacer peptide 1 {ECO:0000250|UniProtKB:P12497};
Short=SP1;
AltName: Full=p2;
Contains:
RecName: Full=Nucleocapsid protein p7;
Short=NC;
Contains:
RecName: Full=Transframe peptide;
Short=TF;
Contains:
RecName: Full=p6-pol;
Short=p6*;
Contains:
RecName: Full=Protease;
EC=3.4.23.16;
AltName: Full=PR;
AltName: Full=Retropepsin;
Contains:
RecName: Full=Reverse transcriptase/ribonuclease H;
EC=2.7.7.49;
EC=2.7.7.7;
EC=3.1.26.13;
AltName: Full=Exoribonuclease H;
EC=3.1.13.2;
AltName: Full=p66 RT;
Contains:
RecName: Full=p51 RT;
Contains:
RecName: Full=p15;
Contains:
RecName: Full=Integrase;
Short=IN;
EC=2.7.7.- {ECO:0000250|UniProtKB:P04585};
EC=3.1.-.- {ECO:0000250|UniProtKB:P04585};
Name=gag-pol;
Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
(HIV-1).
Viruses; Retro-transcribing viruses; Retroviridae; Orthoretrovirinae;
Lentivirus; Primate lentivirus group.
NCBI_TaxID=11678;
NCBI_TaxID=9606; Homo sapiens (Human).
[1]
NUCLEOTIDE SEQUENCE [GENOMIC RNA].
PubMed=2578615; DOI=10.1038/313277a0;
Ratner L., Haseltine W.A., Patarca R., Livak K.J., Starcich B.R.,
Josephs S.F., Doran E.R., Rafalski J.A., Whitehorn E.A.,
Baumeister K., Ivanoff L., Petteway S.R. Jr., Pearson M.L.,
Lautenberger J.A., Papas T.S., Ghrayeb J., Chang N.T., Gallo R.C.,
Wong-Staal F.;
"Complete nucleotide sequence of the AIDS virus, HTLV-III.";
Nature 313:277-284(1985).
[2]
NUCLEOTIDE SEQUENCE [GENOMIC DNA].
STRAIN=Isolate PV22;
PubMed=2982104; DOI=10.1038/313450a0;
Muesing M.A., Smith D.H., Cabradilla C.D., Benton C.V., Lasky L.A.,
Capon D.J.;
"Nucleic acid structure and expression of the human
AIDS/lymphadenopathy retrovirus.";
Nature 313:450-458(1985).
[3]
SEQUENCE REVISION.
Muesing M.A.;
Submitted (MAY-1992) to the EMBL/GenBank/DDBJ databases.
[4]
CHARACTERIZATION OF RNASE H.
PubMed=1722202;
DeStefano J.J., Buiser R.G., Mallaber L.M., Bambara R.A., Fay P.J.;
"Human immunodeficiency virus reverse transcriptase displays a
partially processive 3' to 5' endonuclease activity.";
J. Biol. Chem. 266:24295-24301(1991).
[5]
PROTEOLYTIC PROCESSING OF POLYPROTEIN, AND MUTAGENESIS OF PHE-1039 AND
LEU-1159.
PubMed=2044756; DOI=10.1016/0014-5793(91)80583-O;
Jupp R.A., Phylip L.H., Mills J.S., Le Grice S.F.J., Kay J.;
"Mutating P2 and P1 residues at cleavage junctions in the HIV-1 pol
polyprotein. Effects on hydrolysis by HIV-1 proteinase.";
FEBS Lett. 283:180-184(1991).
[6]
MUTAGENESIS OF HIS-1138.
PubMed=1714505; DOI=10.1016/0022-2836(91)90119-Q;
Wohrl B.M., Volkmann S., Moelling K.;
"Mutations of a conserved residue within HIV-1 ribonuclease H affect
its exo- and endonuclease activities.";
J. Mol. Biol. 220:801-818(1991).
[7]
ACTIVE SITES OF REVERSE TRANSCRIPTASE, AND MUTAGENESIS OF ASP-709;
ASP-784 AND ASP-785.
PubMed=8794733; DOI=10.1021/bi960364x;
Kaushik N., Rege N., Yadav P.N.S., Sarafianos S.G., Modak M.J.,
Pandey V.N.;
"Biochemical analysis of catalytically crucial aspartate mutants of
human immunodeficiency virus type 1 reverse transcriptase.";
Biochemistry 35:11536-11546(1996).
[8]
MUTAGENESIS OF GLU-823; PRO-824; PRO-825; PHE-826; LEU-827; TRP-828;
MET-829; GLY-830; TYR-831; GLU-832 AND HIS-834.
PubMed=9111014; DOI=10.1074/jbc.272.17.11157;
Palaniappan C., Wisniewski M., Jacques P.S., Le Grice S.F., Fay P.J.,
Bambara R.A.;
"Mutations within the primer grip region of HIV-1 reverse
transcriptase result in loss of RNase H function.";
J. Biol. Chem. 272:11157-11164(1997).
[9]
MUTAGENESIS OF PRO-651; PRO-654; LEU-673; SER-755; PRO-756; MET-783;
ILE-856; GLY-861; LEU-863; TRP-865; LEU-878; ALA-898; LEU-902; LEU-909
AND GLU-1077.
PubMed=9533880; DOI=10.1006/jmbi.1998.1624;
Gao H.-Q., Boyer P.L., Arnold E., Hughes S.H.;
"Effects of mutations in the polymerase domain on the polymerase,
RNase H and strand transfer activities of human immunodeficiency virus
type 1 reverse transcriptase.";
J. Mol. Biol. 277:559-572(1998).
[10]
MUTAGENESIS OF TYR-782; MET-783; ASP-784 AND ASP-785.
PubMed=9657675; DOI=10.1021/bi980549z;
Harris D., Yadav P.N.S., Pandey V.N.;
"Loss of polymerase activity due to Tyr to Phe substitution in the
YMDD motif of human immunodeficiency virus type-1 reverse
transcriptase is compensated by Met to Val substitution within the
same motif.";
Biochemistry 37:9630-9640(1998).
[11]
FUNCTION OF RNASE H.
PubMed=9658129;
Smith C.M., Leon O., Smith J.S., Roth M.J.;
"Sequence requirements for removal of tRNA by an isolated human
immunodeficiency virus type 1 RNase H domain.";
J. Virol. 72:6805-6812(1998).
[12]
MUTAGENESIS OF LYS-664.
PubMed=10794716; DOI=10.1042/bj3480077;
Sluis-Cremer N., Arion D., Kaushik N., Lim H., Parniak M.A.;
"Mutational analysis of Lys65 of HIV-1 reverse transcriptase.";
Biochem. J. 348:77-82(2000).
[13]
CHARACTERIZATION OF RNASE H.
PubMed=11035788; DOI=10.1073/pnas.210392297;
Wisniewski M., Balakrishnan M., Palaniappan C., Fay P.J.,
Bambara R.A.;
"Unique progressive cleavage mechanism of HIV reverse transcriptase
RNase H.";
Proc. Natl. Acad. Sci. U.S.A. 97:11978-11983(2000).
[14]
RIBOSOMAL FRAMESHIFT, PROTEOLYTIC PROCESSING OF POLYPROTEIN, AND
MUTAGENESIS OF PHE-440 AND PHE-500.
PubMed=11172099;
Chen N., Morag A., Almog N., Blumenzweig I., Dreazin O., Kotler M.;
"Extended nucleocapsid protein is cleaved from the Gag-Pol precursor
of human immunodeficiency virus type 1.";
J. Gen. Virol. 82:581-590(2001).
[15]
GAG/GAG-POL RATIO.
PubMed=11160682; DOI=10.1128/JVI.75.4.1834-1841.2001;
Shehu-Xhilaga M., Crowe S.M., Mak J.;
"Maintenance of the Gag/Gag-Pol ratio is important for human
immunodeficiency virus type 1 RNA dimerization and viral
infectivity.";
J. Virol. 75:1834-1841(2001).
[16]
ACTIVE SITE OF PROTEASE.
PubMed=12924029;
Koval'skii D.B., Kanibolotskii D.S., Dubina V.N., Korneliuk A.I.;
"Conformational changes in HIV-1 proteinase: effect of protonation of
the active center on conformation of HIV-1 proteinase in water.";
Ukr. Biokhim. Zh. 74:135-138(2002).
[17]
MUTAGENESIS OF TRP-752; ILE-766; LEU-786 AND VAL-788.
PubMed=12501197; DOI=10.1021/bi026311z;
Sharma B., Kaushik N., Singh K., Kumar S., Pandey V.N.;
"Substitution of conserved hydrophobic residues in motifs B and C of
HIV-1 RT alters the geometry of its catalytic pocket.";
Biochemistry 41:15685-15697(2002).
[18]
MUTAGENESIS OF TYR-1100.
PubMed=11684697; DOI=10.1074/jbc.M110254200;
Arion D., Sluis-Cremer N., Min K.-L., Abram M.E., Fletcher R.S.,
Parniak M.A.;
"Mutational analysis of Tyr-501 of HIV-1 reverse transcriptase.
Effects on ribonuclease H activity and inhibition of this activity by
N-acylhydrazones.";
J. Biol. Chem. 277:1370-1374(2002).
[19]
DOMAIN TRYPTOPHAN REPEAT MOTIF, AND MUTAGENESIS OF TRP-997; TRP-1000;
TRP-1001; TYR-1004; TRP-1005; TRP-1009 AND TRP-1013.
PubMed=12559908; DOI=10.1016/S0022-2836(02)01433-X;
Tachedjian G., Aronson H.-E., de los Santos M., Seehra J., McCoy J.M.,
Goff S.P.;
"Role of residues in the tryptophan repeat motif for HIV-1 reverse
transcriptase dimerization.";
J. Mol. Biol. 326:381-396(2003).
[20]
CHARACTERIZATION OF RNASE H.
PubMed=15533434; DOI=10.1016/j.jmb.2004.09.081;
Schultz S.J., Zhang M., Champoux J.J.;
"Recognition of internal cleavage sites by retroviral RNases H.";
J. Mol. Biol. 344:635-652(2004).
[21]
CHARACTERIZATION OF REVERSE TRANSCRIPTASE, AND MUTAGENESIS OF
TRP-1000.
PubMed=15852304; DOI=10.1002/prot.20480;
Tachedjian G., Radzio J., Sluis-Cremer N.;
"Relationship between enzyme activity and dimeric structure of
recombinant HIV-1 reverse transcriptase.";
Proteins 60:5-13(2005).
[22]
CHARACTERIZATION OF RNASE H.
PubMed=16141194; DOI=10.1093/nar/gki779;
Mulder B.A., Anaya S., Yu P., Lee K.W., Nguyen A., Murphy J.,
Willson R., Briggs J.M., Gao X., Hardin S.H.;
"Nucleotide modification at the gamma-phosphate leads to the improved
fidelity of HIV-1 reverse transcriptase.";
Nucleic Acids Res. 33:4865-4873(2005).
[23]
MUTAGENESIS OF ALA-1036; GLU-1037; THR-1038; PHE-1039; TYR-1040 AND
VAL-1041.
PubMed=16140771; DOI=10.1128/JVI.79.18.11952-11961.2005;
Abram M.E., Parniak M.A.;
"Virion instability of human immunodeficiency virus type 1 reverse
transcriptase (RT) mutated in the protease cleavage site between RT
p51 and the RT RNase H domain.";
J. Virol. 79:11952-11961(2005).
[24]
METHYLATION AT ARG-387 AND ARG-409 BY HUMAN PRMT6, AND INTERACTION
WITH HUMAN PRMT6.
PubMed=17415034; DOI=10.1097/QAD.0b013e32803277ae;
Invernizzi C.F., Xie B., Frankel F.A., Feldhammer M., Roy B.B.,
Richard S., Wainberg M.A.;
"Arginine methylation of the HIV-1 nucleocapsid protein results in its
diminished function.";
AIDS 21:795-805(2007).
[25]
REVIEW.
PubMed=8791726;
Vogt V.M.;
"Proteolytic processing and particle maturation.";
Curr. Top. Microbiol. Immunol. 214:95-131(1996).
[26]
REVIEW.
PubMed=9878383; DOI=10.1006/jmbi.1998.2354;
Turner B.G., Summers M.F.;
"Structural biology of HIV.";
J. Mol. Biol. 285:1-32(1999).
[27]
REVIEW.
PubMed=11700285; DOI=10.1146/annurev.genet.35.102401.090551;
Negroni M., Buc H.;
"Mechanisms of retroviral recombination.";
Annu. Rev. Genet. 35:275-302(2001).
[28]
REVIEW.
PubMed=11983066; DOI=10.1186/gb-2002-3-4-reviews3006;
Dunn B.M., Goodenow M.M., Gustchina A., Wlodawer A.;
"Retroviral proteases.";
Genome Biol. 3:REVIEWS3006.1-REVIEWS3006.7(2002).
[29]
REVIEW.
PubMed=12873766; DOI=10.1016/S0005-2736(03)00163-9;
Scarlata S., Carter C.;
"Role of HIV-1 Gag domains in viral assembly.";
Biochim. Biophys. Acta 1614:62-72(2003).
[30]
3D-STRUCTURE MODELING OF PROTEASE DOMAIN.
PubMed=2537531; DOI=10.1126/science.2537531;
Weber I.T., Miller M., Jaskolski M., Leis J., Skalka A.M.,
Wlodawer A.;
"Molecular modeling of the HIV-1 protease and its substrate binding
site.";
Science 243:928-931(1989).
[31]
X-RAY CRYSTALLOGRAPHY (3.2 ANGSTROMS) OF 600-1159.
PubMed=2476069; DOI=10.1016/0003-9861(89)90493-1;
Mizrahi V., Lazarus G.M., Miles L.M., Meyers C.A., Debouck C.;
"Recombinant HIV-1 reverse transcriptase: purification, primary
structure, and polymerase/ribonuclease H activities.";
Arch. Biochem. Biophys. 273:347-358(1989).
[32]
X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 501-599 IN COMPLEX WITH A C2
SYMMETRIC INHIBITOR.
PubMed=2200122; DOI=10.1126/science.2200122;
Erickson J., Neidhart D.J., Vandrie J., Kempf D.J., Wang X.C.,
Norbeck D.W., Plattner J.J., Rittenhouse J.W., Turon M.,
Wideburg N.E., Kohlbrenner W.E., Simmer R., Helfrich R., Paul D.A.,
Knigge M.;
"Design, activity, and 2.8 A crystal structure of a C2 symmetric
inhibitor complexed to HIV-1 protease.";
Science 249:527-533(1990).
[33]
X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 1026-1161.
PubMed=1707186; DOI=10.1126/science.1707186;
Davies J.F. II, Hostomska Z., Hostomsky Z., Jordan S.R.,
Matthews D.A.;
"Crystal structure of the ribonuclease H domain of HIV-1 reverse
transcriptase.";
Science 252:88-95(1991).
[34]
X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 1026-1159.
PubMed=1718968;
Evans D.B., Brawn K., Deibel M.R. Jr., Tarpley W.G., Sharma S.K.;
"A recombinant ribonuclease H domain of HIV-1 reverse transcriptase
that is enzymatically active.";
J. Biol. Chem. 266:20583-20585(1991).
[35]
X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 1026-1161.
PubMed=1713588;
Hostomska Z., Matthews D.A., Davies J.F. II, Nodes B.R., Hostomsky Z.;
"Proteolytic release and crystallization of the RNase H domain of
human immunodeficiency virus type 1 reverse transcriptase.";
J. Biol. Chem. 266:14697-14702(1991).
[36]
X-RAY CRYSTALLOGRAPHY (3.5 ANGSTROMS) OF 600-1155 IN COMPLEX WITH AN
INHIBITOR.
PubMed=1377403; DOI=10.1126/science.1377403;
Kohlstaedt L.A., Wang J., Friedman J.M., Rice P.A., Steitz T.A.;
"Crystal structure at 3.5-A resolution of HIV-1 reverse transcriptase
complexed with an inhibitor.";
Science 256:1783-1790(1992).
[37]
X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 600-1157.
PubMed=1374166; DOI=10.1038/357085a0;
Arnold E., Jacobo-Molina A., Nanni R.G., Williams R.L., Lu X.,
Ding J., Clark A.D. Jr., Zhang A., Ferris A.L., Clark P., Hizi A.,
Hughes S.H.;
"Structure of HIV-1 reverse transcriptase/DNA complex at 7 A
resolution showing active site locations.";
Nature 357:85-89(1992).
[38]
X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 501-599.
PubMed=8230097; DOI=10.1021/jm00073a010;
Wonacott A., Cooke R., Hayes F.R., Hann M.M., Jhoti H., McMeekin P.,
Mistry A., Murray-Rust P., Singh O.M., Weir M.P.;
"A series of penicillin-derived C2-symmetric inhibitors of HIV-1
proteinase: structural and modeling studies.";
J. Med. Chem. 36:3113-3119(1993).
[39]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 501-599 IN COMPLEX WITH A
NOVEL GAMMA-TURN MIMETIC INHIBITOR.
PubMed=8360876; DOI=10.1021/jm00068a008;
Newlander K.A., Callahan J.F., Moore M.L., Tomaszek T.A. Jr.,
Huffman W.F.;
"A novel constrained reduced-amide inhibitor of HIV-1 protease derived
from the sequential incorporation of gamma-turn mimetics into a model
substrate.";
J. Med. Chem. 36:2321-2331(1993).
[40]
X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1155.
PubMed=7687065; DOI=10.1073/pnas.90.13.6320;
Jacobo-Molina A., Ding J., Nanni R.G., Clark A.D. Jr., Lu X.,
Tantillo C., Williams R.L., Kamer G., Ferris A.L., Clark P., Hizi A.,
Hughes S.H., Arnold E.;
"Crystal structure of human immunodeficiency virus type 1 reverse
transcriptase complexed with double-stranded DNA at 3.0-A resolution
shows bent DNA.";
Proc. Natl. Acad. Sci. U.S.A. 90:6320-6324(1993).
[41]
X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 600-1159.
PubMed=7513427; DOI=10.1073/pnas.91.9.3911;
Smerdon S.J., Jager J., Wang J., Kohlstaedt L.A., Chirino A.J.,
Friedman J.M., Rice P.A., Steitz T.A.;
"Structure of the binding site for nonnucleoside inhibitors of the
reverse transcriptase of human immunodeficiency virus type 1.";
Proc. Natl. Acad. Sci. U.S.A. 91:3911-3915(1994).
[42]
X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 501-599 IN COMPLEX WITH A
NOVEL PSEUDOSYMMETRIC INHIBITOR.
PubMed=7613867; DOI=10.1016/S0969-2126(01)00169-1;
Priestle J.P., Fassler A., Rosel J., Tintelnot-Blomley M., Strop P.,
Gruetter M.G.;
"Comparative analysis of the X-ray structures of HIV-1 and HIV-2
proteases in complex with CGP 53820, a novel pseudosymmetric
inhibitor.";
Structure 3:381-389(1995).
[43]
X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) OF 600-1155 IN COMPLEX WITH A
NONNUCLEOSIDE INHIBITOR.
PubMed=7545077; DOI=10.1038/nsb0595-407;
Ding J., Das K., Moereels H., Koymans L., Andries K., Janssen P.A.,
Hughes S.H., Arnold E.;
"Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the
binding of diverse nonnucleoside inhibitors.";
Nat. Struct. Biol. 2:407-415(1995).
[44]
X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 600-1157 IN COMPLEX WITH A
NON-NUCLEOSIDE INHIBITOR.
PubMed=7542140; DOI=10.1016/S0969-2126(01)00168-X;
Ding J., Das K., Tantillo C., Zhang W., Clark A.D. Jr., Jessen S.,
Lu X., Hsiou Y., Jacobo-Molina A., Andries K., Et A.L.;
"Structure of HIV-1 reverse transcriptase in a complex with the non-
nucleoside inhibitor alpha-APA R 95845 at 2.8-A resolution.";
Structure 3:365-379(1995).
[45]
X-RAY CRYSTALLOGRAPHY (3.2 ANGSTROMS) OF 600-1159.
PubMed=7532306; DOI=10.1073/pnas.92.4.1222;
Rodgers D.W., Gamblin S.J., Harris B.A., Ray S., Culp J.S.,
Hellmig B., Woolf D.J., Debouck C., Harrison S.C.;
"The structure of unliganded reverse transcriptase from the human
immunodeficiency virus type 1.";
Proc. Natl. Acad. Sci. U.S.A. 92:1222-1226(1995).
[46]
STRUCTURE BY NMR OF 1379-1429.
PubMed=7552753; DOI=10.1038/nsb0995-807;
Eijkelenboom A.P.A.M., Lutzke R.A., Boelens R., Plasterk R.H.A.,
Kaptein R., Hard K.;
"The DNA-binding domain of HIV-1 integrase has an SH3-like fold.";
Nat. Struct. Biol. 2:807-810(1995).
[47]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 501-599 IN COMPLEX WITH THE
PEPTIDIC INHIBITOR U-89360E.
PubMed=7827064; DOI=10.1021/bi00004a007;
Lin Y.Z., Lin X.L., Hong L., Foundling S.I., Heinrikson R.L.,
Thaisrivongs S., Leelamanit W., Raterman D., Shah M., Dunn B.M.,
Tang J.;
"Effect of point mutations on the kinetics and the inhibition of human
immunodeficiency virus type 1 protease: relationship to drug
resistance.";
Biochemistry 34:1143-1152(1995).
[48]
X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) OF 600-1155.
PubMed=8805568; DOI=10.1016/S0969-2126(96)00091-3;
Hsiou Y., Ding J., Das K., Clark A.D. Jr., Hughes S.H., Arnold E.;
"Structure of unliganded HIV-1 reverse transcriptase at 2.7-A
resolution: implications of conformational changes for polymerization
and inhibition mechanisms.";
Structure 4:853-860(1996).
[49]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599 IN COMPLEX WITH A
SULFAMIDE AND A UREA DERIVATIVE.
PubMed=9083478; DOI=10.1021/jm960588d;
Backbro K., Lowgren S., Osterlund K., Atepo J., Unge T., Hulten J.,
Bonham N.M., Schaal W., Karlen A., Hallberg A.;
"Unexpected binding mode of a cyclic sulfamide HIV-1 protease
inhibitor.";
J. Med. Chem. 40:898-902(1997).
[50]
X-RAY CRYSTALLOGRAPHY (1.9 ANGSTROMS) OF 502-599 IN COMPLEX WITH A
CYCLIC UREA INHIBITOR.
PubMed=9048541; DOI=10.1021/bi962234u;
Ala P.J., Huston E.E., Klabe R.M., McCabe D.D., Duke J.L., Rizzo C.J.,
Korant B.D., DeLoskey R.J., Lam P.Y.S., Hodge C.N., Chang C.-H.;
"Molecular basis of HIV-1 protease drug resistance: structural
analysis of mutant proteases complexed with cyclic urea inhibitors.";
Biochemistry 36:1573-1580(1997).
[51]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 501-599 IN COMPLEX WITH THE
PEPTIDIC INHIBITOR U-89360E.
PubMed=9450540; DOI=10.1016/S0014-5793(97)01477-4;
Hong L., Zhang X.-J., Foundling S.I., Hartsuck J.A., Tang J.;
"Structure of a G48H mutant of HIV-1 protease explains how glycine-48
replacements produce mutants resistant to inhibitor drugs.";
FEBS Lett. 420:11-16(1997).
[52]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599.
PubMed=9258349; DOI=10.1021/jm970195u;
Smith A.B. III, Hirschmann R., Pasternak A., Yao W., Sprengeler P.A.,
Holloway M.K., Kuo L.C., Chen Z., Darke P.L., Schleif W.A.;
"An orally bioavailable pyrrolinone inhibitor of HIV-1 protease:
computational analysis and X-ray crystal structure of the enzyme
complex.";
J. Med. Chem. 40:2440-2444(1997).
[53]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599 IN COMPLEX WITH A
PEPTIDIC INHIBITOR.
PubMed=9521105; DOI=10.1002/pro.5560070209;
Hong L., Hartsuck J.A., Foundling S.I., Ermolieff J., Tang J.;
"Active-site mobility in human immunodeficiency virus, type 1,
protease as demonstrated by crystal structure of A28S mutant.";
Protein Sci. 7:300-305(1998).
[54]
X-RAY CRYSTALLOGRAPHY (3.2 ANGSTROMS) OF 588-1027.
PubMed=9831551; DOI=10.1126/science.282.5394.1669;
Huang H., Chopra R., Verdine G.L., Harrison S.C.;
"Structure of a covalently trapped catalytic complex of HIV-1 reverse
transcriptase: implications for drug resistance.";
Science 282:1669-1675(1998).
[55]
X-RAY CRYSTALLOGRAPHY (4.75 ANGSTROMS) OF 600-1153 IN COMPLEX WITH AN
RNA PSEUDOKNOT INHIBITOR.
PubMed=9687519; DOI=10.1093/emboj/17.15.4535;
Jaeger J., Restle T., Steitz T.A.;
"The structure of HIV-1 reverse transcriptase complexed with an RNA
pseudoknot inhibitor.";
EMBO J. 17:4535-4542(1998).
[56]
X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) OF 600-1155 IN COMPLEX WITH A
NON-NUCLEOSIDE INHIBITOR.
PubMed=9813120; DOI=10.1006/jmbi.1998.2171;
Hsiou Y., Das K., Ding J., Clark A.D. Jr., Kleim J.P., Rosner M.,
Winkler I., Riess G., Hughes S.H., Arnold E.;
"Structures of Tyr188Leu mutant and wild-type HIV-1 reverse
transcriptase complexed with the non-nucleoside inhibitor HBY 097:
inhibitor flexibility is a useful design feature for reducing drug
resistance.";
J. Mol. Biol. 284:313-323(1998).
[57]
X-RAY CRYSTALLOGRAPHY (3.5 ANGSTROMS) OF 600-1157.
PubMed=10468556; DOI=10.1073/pnas.96.18.10027;
Sarafianos S.G., Das K., Clark A.D. Jr., Ding J., Boyer P.L.,
Hughes S.H., Arnold E.;
"Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves
steric hindrance with beta-branched amino acids.";
Proc. Natl. Acad. Sci. U.S.A. 96:10027-10032(1999).
[58]
X-RAY CRYSTALLOGRAPHY (2.73 ANGSTROMS) OF 600-1156.
PubMed=10650066; DOI=10.1021/jm990572y;
Hogberg M., Sahlberg C., Engelhardt P., Noreen R., Kangasmetsa J.,
Johansson N.G., Oberg B., Vrang L., Zhang H., Sahlberg B.L., Unge T.,
Lovgren S., Fridborg K., Backbro K.;
"Urea-PETT compounds as a new class of HIV-1 reverse transcriptase
inhibitors. 3. Synthesis and further structure-activity relationship
studies of PETT analogues.";
J. Med. Chem. 43:304-304(2000).
[59]
X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1152 IN COMPLEX WITH AN
OLIGONUCLEOTIDE, AND ACTIVE SITES OF RNASE H.
PubMed=11250910; DOI=10.1093/emboj/20.6.1449;
Sarafianos S.G., Das K., Tantillo C., Clark A.D. Jr., Ding J.,
Whitcomb J.M., Boyer P.L., Hughes S.H., Arnold E.;
"Crystal structure of HIV-1 reverse transcriptase in complex with a
polypurine tract RNA:DNA.";
EMBO J. 20:1449-1461(2001).
[60]
X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1159.
PubMed=11371163; DOI=10.1006/jmbi.2001.4648;
Hsiou Y., Ding J., Das K., Clark A.D. Jr., Boyer P.L., Lewi P.,
Janssen P.A., Kleim J.P., Rosner M., Hughes S.H., Arnold E.;
"The Lys103Asn mutation of HIV-1 RT: a novel mechanism of drug
resistance.";
J. Mol. Biol. 309:437-445(2001).
[61]
X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) OF 600-1157.
PubMed=12456667; DOI=10.1093/emboj/cdf637;
Sarafianos S.G., Clark A.D. Jr., Das K., Tuske S., Birktoft J.J.,
Ilankumaran P., Ramesha A.R., Sayer J.M., Jerina D.M., Boyer P.L.,
Hughes S.H., Arnold E.;
"Structures of HIV-1 reverse transcriptase with pre- and post-
translocation AZTMP-terminated DNA.";
EMBO J. 21:6614-6624(2002).
[62]
X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1159 IN COMPLEX WITH
EFIVARENZ.
PubMed=11895437; DOI=10.1046/j.1432-1327.2002.02811.x;
Lindberg J., Sigurdsson S., Lowgren S., Andersson H.O., Sahlberg C.,
Noreen R., Fridborg K., Zhang H., Unge T.;
"Structural basis for the inhibitory efficacy of efavirenz (DMP-266),
MSC194 and PNU142721 towards the HIV-1 RT K103N mutant.";
Eur. J. Biochem. 269:1670-1677(2002).
[63]
X-RAY CRYSTALLOGRAPHY (1.81 ANGSTROMS) OF 501-599.
PubMed=12694187; DOI=10.1046/j.1432-1033.2003.03533.x;
Andersson H.O., Fridborg K., Lowgren S., Alterman M., Muhlman A.,
Bjorsne M., Garg N., Kvarnstrom I., Schaal W., Classon B., Karlen A.,
Danielsson U.H., Ahlsen G., Nillroth U., Vrang L., Oberg B.,
Samuelsson B., Hallberg A., Unge T.;
"Optimization of P1-P3 groups in symmetric and asymmetric HIV-1
protease inhibitors.";
Eur. J. Biochem. 270:1746-1758(2003).
[64]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599 IN COMPLEX WITH
MONOPYRROLINONE-BASED INHIBITORS LDC271 AND LGZ479.
PubMed=12723947; DOI=10.1021/jm0204587;
Smith A.B. III, Cantin L.D., Pasternak A., Guise-Zawacki L., Yao W.,
Charnley A.K., Barbosa J., Sprengeler P.A., Hirschmann R., Munshi S.,
Olsen D.B., Schleif W.A., Kuo L.C.;
"Design, synthesis, and biological evaluation of monopyrrolinone-based
HIV-1 protease inhibitors.";
J. Med. Chem. 46:1831-1844(2003).
[65]
X-RAY CRYSTALLOGRAPHY (1.79 ANGSTROMS) OF 501-599.
PubMed=15560801; DOI=10.1111/j.1432-1033.2004.04431.x;
Lindberg J., Pyring D., Lowgren S., Rosenquist A., Zuccarello G.,
Kvarnstrom I., Zhang H., Vrang L., Classon B., Hallberg A.,
Samuelsson B., Unge T.;
"Symmetric fluoro-substituted diol-based HIV protease inhibitors.
Ortho-fluorinated and meta-fluorinated P1/P1'-benzyloxy side groups
significantly improve the antiviral activity and preserve binding
efficacy.";
Eur. J. Biochem. 271:4594-4602(2004).
[66]
X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 600-1157.
PubMed=15016861; DOI=10.1128/JVI.78.7.3387-3397.2004;
Peletskaya E.N., Kogon A.A., Tuske S., Arnold E., Hughes S.H.;
"Nonnucleoside inhibitor binding affects the interactions of the
fingers subdomain of human immunodeficiency virus type 1 reverse
transcriptase with DNA.";
J. Virol. 78:3387-3397(2004).
[67]
X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) OF 600-1157 IN COMPLEX WITH DNA
BOUND TO TENOFOVIR.
PubMed=15107837; DOI=10.1038/nsmb760;
Tuske S., Sarafianos S.G., Clark A.D. Jr., Ding J., Naeger L.K.,
White K.L., Miller M.D., Gibbs C.S., Boyer P.L., Clark P., Wang G.,
Gaffney B.L., Jones R.A., Jerina D.M., Hughes S.H., Arnold E.;
"Structures of HIV-1 RT-DNA complexes before and after incorporation
of the anti-AIDS drug tenofovir.";
Nat. Struct. Mol. Biol. 11:469-474(2004).
[68]
X-RAY CRYSTALLOGRAPHY (1.3 ANGSTROMS) OF 501-599 IN COMPLEX WITH
ARYLSULFONAMIDE AZACYCLIC UREA INHIBITORS.
PubMed=15225729; DOI=10.1016/j.bmcl.2004.05.036;
Huang P.P., Randolph J.T., Klein L.L., Vasavanonda S., Dekhtyar T.,
Stoll V.S., Kempf D.J.;
"Synthesis and antiviral activity of P1' arylsulfonamide azacyclic
urea HIV protease inhibitors.";
Bioorg. Med. Chem. Lett. 14:4075-4078(2004).
[69]
X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 501-599 IN COMPLEX WITH
OXIMINOARYLSULFONAMIDE INHIBITOR.
PubMed=15837308; DOI=10.1016/j.bmcl.2005.03.008;
Yeung C.M., Klein L.L., Flentge C.A., Randolph J.T., Zhao C., Sun M.,
Dekhtyar T., Stoll V.S., Kempf D.J.;
"Oximinoarylsulfonamides as potent HIV protease inhibitors.";
Bioorg. Med. Chem. Lett. 15:2275-2278(2005).
-!- FUNCTION: Gag-Pol polyprotein: Mediates, with Gag polyrotein, the
essential events in virion assembly, including binding the plasma
membrane, making the protein-protein interactions necessary to
create spherical particles, recruiting the viral Env proteins, and
packaging the genomic RNA via direct interactions with the RNA
packaging sequence (Psi). Gag-Pol polyprotein may regulate its own
translation, by the binding genomic RNA in the 5'-UTR. At low
concentration, the polyprotein would promote translation, whereas
at high concentration, the polyprotein would encapsidate genomic
RNA and then shutt off translation. {ECO:0000250}.
-!- FUNCTION: Matrix protein p17: Targets the polyprotein to the
plasma membrane via a multipartite membrane-binding signal, that
includes its myristoylated N-terminus. Matrix protein is part of
the pre-integration complex. Implicated in the release from host
cell mediated by Vpu. Binds to RNA.
{ECO:0000250|UniProtKB:P12497}.
-!- FUNCTION: Capsid protein p24: Forms the conical core that
encapsulates the genomic RNA-nucleocapsid complex in the virion.
Most core are conical, with only 7% tubular. The core is
constituted by capsid protein hexamer subunits. The core is
disassembled soon after virion entry (By similarity). Host
restriction factors such as TRIM5-alpha or TRIMCyp bind retroviral
capsids and cause premature capsid disassembly, leading to blocks
in reverse transcription. Capsid restriction by TRIM5 is one of
the factors which restricts HIV-1 to the human species. Host PIN1
apparently facilitates the virion uncoating. On the other hand,
interactions with PDZD8 or CYPA stabilize the capsid.
{ECO:0000250|UniProtKB:P04585, ECO:0000250|UniProtKB:P12497}.
-!- FUNCTION: Nucleocapsid protein p7: Encapsulates and protects viral
dimeric unspliced genomic RNA (gRNA). Binds these RNAs through its
zinc fingers. Acts as a nucleic acid chaperone which is involved
in rearangement of nucleic acid secondary structure during gRNA
retrotranscription. Also facilitates template switch leading to
recombination. As part of the polyprotein, participates in gRNA
dimerization, packaging, tRNA incorporation and virion assembly.
{ECO:0000250|UniProtKB:P04585}.
-!- FUNCTION: Protease: Aspartyl protease that mediates proteolytic
cleavages of Gag and Gag-Pol polyproteins during or shortly after
the release of the virion from the plasma membrane. Cleavages take
place as an ordered, step-wise cascade to yield mature proteins.
This process is called maturation. Displays maximal activity
during the budding process just prior to particle release from the
cell. Also cleaves Nef and Vif, probably concomitantly with viral
structural proteins on maturation of virus particles. Hydrolyzes
host EIF4GI and PABP1 in order to shut off the capped cellular
mRNA translation. The resulting inhibition of cellular protein
synthesis serves to ensure maximal viral gene expression and to
evade host immune response (By similarity).
{ECO:0000250|UniProtKB:P04585, ECO:0000255|PROSITE-
ProRule:PRU00275}.
-!- FUNCTION: Reverse transcriptase/ribonuclease H: Multifunctional
enzyme that converts the viral RNA genome into dsDNA in the
cytoplasm, shortly after virus entry into the cell. This enzyme
displays a DNA polymerase activity that can copy either DNA or RNA
templates, and a ribonuclease H (RNase H) activity that cleaves
the RNA strand of RNA-DNA heteroduplexes in a partially processive
3' to 5' endonucleasic mode. Conversion of viral genomic RNA into
dsDNA requires many steps. A tRNA(3)-Lys binds to the primer-
binding site (PBS) situated at the 5'-end of the viral RNA. RT
uses the 3' end of the tRNA primer to perform a short round of
RNA-dependent minus-strand DNA synthesis. The reading proceeds
through the U5 region and ends after the repeated (R) region which
is present at both ends of viral RNA. The portion of the RNA-DNA
heteroduplex is digested by the RNase H, resulting in a ssDNA
product attached to the tRNA primer. This ssDNA/tRNA hybridizes
with the identical R region situated at the 3' end of viral RNA.
This template exchange, known as minus-strand DNA strong stop
transfer, can be either intra- or intermolecular. RT uses the 3'
end of this newly synthesized short ssDNA to perform the RNA-
dependent minus-strand DNA synthesis of the whole template. RNase
H digests the RNA template except for two polypurine tracts (PPTs)
situated at the 5'-end and near the center of the genome. It is
not clear if both polymerase and RNase H activities are
simultaneous. RNase H probably can proceed both in a polymerase-
dependent (RNA cut into small fragments by the same RT performing
DNA synthesis) and a polymerase-independent mode (cleavage of
remaining RNA fragments by free RTs). Secondly, RT performs DNA-
directed plus-strand DNA synthesis using the PPTs that have not
been removed by RNase H as primers. PPTs and tRNA primers are then
removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to
form a circular dsDNA intermediate. Strand displacement synthesis
by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA
copy of the viral genome that includes long terminal repeats
(LTRs) at both ends. {ECO:0000250|UniProtKB:P04585}.
-!- FUNCTION: Integrase: Catalyzes viral DNA integration into the host
chromosome, by performing a series of DNA cutting and joining
reactions. This enzyme activity takes place after virion entry
into a cell and reverse transcription of the RNA genome in dsDNA.
The first step in the integration process is 3' processing. This
step requires a complex comprising the viral genome, matrix
protein, Vpr and integrase. This complex is called the pre-
integration complex (PIC). The integrase protein removes 2
nucleotides from each 3' end of the viral DNA, leaving recessed CA
OH's at the 3' ends. In the second step, the PIC enters cell
nucleus. This process is mediated through integrase and Vpr
proteins, and allows the virus to infect a non dividing cell. This
ability to enter the nucleus is specific of lentiviruses, other
retroviruses cannot and rely on cell division to access cell
chromosomes. In the third step, termed strand transfer, the
integrase protein joins the previously processed 3' ends to the 5'
ends of strands of target cellular DNA at the site of integration.
The 5'-ends are produced by integrase-catalyzed staggered cuts, 5
bp apart. A Y-shaped, gapped, recombination intermediate results,
with the 5'-ends of the viral DNA strands and the 3' ends of
target DNA strands remaining unjoined, flanking a gap of 5 bp. The
last step is viral DNA integration into host chromosome. This
involves host DNA repair synthesis in which the 5 bp gaps between
the unjoined strands are filled in and then ligated. Since this
process occurs at both cuts flanking the HIV genome, a 5 bp
duplication of host DNA is produced at the ends of HIV-1
integration. Alternatively, Integrase may catalyze the excision of
viral DNA just after strand transfer, this is termed
disintegration. {ECO:0000250|UniProtKB:P04585}.
-!- CATALYTIC ACTIVITY: Specific for a P1 residue that is hydrophobic,
and P1' variable, but often Pro. {ECO:0000255|PROSITE-
ProRule:PRU00275}.
-!- CATALYTIC ACTIVITY: Endohydrolysis of RNA in RNA/DNA hybrids.
Three different cleavage modes: 1. sequence-specific internal
cleavage of RNA. Human immunodeficiency virus type 1 and Moloney
murine leukemia virus enzymes prefer to cleave the RNA strand one
nucleotide away from the RNA-DNA junction. 2. RNA 5'-end directed
cleavage 13-19 nucleotides from the RNA end. 3. DNA 3'-end
directed cleavage 15-20 nucleotides away from the primer terminus.
{ECO:0000250}.
-!- CATALYTIC ACTIVITY: 3'-end directed exonucleolytic cleavage of
viral RNA-DNA hybrid. {ECO:0000250}.
-!- CATALYTIC ACTIVITY: Deoxynucleoside triphosphate + DNA(n) =
diphosphate + DNA(n+1). {ECO:0000255|PROSITE-ProRule:PRU00405}.
-!- COFACTOR:
Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250};
Note=Binds 2 magnesium ions for reverse transcriptase polymerase
activity. {ECO:0000250};
-!- COFACTOR:
Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250};
Note=Binds 2 magnesium ions for ribonuclease H (RNase H) activity.
Substrate-binding is a precondition for magnesium binding.
{ECO:0000250};
-!- COFACTOR:
Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250};
Note=Magnesium ions are required for integrase activity. Binds at
least 1, maybe 2 magnesium ions. {ECO:0000250};
-!- ENZYME REGULATION: Protease: The viral protease is inhibited by
many synthetic protease inhibitors (PIs), such as amprenavir,
atazanavir, indinavir, loprinavir, nelfinavir, ritonavir and
saquinavir. Use of protease inhibitors in tritherapy regimens
permit more ambitious therapeutic strategies. Reverse
transcriptase/ribonuclease H: RT can be inhibited either by
nucleoside RT inhibitors (NRTIs) or by non nucleoside RT
inhibitors (NNRTIs). NRTIs act as chain terminators, whereas
NNRTIs inhibit DNA polymerization by binding a small hydrophobic
pocket near the RT active site and inducing an allosteric change
in this region. Classical NRTIs are abacavir, adefovir (PMEA),
didanosine (ddI), lamivudine (3TC), stavudine (d4T), tenofovir
(PMPA), zalcitabine (ddC), and zidovudine (AZT). Classical NNRTIs
are atevirdine (BHAP U-87201E), delavirdine, efavirenz (DMP-266),
emivirine (I-EBU), and nevirapine (BI-RG-587). The tritherapies
used as a basic effective treatment of AIDS associate two NRTIs
and one NNRTI. {ECO:0000250}.
-!- SUBUNIT: Matrix protein p17: Homotrimer; further assembles as
hexamers of trimers (By similarity). Matrix protein p17: Interacts
with gp41 (via C-terminus) (By similarity). Matrix protein p17:
interacts with host CALM1; this interaction induces a
conformational change in the Matrix protein, triggering exposure
of the myristate group (By similarity). Matrix protein p17:
interacts with host AP3D1; this interaction allows the polyprotein
trafficking to multivesicular bodies during virus assembly (By
similarity). Matrix protein p17: Part of the pre-integration
complex (PIC) which is composed of viral genome, matrix protein,
Vpr and integrase (By similarity). Capsid protein p24: Homodimer;
the homodimer further multimerizes as homohexamers or
homopentamers. Capsid protein p24: Interacts with human PPIA/CYPA
(By similarity); This interaction stabilizes the capsid. Capsid
protein p24: Interacts with human NUP153 (By similarity). Capsid
protein p24: Interacts with host PDZD8; this interaction
stabilizes the capsid (By similarity). Capsid protein p24:
Interacts with monkey TRIM5; this interaction destabilizes the
capsid (By similarity).Protease: Homodimer, whose active site
consists of two apposed aspartic acid residues. Reverse
transcriptase/ribonuclease H: Heterodimer of p66 RT and p51 RT (RT
p66/p51). Heterodimerization of RT is essential for DNA polymerase
activity. Despite the sequence identities, p66 RT and p51 RT have
distinct folding. Integrase: Homodimer; possibly can form
homotetramer. Integrase: Part of the pre-integration complex (PIC)
which is composed of viral genome, matrix protein, Vpr and
integrase. Integrase: Interacts with human SMARCB1/INI1 and human
PSIP1/LEDGF isoform 1. Integrase: Interacts with human KPNA3; this
interaction might play a role in nuclear import of the pre-
integration complex (By similarity). Integrase: Interacts with
human NUP153; this interaction might play a role in nuclear import
of the pre-integration complex (By similarity).
{ECO:0000250|UniProtKB:P04585, ECO:0000250|UniProtKB:P12497}.
-!- SUBCELLULAR LOCATION: Gag-Pol polyprotein: Host cell membrane;
Lipid-anchor. Host endosome, host multivesicular body. Note=These
locations are linked to virus assembly sites. The main location is
the cell membrane, but under some circumstances, late endosomal
compartments can serve as productive sites for virion assembly.
{ECO:0000250|UniProtKB:P12497}.
-!- SUBCELLULAR LOCATION: Matrix protein p17: Virion membrane; Lipid-
anchor {ECO:0000305}. Host nucleus {ECO:0000250}. Host cytoplasm
{ECO:0000250}.
-!- SUBCELLULAR LOCATION: Capsid protein p24: Virion {ECO:0000305}.
-!- SUBCELLULAR LOCATION: Nucleocapsid protein p7: Virion
{ECO:0000305}.
-!- SUBCELLULAR LOCATION: Reverse transcriptase/ribonuclease H: Virion
{ECO:0000305}.
-!- SUBCELLULAR LOCATION: Integrase: Virion {ECO:0000305}. Host
nucleus {ECO:0000305}. Host cytoplasm {ECO:0000305}. Note=Nuclear
at initial phase, cytoplasmic at assembly. {ECO:0000305}.
-!- ALTERNATIVE PRODUCTS:
Event=Ribosomal frameshifting; Named isoforms=2;
Comment=Translation results in the formation of the Gag
polyprotein most of the time. Ribosomal frameshifting at the
gag-pol genes boundary occurs at low frequency and produces the
Gag-Pol polyprotein. This strategy of translation probably
allows the virus to modulate the quantity of each viral protein.
Maintenance of a correct Gag to Gag-Pol ratio is essential for
RNA dimerization and viral infectivity.
{ECO:0000269|PubMed:11172099};
Name=Gag-Pol polyprotein;
IsoId=P03366-1; Sequence=Displayed;
Note=Produced by -1 ribosomal frameshifting.;
Name=Gag polyprotein;
IsoId=P03347-1; Sequence=External;
Note=Produced by conventional translation.;
-!- DOMAIN: Reverse transcriptase/ribonuclease H: RT is structured in
five subdomains: finger, palm, thumb, connection and RNase H.
Within the palm subdomain, the 'primer grip' region is thought to
be involved in the positioning of the primer terminus for
accommodating the incoming nucleotide. The RNase H domain
stabilizes the association of RT with primer-template.
{ECO:0000250}.
-!- DOMAIN: Reverse transcriptase/ribonuclease H: The tryptophan
repeat motif is involved in RT p66/p51 dimerization (By
similarity). {ECO:0000250}.
-!- DOMAIN: Integrase: The core domain contains the D-x(n)-D-x(35)-E
motif, named for the phylogenetically conserved glutamic acid and
aspartic acid residues and the invariant 35 amino acid spacing
between the second and third acidic residues. Each acidic residue
of the D,D(35)E motif is independently essential for the 3'-
processing and strand transfer activities of purified integrase
protein. {ECO:0000250}.
-!- PTM: Gag-Pol polyprotein: Specific enzymatic cleavages by the
viral protease yield mature proteins. The protease is released by
autocatalytic cleavage. The polyprotein is cleaved during and
after budding, this process is termed maturation. Proteolytic
cleavage of p66 RT removes the RNase H domain to yield the p51 RT
subunit. Nucleocapsid protein p7 might be further cleaved after
virus entry. {ECO:0000250|UniProtKB:P04585, ECO:0000255|PROSITE-
ProRule:PRU00405}.
-!- PTM: Matrix protein p17: Tyrosine phosphorylated presumably in the
virion by a host kinase. Phosphorylation is apparently not a major
regulator of membrane association. {ECO:0000250|UniProtKB:P04585}.
-!- PTM: Capsid protein p24: Phosphorylated possibly by host MAPK1;
this phosphorylation is necessary for Pin1-mediated virion
uncoating. {ECO:0000250|UniProtKB:P12497}.
-!- PTM: Nucleocapsid protein p7: Methylated by host PRMT6, impairing
its function by reducing RNA annealing and the initiation of
reverse transcription. {ECO:0000269|PubMed:17415034}.
-!- MISCELLANEOUS: Reverse transcriptase/ribonuclease H: Error-prone
enzyme that lacks a proof-reading function. High mutations rate is
a direct consequence of this characteristic. RT also displays
frequent template switching leading to high recombination rate.
Recombination mostly occurs between homologous regions of the two
copackaged RNA genomes. If these two RNA molecules derive from
different viral strains, reverse transcription will give rise to
highly recombinated proviral DNAs. {ECO:0000250}.
-!- MISCELLANEOUS: HIV-1 lineages are divided in three main groups, M
(for Major), O (for Outlier), and N (for New, or Non-M, Non-O).
The vast majority of strains found worldwide belong to the group
M. Group O seems to be endemic to and largely confined to Cameroon
and neighboring countries in West Central Africa, where these
viruses represent a small minority of HIV-1 strains. The group N
is represented by a limited number of isolates from Cameroonian
persons. The group M is further subdivided in 9 clades or subtypes
(A to D, F to H, J and K).
-!- MISCELLANEOUS: Resistance to inhibitors associated with mutations
are observed both in viral protease and in reverse transcriptase.
Most of the time, single mutations confer only a modest reduction
in drug susceptibility. Combination of several mutations is
usually required to develop a high-level drug resistance. These
mutations are predominantly found in clade B viruses and not in
other genotypes. They are listed in the clade B representative
isolate HXB2 (AC P04585).
-!- WEB RESOURCE: Name=HIV drug resistance mutations;
URL="https://www.iasusa.org/content/hiv-drug-resistance-mutations";
-!- WEB RESOURCE: Name=hivdb; Note=HIV drug resistance database;
URL="http://hivdb.stanford.edu";
-!- WEB RESOURCE: Name=BioAfrica: HIV bioinformatics in Africa;
URL="http://www.bioafrica.net/index.html";
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; M15654; AAA44198.1; ALT_SEQ; Genomic_RNA.
EMBL; K02083; AAB59867.1; ALT_SEQ; Genomic_DNA.
EMBL; X01762; -; NOT_ANNOTATED_CDS; Genomic_RNA.
PIR; A03965; GNVWH3.
PIR; A03967; GNVWVL.
PDB; 1A9M; X-ray; 2.30 A; A/B=501-599.
PDB; 1AJV; X-ray; 2.00 A; A/B=501-599.
PDB; 1AJX; X-ray; 2.00 A; A/B=501-599.
PDB; 1AXA; X-ray; 2.00 A; A/B=501-599.
PDB; 1BQM; X-ray; 3.10 A; A=600-1155, B=600-1029.
PDB; 1BQN; X-ray; 3.30 A; A=600-1440, B=600-1029.
PDB; 1D4H; X-ray; 1.81 A; A/B=501-599.
PDB; 1D4I; X-ray; 1.81 A; A/B=501-599.
PDB; 1D4J; X-ray; 1.81 A; A/B=501-599.
PDB; 1DLO; X-ray; 2.70 A; A=600-1155, B=600-1026.
PDB; 1DW6; X-ray; 1.88 A; C/D=501-599.
PDB; 1EBK; X-ray; 2.06 A; C/D/E/F=501-599.
PDB; 1EBW; X-ray; 1.81 A; A/B=501-599.
PDB; 1EBY; X-ray; 2.29 A; A/B=501-599.
PDB; 1EBZ; X-ray; 2.01 A; A/B=501-599.
PDB; 1EC0; X-ray; 1.79 A; A/B=501-599.
PDB; 1EC1; X-ray; 2.10 A; A/B=501-599.
PDB; 1EC2; X-ray; 2.00 A; A/B=501-599.
PDB; 1EC3; X-ray; 1.80 A; A/B=501-599.
PDB; 1EET; X-ray; 2.73 A; A=600-1156, B=600-1026.
PDB; 1G35; X-ray; 1.80 A; A/B=501-599.
PDB; 1GNM; X-ray; 2.30 A; A/B=501-599.
PDB; 1GNN; X-ray; 2.30 A; A/B=501-599.
PDB; 1GNO; X-ray; 2.30 A; A/B=501-599.
PDB; 1HAR; X-ray; 2.20 A; A=600-815.
PDB; 1HBV; X-ray; 2.30 A; A/B=501-599.
PDB; 1HEF; X-ray; 2.20 A; E=501-599.
PDB; 1HEG; X-ray; 2.20 A; E=501-599.
PDB; 1HIH; X-ray; 2.20 A; A/B=501-599.
PDB; 1HMV; X-ray; 3.20 A; A/C/E/G=600-1159, B/D/F/H=600-1039.
PDB; 1HNI; X-ray; 2.80 A; A=600-1157.
PDB; 1HNV; X-ray; 3.00 A; A=600-1157, B=600-1026.
PDB; 1HOS; X-ray; 2.30 A; A/B=501-599.
PDB; 1HPS; X-ray; 2.30 A; A/B=501-599.
PDB; 1HPZ; X-ray; 3.00 A; A=600-1159, B=600-1029.
PDB; 1HQE; X-ray; 2.70 A; A=600-1159, B=600-1029.
PDB; 1HQU; X-ray; 2.70 A; A=600-1159, B=600-1029.
PDB; 1HRH; X-ray; 2.40 A; A/B=1026-1161.
PDB; 1HTE; X-ray; 2.80 A; A/B=501-599.
PDB; 1HTF; X-ray; 2.20 A; A/B=501-599.
PDB; 1HTG; X-ray; 2.00 A; A/B=501-599.
PDB; 1HVI; X-ray; 1.80 A; A/B=501-599.
PDB; 1HVK; X-ray; 1.80 A; A/B=501-599.
PDB; 1HVP; Model; -; A/B=501-599.
PDB; 1HVU; X-ray; 4.75 A; A/D/G/J=600-1153, B/E/H/K=604-1026.
PDB; 1HYS; X-ray; 3.00 A; A=600-1152, B=600-1024.
PDB; 1IKV; X-ray; 3.00 A; A=600-1159, B=600-1026.
PDB; 1IKW; X-ray; 3.00 A; A=600-1159, B=600-1026.
PDB; 1IKX; X-ray; 2.80 A; A=600-1159, B=600-1026.
PDB; 1IKY; X-ray; 3.00 A; A=600-1159, B=600-1026.
PDB; 1J5O; X-ray; 3.50 A; A=600-1157, B=600-1029.
PDB; 1KJH; X-ray; 2.00 A; P=1155-1164.
PDB; 1MER; X-ray; 1.90 A; A/B=501-599.
PDB; 1MES; X-ray; 1.90 A; A/B=501-599.
PDB; 1MET; X-ray; 1.90 A; A/B=501-599.
PDB; 1MEU; X-ray; 1.90 A; A/B=501-599.
PDB; 1N5Y; X-ray; 3.10 A; A=600-1157, B=600-1029.
PDB; 1N6Q; X-ray; 3.00 A; A=600-1157, B=600-1029.
PDB; 1NPA; X-ray; 2.00 A; A/B=501-599.
PDB; 1NPV; X-ray; 2.00 A; A/B=501-599.
PDB; 1NPW; X-ray; 2.00 A; A/B=501-599.
PDB; 1QE1; X-ray; 2.85 A; A=600-1157, B=600-1026.
PDB; 1QMC; NMR; -; A/B=1379-1429.
PDB; 1R0A; X-ray; 2.80 A; A=600-1157, B=600-1028.
PDB; 1RDH; X-ray; 2.80 A; A/B=1026-1159.
PDB; 1RTD; X-ray; 3.20 A; A/C=600-1153.
PDB; 1RVL; Model; -; A=600-1155, B=600-1027.
PDB; 1RVM; Model; -; A=600-1155, B=600-1027.
PDB; 1RVN; Model; -; A=600-1155, B=600-1027.
PDB; 1RVO; Model; -; A=600-1155, B=600-1027.
PDB; 1RVP; Model; -; A=600-1155, B=600-1027.
PDB; 1RVQ; Model; -; A=600-1155, B=600-1027.
PDB; 1RVR; Model; -; A=600-1155, B=600-1027.
PDB; 1S6P; X-ray; 2.90 A; A=600-1159, B=600-1029.
PDB; 1S6Q; X-ray; 3.00 A; A=600-1159, B=600-1029.
PDB; 1S9E; X-ray; 2.60 A; A=600-1159, B=600-1029.
PDB; 1S9G; X-ray; 2.80 A; A=600-1159, B=600-1029.
PDB; 1SBG; X-ray; 2.30 A; A/B=501-599.
PDB; 1SUQ; X-ray; 3.00 A; A=600-1159, B=600-1029.
PDB; 1SV5; X-ray; 2.90 A; A=600-1159, B=600-1029.
PDB; 1T03; X-ray; 3.10 A; A=600-1157, B=600-1028.
PDB; 1T05; X-ray; 3.00 A; A=600-1157.
PDB; 1T7K; X-ray; 2.10 A; A/B=501-599.
PDB; 1TV6; X-ray; 2.80 A; A=600-1159, B=600-1039.
PDB; 1TVR; X-ray; 3.00 A; A=600-1157, B=600-1026.
PDB; 1UWB; X-ray; 3.20 A; A=600-1157, B=600-1026.
PDB; 1W5V; X-ray; 1.80 A; A/B=490-599.
PDB; 1W5W; X-ray; 1.80 A; A/B=490-599.
PDB; 1W5X; X-ray; 1.90 A; A/B=490-599.
PDB; 1W5Y; X-ray; 1.90 A; A/B=490-599.
PDB; 1YT9; X-ray; 3.00 A; A/B=501-599.
PDB; 1ZP8; X-ray; 2.02 A; A=501-599.
PDB; 1ZPA; X-ray; 2.02 A; A=501-599.
PDB; 1ZSF; X-ray; 1.98 A; A/B=501-599.
PDB; 1ZSR; X-ray; 2.06 A; A/B=501-599.
PDB; 2AQU; X-ray; 2.00 A; A/B=501-599.
PDB; 2B5J; X-ray; 2.90 A; A=600-1159, B=600-1029.
PDB; 2B6A; X-ray; 2.65 A; A=600-1159, B=600-1029.
PDB; 2BAN; X-ray; 2.95 A; A=600-1159, B=600-1029.
PDB; 2BBB; X-ray; 1.70 A; A/B=501-599.
PDB; 2BE2; X-ray; 2.43 A; A=600-1159, B=600-1029.
PDB; 2EXF; NMR; -; A=390-432.
PDB; 2G69; X-ray; 1.35 A; A=501-599.
PDB; 2HB3; X-ray; 1.35 A; A/B=501-598.
PDB; 2HMI; X-ray; 2.80 A; A=600-1157, B=600-1029.
PDB; 2HNZ; X-ray; 3.00 A; B=606-1027.
PDB; 2HS1; X-ray; 0.84 A; A/B=501-599.
PDB; 2HS2; X-ray; 1.22 A; A/B=501-599.
PDB; 2I4D; X-ray; 1.50 A; A/B=501-599.
PDB; 2I4U; X-ray; 1.50 A; A/B=501-599.
PDB; 2I4V; X-ray; 1.50 A; A/B=501-599.
PDB; 2I4W; X-ray; 1.55 A; A/B=501-599.
PDB; 2I4X; X-ray; 1.55 A; A/B=501-599.
PDB; 2I5J; X-ray; 3.15 A; A=600-1150, B=600-1027.
PDB; 2IAJ; X-ray; 2.50 A; A=600-1158, B=600-1045.
PDB; 2IC3; X-ray; 3.00 A; A=600-1158, B=600-1045.
PDB; 2IDW; X-ray; 1.10 A; A/B=501-599.
PDB; 2IEO; X-ray; 1.53 A; A/B=501-599.
PDB; 2JZW; NMR; -; A=390-432.
PDB; 2L45; NMR; -; A=411-429.
PDB; 2L46; NMR; -; A=411-429.
PDB; 2L4L; NMR; -; A=388-432.
PDB; 2UXZ; X-ray; 1.75 A; A/B=501-599.
PDB; 2UY0; X-ray; 1.76 A; A/B=501-599.
PDB; 2VG5; X-ray; 2.80 A; A=600-1156, B=600-1027.
PDB; 2VG6; X-ray; 3.01 A; A=600-1156, B=600-1027.
PDB; 2VG7; X-ray; 2.82 A; A=600-1156, B=600-1027.
PDB; 2X4U; X-ray; 2.10 A; C/F=908-916.
PDB; 2YKM; X-ray; 2.90 A; A=600-1156, B=600-1027.
PDB; 2YKN; X-ray; 2.12 A; A=600-1156, B=600-1027.
PDB; 2ZD1; X-ray; 1.80 A; A=600-1154, B=600-1027.
PDB; 2ZE2; X-ray; 2.90 A; A=600-1154, B=600-1027.
PDB; 3AVI; X-ray; 1.70 A; A/B=1209-1371.
PDB; 3BGR; X-ray; 2.10 A; A=600-1154, B=600-1027.
PDB; 3DLK; X-ray; 1.85 A; A=600-1154, B=605-1027.
PDB; 3GGA; X-ray; 2.50 A; A/B/C/D/G/H=501-599.
PDB; 3GGV; X-ray; 3.09 A; A/B/C/D/E/F/G/H/I=501-599.
PDB; 3GGX; X-ray; 2.70 A; A/B/C/D/E/F/G/H=501-599.
PDB; 3HVT; X-ray; 2.90 A; A=600-1155, B=600-1027.
PDB; 3IG1; X-ray; 2.80 A; A=600-1154, B=600-1027.
PDB; 3IRX; X-ray; 2.80 A; A=600-1154, B=600-1027.
PDB; 3IS9; X-ray; 2.55 A; A=600-1154, B=600-1027.
PDB; 3ISN; X-ray; 2.50 A; C=600-1159, D=600-1026.
PDB; 3ITH; X-ray; 2.80 A; A/C=600-1159, B/D=600-1026.
PDB; 3JSM; X-ray; 3.00 A; A=600-1157, B=600-1028.
PDB; 3JYT; X-ray; 3.30 A; A=600-1157, B=600-1028.
PDB; 3K2P; X-ray; 2.04 A; A/B=1026-1159.
PDB; 3K4V; X-ray; 1.39 A; A/B/C/D=501-599.
PDB; 3KLE; X-ray; 3.20 A; A/E/I/M=600-1157, B/F/J/N=600-1027.
PDB; 3KLF; X-ray; 3.15 A; A/E/I/M=600-1154, B/F/J/N=600-1027.
PDB; 3KLG; X-ray; 3.65 A; A/E=600-1157, B/F=600-1027.
PDB; 3KLH; X-ray; 2.90 A; A=600-1159, B=600-1027.
PDB; 3KLI; X-ray; 2.65 A; A=600-1157, B=600-1027.
PDB; 3NDT; X-ray; 1.72 A; A/B/C/D=501-599.
PDB; 3NU3; X-ray; 1.02 A; A/B=501-599.
PDB; 3NU4; X-ray; 1.20 A; A/B=501-599.
PDB; 3NU5; X-ray; 1.29 A; A/B=501-599.
PDB; 3NU6; X-ray; 1.16 A; A/B=501-599.
PDB; 3NU9; X-ray; 1.85 A; A/B=501-599.
PDB; 3NUJ; X-ray; 1.50 A; A/B=501-599.
PDB; 3NUO; X-ray; 1.35 A; A/B=501-599.
PDB; 3OK9; X-ray; 1.27 A; A/B=501-599.
PDB; 3PSU; X-ray; 2.07 A; A=501-599.
PDB; 3QAA; X-ray; 1.40 A; A/B=501-599.
PDB; 3QLH; X-ray; 2.70 A; A=600-1153, B=605-1027.
PDB; 3QO9; X-ray; 2.60 A; A=600-1154, B=600-1027.
PDB; 3TKG; X-ray; 1.36 A; A/B/C/D=497-599.
PDB; 3TKW; X-ray; 1.55 A; A/B=497-599.
PDB; 3TL9; X-ray; 1.32 A; A/B=497-599.
PDB; 3TLH; X-ray; 2.00 A; A=501-599.
PDB; 3V4I; X-ray; 2.80 A; A/C=600-1153, B/D=600-1027.
PDB; 3V6D; X-ray; 2.70 A; A/C=600-1153, B/D=600-1027.
PDB; 3V81; X-ray; 2.85 A; A/C=600-1153, B/D=600-1027.
PDB; 3ZPS; X-ray; 1.55 A; A/B=501-599.
PDB; 3ZPT; X-ray; 1.54 A; A/B=501-599.
PDB; 3ZPU; X-ray; 1.80 A; A/B=501-599.
PDB; 4COE; X-ray; 2.45 A; A/B=501-599.
PDB; 4CP7; X-ray; 1.80 A; A/B=501-599.
PDB; 4CPQ; X-ray; 2.35 A; A/B=501-599.
PDB; 4CPR; X-ray; 1.80 A; A/B=501-599.
PDB; 4CPS; X-ray; 1.55 A; A/B=501-599.
PDB; 4CPT; X-ray; 1.70 A; A/B=501-599.
PDB; 4CPU; X-ray; 1.82 A; A/B=501-599.
PDB; 4CPW; X-ray; 1.70 A; A/B=501-599.
PDB; 4CPX; X-ray; 1.85 A; A/B=501-599.
PDB; 4DG1; X-ray; 2.15 A; A=600-1148, B=600-1026.
PDB; 4G1Q; X-ray; 1.51 A; A=600-1154, B=600-1027.
PDB; 4G8G; X-ray; 2.40 A; C=263-272.
PDB; 4G8I; X-ray; 1.60 A; C=263-272.
PDB; 4G9D; X-ray; 1.60 A; C=263-272.
PDB; 4G9F; X-ray; 1.90 A; C=263-272.
PDB; 4H4M; X-ray; 2.85 A; A=600-1154, B=600-1027.
PDB; 4H4O; X-ray; 2.90 A; A=600-1154, B=600-1027.
PDB; 4I2P; X-ray; 2.30 A; A=600-1154, B=600-1027.
PDB; 4I2Q; X-ray; 2.70 A; A=600-1154, B=600-1027.
PDB; 4ICL; X-ray; 1.80 A; A=600-1154, B=600-1027.
PDB; 4ID5; X-ray; 1.95 A; A=600-1154, B=600-1027.
PDB; 4IDK; X-ray; 2.10 A; A=600-1154, B=600-1027.
PDB; 4IFV; X-ray; 2.05 A; A=600-1154, B=600-1027.
PDB; 4IFY; X-ray; 2.10 A; A=600-1154, B=600-1027.
PDB; 4IG0; X-ray; 2.50 A; A=600-1154, B=600-1027.
PDB; 4IG3; X-ray; 1.95 A; A=600-1154, B=600-1027.
PDB; 4KFB; X-ray; 1.85 A; A=600-1154, B=604-1027.
PDB; 4KKO; X-ray; 2.89 A; A=600-1154, B=600-1027.
PDB; 4KO0; X-ray; 1.95 A; A=600-1154, B=600-1027.
PDB; 4LSL; X-ray; 2.69 A; A=600-1154, B=600-1027.
PDB; 4LSN; X-ray; 3.10 A; A=600-1154, B=600-1027.
PDB; 4MFB; X-ray; 2.88 A; A=600-1154, B=600-1027.
PDB; 4O44; X-ray; 2.89 A; A=600-1154, B=600-1027.
PDB; 4O4G; X-ray; 2.71 A; A=600-1154, B=600-1027.
PDB; 4OJR; X-ray; 1.82 A; A=1209-1371.
PDB; 4PQU; X-ray; 2.51 A; A/C=600-1153, B/D=600-1027.
PDB; 4PUO; X-ray; 2.90 A; A/C=600-1153, B/D=600-1027.
PDB; 4PWD; X-ray; 3.00 A; A/C=600-1153, B/D=600-1027.
PDB; 4Q0B; X-ray; 3.30 A; A/C=600-1153, B/D=600-1027.
PDB; 4QAG; X-ray; 1.71 A; A/B=1024-1156.
PDB; 4R5P; X-ray; 2.89 A; A/C=600-1153, B/D=600-1027.
PDB; 4RW4; X-ray; 2.67 A; A=600-1154, B=600-1027.
PDB; 4RW6; X-ray; 2.63 A; A=600-1154, B=600-1027.
PDB; 4RW7; X-ray; 3.01 A; A=600-1154, B=600-1027.
PDB; 4RW8; X-ray; 2.88 A; A=600-1154, B=600-1027.
PDB; 4RW9; X-ray; 2.99 A; A=600-1154, B=600-1027.
PDB; 4U8W; X-ray; 1.30 A; A/B=501-599.
PDB; 4WE1; X-ray; 2.49 A; A=600-1154, B=600-1027.
PDB; 4YE3; X-ray; 1.35 A; A/B=501-599.
PDB; 4YHQ; X-ray; 1.30 A; A/B=501-599.
PDB; 4ZIP; X-ray; 1.11 A; A/B=501-599.
PDB; 4ZLS; X-ray; 1.53 A; A/B=501-599.
PDB; 5AGZ; X-ray; 1.20 A; A/B=501-599.
PDB; 5AH6; X-ray; 1.50 A; A/B=501-599.
PDB; 5AH7; X-ray; 1.55 A; A/B=501-599.
PDB; 5AH8; X-ray; 1.26 A; A/B=501-599.
PDB; 5AH9; X-ray; 1.44 A; A/B=501-599.
PDB; 5AHA; X-ray; 1.35 A; A/B=501-599.
PDB; 5AHB; X-ray; 1.50 A; A/B=501-599.
PDB; 5AHC; X-ray; 1.50 A; A/B=501-599.
PDB; 5BRY; X-ray; 1.34 A; A/B=501-599.
PDB; 5BS4; X-ray; 1.29 A; A/B=501-599.
PDB; 5C24; X-ray; 2.60 A; A=600-1144, B=604-1027.
PDB; 5C25; X-ray; 2.84 A; A=600-1154, B=600-1027.
PDB; 5C42; X-ray; 3.50 A; A=600-1154, B=600-1027.
PDB; 5CYM; X-ray; 2.10 A; A=600-1154, B=600-1027.
PDB; 5CYQ; X-ray; 2.15 A; A=600-1154, B=600-1027.
PDB; 5D3G; X-ray; 2.30 A; A/C=600-1154, B/D=600-1027.
PDB; 5FDL; X-ray; 3.10 A; A=600-1156, B=600-1039.
PDB; 5HBM; X-ray; 3.04 A; A=600-1154, B=600-1027.
PDB; 5HLF; X-ray; 2.95 A; A/C=600-1154, B/D=600-1027.
PDB; 5HP1; X-ray; 2.90 A; A/C=600-1154, B/D=600-1027.
PDB; 5HRO; X-ray; 2.75 A; A/C=600-1154, B/D=600-1027.
PDB; 5I3U; X-ray; 3.00 A; A/C=600-1154, B/D=600-1027.
PDB; 5I42; X-ray; 3.30 A; A/C=600-1154, B/D=600-1027.
PDB; 5J1E; X-ray; 2.90 A; A/C=600-1154, B/D=600-1027.
PDB; 5JFP; X-ray; 1.49 A; A/B=501-599.
PDB; 5JFU; X-ray; 1.70 A; A/B=501-599.
PDB; 5JG1; X-ray; 1.16 A; A/B=501-599.
PDB; 5T6Z; X-ray; 2.00 A; C=240-249.
PDB; 5T70; X-ray; 2.10 A; C=240-249.
PDB; 5TEP; X-ray; 3.10 A; A=600-1154, B=600-1027.
PDB; 5TER; X-ray; 2.70 A; A=600-1154, B=600-1027.
PDB; 5TW3; X-ray; 2.85 A; A=600-1154, B=600-1027.
PDB; 5TXL; X-ray; 2.50 A; A/C=600-1153, B/D=600-1027.
PDB; 5TXM; X-ray; 2.70 A; A/C=600-1154, B/D=600-1027.
PDB; 5TXN; X-ray; 2.55 A; A/C=600-1153, B/D=600-1027.
PDB; 5TXO; X-ray; 2.55 A; A/C=600-1153, B/D=600-1027.
PDB; 5TXP; X-ray; 2.70 A; A/C=600-1153, B/D=600-1027.
PDBsum; 1A9M; -.
PDBsum; 1AJV; -.
PDBsum; 1AJX; -.
PDBsum; 1AXA; -.
PDBsum; 1BQM; -.
PDBsum; 1BQN; -.
PDBsum; 1D4H; -.
PDBsum; 1D4I; -.
PDBsum; 1D4J; -.
PDBsum; 1DLO; -.
PDBsum; 1DW6; -.
PDBsum; 1EBK; -.
PDBsum; 1EBW; -.
PDBsum; 1EBY; -.
PDBsum; 1EBZ; -.
PDBsum; 1EC0; -.
PDBsum; 1EC1; -.
PDBsum; 1EC2; -.
PDBsum; 1EC3; -.
PDBsum; 1EET; -.
PDBsum; 1G35; -.
PDBsum; 1GNM; -.
PDBsum; 1GNN; -.
PDBsum; 1GNO; -.
PDBsum; 1HAR; -.
PDBsum; 1HBV; -.
PDBsum; 1HEF; -.
PDBsum; 1HEG; -.
PDBsum; 1HIH; -.
PDBsum; 1HMV; -.
PDBsum; 1HNI; -.
PDBsum; 1HNV; -.
PDBsum; 1HOS; -.
PDBsum; 1HPS; -.
PDBsum; 1HPZ; -.
PDBsum; 1HQE; -.
PDBsum; 1HQU; -.
PDBsum; 1HRH; -.
PDBsum; 1HTE; -.
PDBsum; 1HTF; -.
PDBsum; 1HTG; -.
PDBsum; 1HVI; -.
PDBsum; 1HVK; -.
PDBsum; 1HVP; -.
PDBsum; 1HVU; -.
PDBsum; 1HYS; -.
PDBsum; 1IKV; -.
PDBsum; 1IKW; -.
PDBsum; 1IKX; -.
PDBsum; 1IKY; -.
PDBsum; 1J5O; -.
PDBsum; 1KJH; -.
PDBsum; 1MER; -.
PDBsum; 1MES; -.
PDBsum; 1MET; -.
PDBsum; 1MEU; -.
PDBsum; 1N5Y; -.
PDBsum; 1N6Q; -.
PDBsum; 1NPA; -.
PDBsum; 1NPV; -.
PDBsum; 1NPW; -.
PDBsum; 1QE1; -.
PDBsum; 1QMC; -.
PDBsum; 1R0A; -.
PDBsum; 1RDH; -.
PDBsum; 1RTD; -.
PDBsum; 1RVL; -.
PDBsum; 1RVM; -.
PDBsum; 1RVN; -.
PDBsum; 1RVO; -.
PDBsum; 1RVP; -.
PDBsum; 1RVQ; -.
PDBsum; 1RVR; -.
PDBsum; 1S6P; -.
PDBsum; 1S6Q; -.
PDBsum; 1S9E; -.
PDBsum; 1S9G; -.
PDBsum; 1SBG; -.
PDBsum; 1SUQ; -.
PDBsum; 1SV5; -.
PDBsum; 1T03; -.
PDBsum; 1T05; -.
PDBsum; 1T7K; -.
PDBsum; 1TV6; -.
PDBsum; 1TVR; -.
PDBsum; 1UWB; -.
PDBsum; 1W5V; -.
PDBsum; 1W5W; -.
PDBsum; 1W5X; -.
PDBsum; 1W5Y; -.
PDBsum; 1YT9; -.
PDBsum; 1ZP8; -.
PDBsum; 1ZPA; -.
PDBsum; 1ZSF; -.
PDBsum; 1ZSR; -.
PDBsum; 2AQU; -.
PDBsum; 2B5J; -.
PDBsum; 2B6A; -.
PDBsum; 2BAN; -.
PDBsum; 2BBB; -.
PDBsum; 2BE2; -.
PDBsum; 2EXF; -.
PDBsum; 2G69; -.
PDBsum; 2HB3; -.
PDBsum; 2HMI; -.
PDBsum; 2HNZ; -.
PDBsum; 2HS1; -.
PDBsum; 2HS2; -.
PDBsum; 2I4D; -.
PDBsum; 2I4U; -.
PDBsum; 2I4V; -.
PDBsum; 2I4W; -.
PDBsum; 2I4X; -.
PDBsum; 2I5J; -.
PDBsum; 2IAJ; -.
PDBsum; 2IC3; -.
PDBsum; 2IDW; -.
PDBsum; 2IEO; -.
PDBsum; 2JZW; -.
PDBsum; 2L45; -.
PDBsum; 2L46; -.
PDBsum; 2L4L; -.
PDBsum; 2UXZ; -.
PDBsum; 2UY0; -.
PDBsum; 2VG5; -.
PDBsum; 2VG6; -.
PDBsum; 2VG7; -.
PDBsum; 2X4U; -.
PDBsum; 2YKM; -.
PDBsum; 2YKN; -.
PDBsum; 2ZD1; -.
PDBsum; 2ZE2; -.
PDBsum; 3AVI; -.
PDBsum; 3BGR; -.
PDBsum; 3DLK; -.
PDBsum; 3GGA; -.
PDBsum; 3GGV; -.
PDBsum; 3GGX; -.
PDBsum; 3HVT; -.
PDBsum; 3IG1; -.
PDBsum; 3IRX; -.
PDBsum; 3IS9; -.
PDBsum; 3ISN; -.
PDBsum; 3ITH; -.
PDBsum; 3JSM; -.
PDBsum; 3JYT; -.
PDBsum; 3K2P; -.
PDBsum; 3K4V; -.
PDBsum; 3KLE; -.
PDBsum; 3KLF; -.
PDBsum; 3KLG; -.
PDBsum; 3KLH; -.
PDBsum; 3KLI; -.
PDBsum; 3NDT; -.
PDBsum; 3NU3; -.
PDBsum; 3NU4; -.
PDBsum; 3NU5; -.
PDBsum; 3NU6; -.
PDBsum; 3NU9; -.
PDBsum; 3NUJ; -.
PDBsum; 3NUO; -.
PDBsum; 3OK9; -.
PDBsum; 3PSU; -.
PDBsum; 3QAA; -.
PDBsum; 3QLH; -.
PDBsum; 3QO9; -.
PDBsum; 3TKG; -.
PDBsum; 3TKW; -.
PDBsum; 3TL9; -.
PDBsum; 3TLH; -.
PDBsum; 3V4I; -.
PDBsum; 3V6D; -.
PDBsum; 3V81; -.
PDBsum; 3ZPS; -.
PDBsum; 3ZPT; -.
PDBsum; 3ZPU; -.
PDBsum; 4COE; -.
PDBsum; 4CP7; -.
PDBsum; 4CPQ; -.
PDBsum; 4CPR; -.
PDBsum; 4CPS; -.
PDBsum; 4CPT; -.
PDBsum; 4CPU; -.
PDBsum; 4CPW; -.
PDBsum; 4CPX; -.
PDBsum; 4DG1; -.
PDBsum; 4G1Q; -.
PDBsum; 4G8G; -.
PDBsum; 4G8I; -.
PDBsum; 4G9D; -.
PDBsum; 4G9F; -.
PDBsum; 4H4M; -.
PDBsum; 4H4O; -.
PDBsum; 4I2P; -.
PDBsum; 4I2Q; -.
PDBsum; 4ICL; -.
PDBsum; 4ID5; -.
PDBsum; 4IDK; -.
PDBsum; 4IFV; -.
PDBsum; 4IFY; -.
PDBsum; 4IG0; -.
PDBsum; 4IG3; -.
PDBsum; 4KFB; -.
PDBsum; 4KKO; -.
PDBsum; 4KO0; -.
PDBsum; 4LSL; -.
PDBsum; 4LSN; -.
PDBsum; 4MFB; -.
PDBsum; 4O44; -.
PDBsum; 4O4G; -.
PDBsum; 4OJR; -.
PDBsum; 4PQU; -.
PDBsum; 4PUO; -.
PDBsum; 4PWD; -.
PDBsum; 4Q0B; -.
PDBsum; 4QAG; -.
PDBsum; 4R5P; -.
PDBsum; 4RW4; -.
PDBsum; 4RW6; -.
PDBsum; 4RW7; -.
PDBsum; 4RW8; -.
PDBsum; 4RW9; -.
PDBsum; 4U8W; -.
PDBsum; 4WE1; -.
PDBsum; 4YE3; -.
PDBsum; 4YHQ; -.
PDBsum; 4ZIP; -.
PDBsum; 4ZLS; -.
PDBsum; 5AGZ; -.
PDBsum; 5AH6; -.
PDBsum; 5AH7; -.
PDBsum; 5AH8; -.
PDBsum; 5AH9; -.
PDBsum; 5AHA; -.
PDBsum; 5AHB; -.
PDBsum; 5AHC; -.
PDBsum; 5BRY; -.
PDBsum; 5BS4; -.
PDBsum; 5C24; -.
PDBsum; 5C25; -.
PDBsum; 5C42; -.
PDBsum; 5CYM; -.
PDBsum; 5CYQ; -.
PDBsum; 5D3G; -.
PDBsum; 5FDL; -.
PDBsum; 5HBM; -.
PDBsum; 5HLF; -.
PDBsum; 5HP1; -.
PDBsum; 5HRO; -.
PDBsum; 5I3U; -.
PDBsum; 5I42; -.
PDBsum; 5J1E; -.
PDBsum; 5JFP; -.
PDBsum; 5JFU; -.
PDBsum; 5JG1; -.
PDBsum; 5T6Z; -.
PDBsum; 5T70; -.
PDBsum; 5TEP; -.
PDBsum; 5TER; -.
PDBsum; 5TW3; -.
PDBsum; 5TXL; -.
PDBsum; 5TXM; -.
PDBsum; 5TXN; -.
PDBsum; 5TXO; -.
PDBsum; 5TXP; -.
ProteinModelPortal; P03366; -.
SMR; P03366; -.
IntAct; P03366; 38.
MINT; MINT-111903; -.
ChEMBL; CHEMBL5823; -.
DrugBank; DB07451; 1-(5-BROMO-PYRIDIN-2-YL)-3-[2-(6-FLUORO-2-HYDROXY-3-PROPIONYL-PHENYL)-CYCLOPROPYL]-UREA.
DrugBank; DB08212; 1-[2-(3-ACETYL-2-HYDROXY-6-METHOXY-PHENYL)-CYCLOPROPYL]-3-(5-CYANO-PYRIDIN-2-YL)-THIOUREA.
DrugBank; DB08372; 1-[2-(4-ETHOXY-3-FLUOROPYRIDIN-2-YL)ETHYL]-3-(5-METHYLPYRIDIN-2-YL)THIOUREA.
DrugBank; DB02972; 1-Benzyl-(R)-Propylamine.
DrugBank; DB08425; 3(S)-AMINO-4-PHENYL-BUTAN-2(R)-OL.
DrugBank; DB08428; 3(S)-AMINO-4-PHENYL-BUTAN-2(S)-OL.
DrugBank; DB07018; 5-ETHYL-3-[(2-METHOXYETHYL)METHYLAMINO]-6-METHYL-4-(3-METHYLBENZYL)PYRIDIN-2(1H)-ONE.
DrugBank; DB03076; AHA047.
DrugBank; DB05398; C31G.
DrugBank; DB03908; Inhibitor Bea322.
DrugBank; DB01887; Inhibitor BEA369.
DrugBank; DB04255; Inhibitor Bea388.
DrugBank; DB02629; Inhibitor Bea403.
DrugBank; DB04547; Inhibitor Bea409.
DrugBank; DB04190; Inhibitor Bea425.
DrugBank; DB02683; Inhibitor Bea428.
DrugBank; DB03803; Inhibitor Msa367.
DrugBank; DB02785; N-[2(S)-Cyclopentyl-1(R)-Hydroxy-3(R)Methyl]-5-[(2(S)-Tertiary-Butylamino-Carbonyl)-4-(N1-(2)-(N-Methylpiperazinyl)-3-Chloro-Pyrazinyl-5-Carbonyl)-Piperazino]-4(S)-Hydroxy-2(R)-Phenylmethyl-Pentanamide.
DrugBank; DB05342; SP-01A.
DrugBank; DB02768; Tert-Butyloxycarbonyl Group.
DrugBank; DB01891; Tl-3-093.
DrugBank; DB05871; UC-781.
OrthoDB; VOG09000135; -.
BRENDA; 2.7.7.49; 2676.
BRENDA; 3.1.13.2; 2676.
SABIO-RK; P03366; -.
EvolutionaryTrace; P03366; -.
PRO; PR:P03366; -.
Proteomes; UP000007690; Genome.
Proteomes; UP000107234; Genome.
Proteomes; UP000126245; Genome.
GO; GO:0042025; C:host cell nucleus; IEA:UniProtKB-SubCell.
GO; GO:0020002; C:host cell plasma membrane; IEA:UniProtKB-SubCell.
GO; GO:0072494; C:host multivesicular body; IEA:UniProtKB-SubCell.
GO; GO:0019013; C:viral nucleocapsid; IEA:UniProtKB-KW.
GO; GO:0055036; C:virion membrane; IEA:UniProtKB-SubCell.
GO; GO:0004190; F:aspartic-type endopeptidase activity; IEA:UniProtKB-KW.
GO; GO:0003677; F:DNA binding; IEA:UniProtKB-KW.
GO; GO:0003887; F:DNA-directed DNA polymerase activity; IEA:UniProtKB-KW.
GO; GO:0004533; F:exoribonuclease H activity; IEA:UniProtKB-EC.
GO; GO:0008289; F:lipid binding; IEA:UniProtKB-KW.
GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
GO; GO:0003964; F:RNA-directed DNA polymerase activity; IDA:CACAO.
GO; GO:0004523; F:RNA-DNA hybrid ribonuclease activity; IEA:InterPro.
GO; GO:0005198; F:structural molecule activity; IEA:InterPro.
GO; GO:0008270; F:zinc ion binding; IEA:InterPro.
GO; GO:0015074; P:DNA integration; IEA:UniProtKB-KW.
GO; GO:0006310; P:DNA recombination; IEA:UniProtKB-KW.
GO; GO:0075713; P:establishment of integrated proviral latency; IEA:UniProtKB-KW.
GO; GO:0039651; P:induction by virus of host cysteine-type endopeptidase activity involved in apoptotic process; IEA:UniProtKB-KW.
GO; GO:0039657; P:suppression by virus of host gene expression; IEA:UniProtKB-KW.
GO; GO:0046718; P:viral entry into host cell; IEA:UniProtKB-KW.
GO; GO:0044826; P:viral genome integration into host DNA; IEA:UniProtKB-KW.
GO; GO:0075732; P:viral penetration into host nucleus; IEA:UniProtKB-KW.
GO; GO:0019076; P:viral release from host cell; IEA:UniProtKB-KW.
CDD; cd05482; HIV_retropepsin_like; 1.
Gene3D; 1.10.10.200; -; 1.
Gene3D; 1.10.1200.30; -; 1.
Gene3D; 1.10.375.10; -; 1.
Gene3D; 2.30.30.10; -; 1.
Gene3D; 2.40.70.10; -; 1.
Gene3D; 3.30.420.10; -; 2.
Gene3D; 4.10.60.10; -; 3.
InterPro; IPR001969; Aspartic_peptidase_AS.
InterPro; IPR000721; Gag_p24.
InterPro; IPR001037; Integrase_C_retrovir.
InterPro; IPR001584; Integrase_cat-core.
InterPro; IPR017856; Integrase_Zn-bd_dom-like_N.
InterPro; IPR003308; Integrase_Zn-bd_dom_N.
InterPro; IPR000071; Lentvrl_matrix_N.
InterPro; IPR001995; Peptidase_A2_cat.
InterPro; IPR021109; Peptidase_aspartic_dom.
InterPro; IPR034170; Retropepsin-like_cat_dom.
InterPro; IPR018061; Retropepsins.
InterPro; IPR008916; Retrov_capsid_C.
InterPro; IPR008919; Retrov_capsid_N.
InterPro; IPR010999; Retrovr_matrix.
InterPro; IPR012337; RNaseH-like_dom.
InterPro; IPR002156; RNaseH_domain.
InterPro; IPR000477; RT_dom.
InterPro; IPR010659; RVT_connect.
InterPro; IPR010661; RVT_thumb.
InterPro; IPR001878; Znf_CCHC.
Pfam; PF00540; Gag_p17; 1.
Pfam; PF00607; Gag_p24; 1.
Pfam; PF00552; IN_DBD_C; 1.
Pfam; PF02022; Integrase_Zn; 1.
Pfam; PF00075; RNase_H; 1.
Pfam; PF00665; rve; 1.
Pfam; PF00077; RVP; 1.
Pfam; PF00078; RVT_1; 1.
Pfam; PF06815; RVT_connect; 1.
Pfam; PF06817; RVT_thumb; 1.
Pfam; PF00098; zf-CCHC; 2.
PRINTS; PR00234; HIV1MATRIX.
SMART; SM00343; ZnF_C2HC; 2.
SUPFAM; SSF46919; SSF46919; 1.
SUPFAM; SSF47353; SSF47353; 1.
SUPFAM; SSF47836; SSF47836; 1.
SUPFAM; SSF47943; SSF47943; 1.
SUPFAM; SSF50122; SSF50122; 1.
SUPFAM; SSF50630; SSF50630; 1.
SUPFAM; SSF53098; SSF53098; 2.
SUPFAM; SSF57756; SSF57756; 1.
PROSITE; PS50175; ASP_PROT_RETROV; 1.
PROSITE; PS00141; ASP_PROTEASE; 1.
PROSITE; PS50994; INTEGRASE; 1.
PROSITE; PS51027; INTEGRASE_DBD; 1.
PROSITE; PS50879; RNASE_H; 1.
PROSITE; PS50878; RT_POL; 1.
PROSITE; PS50158; ZF_CCHC; 2.
PROSITE; PS50876; ZF_INTEGRASE; 1.
1: Evidence at protein level;
3D-structure; Activation of host caspases by virus; AIDS;
Aspartyl protease; Capsid protein; Complete proteome; DNA integration;
DNA recombination; DNA-binding; DNA-directed DNA polymerase;
Endonuclease; Eukaryotic host gene expression shutoff by virus;
Eukaryotic host translation shutoff by virus; Host cell membrane;
Host cytoplasm; Host endosome; Host gene expression shutoff by virus;
Host membrane; Host nucleus; Host-virus interaction; Hydrolase;
Lipid-binding; Lipoprotein; Magnesium; Membrane; Metal-binding;
Methylation; Modulation of host cell apoptosis by virus;
Multifunctional enzyme; Myristate; Nuclease; Nucleotidyltransferase;
Phosphoprotein; Protease; Reference proteome; Repeat;
Ribosomal frameshifting; RNA-binding; RNA-directed DNA polymerase;
Transferase; Viral genome integration; Viral nucleoprotein;
Viral penetration into host nucleus; Virion; Virion maturation;
Virus entry into host cell; Virus exit from host cell; Zinc;
Zinc-finger.
INIT_MET 1 1 Removed; by host. {ECO:0000250}.
CHAIN 2 1447 Gag-Pol polyprotein.
/FTId=PRO_0000261261.
CHAIN 2 132 Matrix protein p17. {ECO:0000250}.
/FTId=PRO_0000042285.
CHAIN 133 363 Capsid protein p24. {ECO:0000250}.
/FTId=PRO_0000042286.
PEPTIDE 364 377 Spacer peptide 1. {ECO:0000250}.
/FTId=PRO_0000042287.
CHAIN 378 432 Nucleocapsid protein p7. {ECO:0000250}.
/FTId=PRO_0000042288.
PEPTIDE 433 440 Transframe peptide. {ECO:0000255}.
/FTId=PRO_0000246710.
CHAIN 441 500 p6-pol. {ECO:0000255}.
/FTId=PRO_0000042289.
CHAIN 501 599 Protease. {ECO:0000250}.
/FTId=PRO_0000038647.
CHAIN 600 1159 Reverse transcriptase/ribonuclease H.
{ECO:0000250}.
/FTId=PRO_0000042290.
CHAIN 600 1039 p51 RT. {ECO:0000250}.
/FTId=PRO_0000042291.
CHAIN 1040 1159 p15.
/FTId=PRO_0000042292.
CHAIN 1160 1447 Integrase. {ECO:0000250}.
/FTId=PRO_0000042293.
DOMAIN 520 589 Peptidase A2. {ECO:0000255|PROSITE-
ProRule:PRU00275}.
DOMAIN 643 833 Reverse transcriptase.
{ECO:0000255|PROSITE-ProRule:PRU00405}.
DOMAIN 1033 1156 RNase H. {ECO:0000255|PROSITE-
ProRule:PRU00408}.
DOMAIN 1213 1363 Integrase catalytic.
{ECO:0000255|PROSITE-ProRule:PRU00457}.
ZN_FING 390 407 CCHC-type 1. {ECO:0000255|PROSITE-
ProRule:PRU00047}.
ZN_FING 411 428 CCHC-type 2. {ECO:0000255|PROSITE-
ProRule:PRU00047}.
ZN_FING 1162 1203 Integrase-type. {ECO:0000255|PROSITE-
ProRule:PRU00450}.
DNA_BIND 1382 1429 Integrase-type. {ECO:0000255|PROSITE-
ProRule:PRU00506}.
REGION 7 31 Interaction with Gp41.
{ECO:0000250|UniProtKB:P12497}.
REGION 8 43 Interaction with host CALM1.
{ECO:0000250|UniProtKB:P04585}.
REGION 12 19 Interaction with host AP3D1.
{ECO:0000250|UniProtKB:P12497}.
REGION 14 33 Interaction with membrane
phosphatidylinositol 4,5-bisphosphate and
RNA. {ECO:0000250|UniProtKB:P12497}.
REGION 73 77 Interaction with membrane
phosphatidylinositol 4,5-bisphosphate.
{ECO:0000250|UniProtKB:P12497}.
REGION 189 227 Interaction with human PPIA/CYPA and
NUP153. {ECO:0000250|UniProtKB:P12497}.
REGION 277 363 Dimerization/Multimerization of capsid
protein p24.
{ECO:0000250|UniProtKB:P04585}.
REGION 501 505 Dimerization of protease.
{ECO:0000250|UniProtKB:P04585}.
REGION 549 555 Dimerization of protease.
{ECO:0000250|UniProtKB:P04585}.
REGION 588 600 Dimerization of protease.
{ECO:0000250|UniProtKB:P04585}.
REGION 826 834 RT 'primer grip'.
MOTIF 16 22 Nuclear export signal. {ECO:0000250}.
MOTIF 26 32 Nuclear localization signal.
{ECO:0000250}.
MOTIF 997 1013 Tryptophan repeat motif.
ACT_SITE 525 525 For protease activity; shared with
dimeric partner. {ECO:0000255|PROSITE-
ProRule:PRU10094,
ECO:0000269|PubMed:12924029}.
METAL 709 709 Magnesium; catalytic; for reverse
transcriptase activity.
METAL 784 784 Magnesium; catalytic; for reverse
transcriptase activity.
METAL 785 785 Magnesium; catalytic; for reverse
transcriptase activity.
METAL 1042 1042 Magnesium; catalytic; for RNase H
activity. {ECO:0000305}.
METAL 1077 1077 Magnesium; catalytic; for RNase H
activity. {ECO:0000305}.
METAL 1097 1097 Magnesium; catalytic; for RNase H
activity. {ECO:0000305}.
METAL 1148 1148 Magnesium; catalytic; for RNase H
activity. {ECO:0000305}.
METAL 1223 1223 Magnesium; catalytic; for integrase
activity. {ECO:0000250}.
METAL 1275 1275 Magnesium; catalytic; for integrase
activity. {ECO:0000250}.
METAL 1311 1311 Magnesium; catalytic; for integrase
activity. {ECO:0000250|UniProtKB:P04585}.
SITE 132 133 Cleavage; by viral protease.
{ECO:0000250}.
SITE 221 222 Cis/trans isomerization of proline
peptide bond; by human PPIA/CYPA.
{ECO:0000250}.
SITE 363 364 Cleavage; by viral protease.
{ECO:0000250}.
SITE 377 378 Cleavage; by viral protease.
{ECO:0000250}.
SITE 432 433 Cleavage; by viral protease.
{ECO:0000255}.
SITE 440 441 Cleavage; by viral protease.
SITE 500 501 Cleavage; by viral protease.
SITE 599 600 Cleavage; by viral protease.
{ECO:0000250}.
SITE 1000 1000 Essential for RT p66/p51
heterodimerization.
SITE 1013 1013 Essential for RT p66/p51
heterodimerization.
SITE 1039 1040 Cleavage; by viral protease; partial.
SITE 1159 1160 Cleavage; by viral protease.
{ECO:0000250}.
MOD_RES 132 132 Phosphotyrosine; by host. {ECO:0000250}.
MOD_RES 387 387 Asymmetric dimethylarginine; in
Nucleocapsid protein p7; by host PRMT6.
{ECO:0000269|PubMed:17415034}.
MOD_RES 409 409 Asymmetric dimethylarginine; in
Nucleocapsid protein p7; by host PRMT6.
{ECO:0000269|PubMed:17415034}.
LIPID 2 2 N-myristoyl glycine; by host.
{ECO:0000250}.
VARIANT 297 297 V -> L (in strain: Isolate PV22).
VARIANT 434 434 L -> F.
VARIANT 771 771 K -> R (in strain: Isolate PV22).
VARIANT 1050 1050 K -> R (in strain: Isolate PV22).
VARIANT 1057 1057 V -> L (in strain: Isolate PV22).
VARIANT 1111 1111 K -> Q (in strain: Isolate PV22).
VARIANT 1128 1128 E -> Q (in strain: Isolate PV22).
MUTAGEN 440 440 F->I: Complete loss of cleavage between
NC and TF. {ECO:0000269|PubMed:11172099}.
MUTAGEN 500 500 F->I: Complete loss of cleavage between
TF and p15.
{ECO:0000269|PubMed:11172099}.
MUTAGEN 651 651 P->G: 74% loss of polymerase activity.
86% loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 654 654 P->G: 64% loss of polymerase activity.
57% loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 664 664 K->A: Strong decrease in RT binding
affinity for all dNTP substrates and in
catalytic efficiency. 100-fold decreased
sensitivity to ddNTP inhibitors.
{ECO:0000269|PubMed:10794716}.
MUTAGEN 664 664 K->E: Strong decrease in RT binding
affinity for all dNTP substrates and in
catalytic efficiency. 100-fold decreased
sensitivity to ddNTP inhibitors.
{ECO:0000269|PubMed:10794716}.
MUTAGEN 664 664 K->Q: Strong decrease in RT binding
affinity for all dNTP substrates and in
catalytic efficiency. 100-fold decreased
sensitivity to ddNTP inhibitors.
{ECO:0000269|PubMed:10794716}.
MUTAGEN 664 664 K->R: 10-fold decreased sensitivity to
ddATP and ddCTP inhibitors.
{ECO:0000269|PubMed:10794716}.
MUTAGEN 673 673 L->V: No loss of polymerase activity. No
loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 709 709 D->A: 5- to 12-fold decrease in affinity
for dTTP substrates. Strongly decreased
RNA-directed and DNA-directed DNA
polymerase activities. No effect on RNase
H activity. Loss of pyrophosphorolysis
(reverse of the polymerase reaction).
{ECO:0000269|PubMed:8794733}.
MUTAGEN 709 709 D->S: 5- to 12-fold decrease in affinity
for dTTP substrates. Strongly decreased
RNA-directed DNA polymerase activity.
Slightly decreased DNA-directed DNA
polymerase activity. No effect on RNase H
activity. Loss of pyrophosphorolysis
(reverse of the polymerase reaction).
{ECO:0000269|PubMed:8794733}.
MUTAGEN 752 752 W->A: 73% loss of DNA-directed DNA
polymerase activity. 70% loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 752 752 W->F: 10% loss of DNA-directed DNA
polymerase activity. 22% loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 752 752 W->Y: 58% loss of DNA-directed DNA
polymerase activity. 42% loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 755 755 S->A: 74% loss of polymerase activity.
56% loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 755 755 S->G: Complete loss of polymerase
activity. No loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 755 755 S->T: Complete loss of polymerase
activity. No loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 756 756 P->G: 34% loss of polymerase activity. No
loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 766 766 I->A: 71% loss of DNA-directed DNA
polymerase activity. 61% loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 766 766 I->D: 16% loss of DNA-directed DNA
polymerase activity. 24% loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 766 766 I->L: 80% loss of DNA-directed DNA
polymerase activity. 23% loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 766 766 I->T: 34% increase of DNA-directed DNA
polymerase activity. 18% increase of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 766 766 I->V: 70% loss of DNA-directed DNA
polymerase activity. 64% loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 782 782 Y->A: Almost complete loss of polymerase
activity. {ECO:0000269|PubMed:9657675}.
MUTAGEN 782 782 Y->F: 70% loss of polymerase activity. No
loss of polymerase activity; when
associated with V-783.
{ECO:0000269|PubMed:9657675}.
MUTAGEN 783 783 M->I: 54% loss of polymerase activity
according to PubMed:9533880; increases
polymerase activity according to
PubMed:9657675. No loss of RNase H
activity. {ECO:0000269|PubMed:9533880,
ECO:0000269|PubMed:9657675}.
MUTAGEN 783 783 M->L: 90% loss of polymerase activity. No
loss of RNase H activity.
{ECO:0000269|PubMed:9533880,
ECO:0000269|PubMed:9657675}.
MUTAGEN 783 783 M->V: 58% loss of polymerase activity. No
loss of RNase H activity.
{ECO:0000269|PubMed:9533880,
ECO:0000269|PubMed:9657675}.
MUTAGEN 784 784 D->A: Strongly decreased RNA-directed and
DNA-directed DNA polymerase activities.
No effect on RNase H activity.
{ECO:0000269|PubMed:8794733,
ECO:0000269|PubMed:9657675}.
MUTAGEN 784 784 D->E: Strongly decreased RNA-directed and
DNA-directed DNA polymerase activities.
No effect on RNase H activity.
{ECO:0000269|PubMed:8794733,
ECO:0000269|PubMed:9657675}.
MUTAGEN 784 784 D->N: Strongly decreased RNA-directed and
DNA-directed DNA polymerase activities.
No effect on RNase H activity.
{ECO:0000269|PubMed:8794733,
ECO:0000269|PubMed:9657675}.
MUTAGEN 785 785 D->A: Strongly decreased RNA-directed and
DNA-directed DNA polymerase activities.
Loss of pyrophosphorolysis (reverse of
the polymerase reaction). No effect on
RNase H activity.
{ECO:0000269|PubMed:8794733,
ECO:0000269|PubMed:9657675}.
MUTAGEN 785 785 D->E: Drastically reduced incorporation
of phosphorothioate nucleotide. Loss of
pyrophosphorolysis (reverse of the
polymerase reaction). No effect on RNase
H activity. {ECO:0000269|PubMed:8794733,
ECO:0000269|PubMed:9657675}.
MUTAGEN 785 785 D->N: Loss of pyrophosphorolysis (reverse
of the polymerase reaction). No effect on
RNase H activity.
{ECO:0000269|PubMed:8794733,
ECO:0000269|PubMed:9657675}.
MUTAGEN 786 786 L->A: 76% loss of DNA-directed DNA
polymerase activity. 60% loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 786 786 L->I: 29% loss of DNA-directed DNA
polymerase activity. 46% loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 786 786 L->R: 20% loss of DNA-directed DNA
polymerase activity. 21% loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 786 786 L->V: 22% loss of DNA-directed DNA
polymerase activity. No loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 788 788 V->A: 37% increase of DNA-directed DNA
polymerase activity. No loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 788 788 V->I: 25% increase of DNA-directed DNA
polymerase activity. No loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 788 788 V->M: 27% increase of DNA-directed DNA
polymerase activity. 10% loss of RNA-
directed DNA polymerase activity.
{ECO:0000269|PubMed:12501197}.
MUTAGEN 823 823 E->A: No effect on RNA-dependent DNA
polymerase activity. No effect on RNA 5'-
end and 3'-end cleavages.
{ECO:0000269|PubMed:9111014}.
MUTAGEN 824 824 P->A: No effect on RNA-dependent DNA
polymerase activity. No effect on RNA 5'-
end and 3'-end cleavages.
{ECO:0000269|PubMed:9111014}.
MUTAGEN 825 825 P->A: No effect on RNA-dependent DNA
polymerase activity. Complete loss of RNA
5'-end cleavage. No effect on RNA 3'-end
cleavage. {ECO:0000269|PubMed:9111014}.
MUTAGEN 826 826 F->A: No effect on RNA-dependent DNA
polymerase activity. Complete loss of RNA
5'-end cleavage. No effect on RNA 3'-end
cleavage. {ECO:0000269|PubMed:9111014}.
MUTAGEN 827 827 L->A: No effect on RNA-dependent DNA
polymerase activity. No effect on RNA 5'-
end and 3'-end cleavages.
{ECO:0000269|PubMed:9111014}.
MUTAGEN 828 828 W->A: Complete loss of RNA-dependent DNA
polymerase activity. No effect on RNA 5'-
end and 3'-end cleavages.
{ECO:0000269|PubMed:9111014}.
MUTAGEN 829 829 M->A: No effect on RNA-dependent DNA
polymerase activity. No effect on RNA 5'-
end and 3'-end cleavages.
{ECO:0000269|PubMed:9111014}.
MUTAGEN 830 830 G->A: Complete loss of RNA-dependent DNA
polymerase activity. Complete loss of RNA
5'-end and 3'-end cleavages.
{ECO:0000269|PubMed:9111014}.
MUTAGEN 831 831 Y->A: Complete loss of RNA-dependent DNA
polymerase activity. Complete loss of RNA
5'-end and 3'-end cleavages.
{ECO:0000269|PubMed:9111014}.
MUTAGEN 832 832 E->A: Complete loss of RNA-dependent DNA
polymerase activity. Complete loss of RNA
5'-end and 3'-end cleavages.
{ECO:0000269|PubMed:9111014}.
MUTAGEN 834 834 H->A: Complete loss of RNA-dependent DNA
polymerase activity. Complete loss of RNA
5'-end and 3'-end cleavages.
{ECO:0000269|PubMed:9111014}.
MUTAGEN 856 856 I->T: 96% loss of polymerase activity.
45% loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 861 861 G->A: Complete loss of polymerase
activity. 25% loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 863 863 L->S: 17% loss of polymerase activity.
30% loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 865 865 W->T: Complete loss of polymerase
activity. 87% loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 878 878 L->S: 21% loss of polymerase activity.
16% loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 898 898 A->L: 68% loss of polymerase activity.
10% loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 902 902 L->S: 59% loss of polymerase activity. 8%
loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 909 909 L->S: 31% loss of polymerase activity. No
loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 997 997 W->L: No effect on RT p66/p51
heterodimerization.
{ECO:0000269|PubMed:12559908}.
MUTAGEN 1000 1000 W->A: Almost complete loss of RT p66/p51
heterodimerization. Complete loss of
polymerase activity.
{ECO:0000269|PubMed:12559908,
ECO:0000269|PubMed:15852304}.
MUTAGEN 1000 1000 W->F: No effect on RT p66/p51
heterodimerization.
{ECO:0000269|PubMed:12559908,
ECO:0000269|PubMed:15852304}.
MUTAGEN 1000 1000 W->L: Almost complete loss of RT p66/p51
heterodimerization. Complete loss of
polymerase activity.
{ECO:0000269|PubMed:12559908,
ECO:0000269|PubMed:15852304}.
MUTAGEN 1001 1001 W->L: No effect on RT p66/p51
heterodimerization.
{ECO:0000269|PubMed:12559908}.
MUTAGEN 1004 1004 Y->L: No effect on RT p66/p51
heterodimerization.
{ECO:0000269|PubMed:12559908}.
MUTAGEN 1005 1005 W->L: Decreased RT p66/p51
heterodimerization.
{ECO:0000269|PubMed:12559908}.
MUTAGEN 1009 1009 W->L: No effect on RT p66/p51
heterodimerization.
{ECO:0000269|PubMed:12559908}.
MUTAGEN 1013 1013 W->L: Almost complete loss of RT p66/p51
heterodimerization.
{ECO:0000269|PubMed:12559908}.
MUTAGEN 1036 1036 A->I: Replication slightly delayed.
{ECO:0000269|PubMed:16140771}.
MUTAGEN 1037 1037 E->N: Virions contain primarily p51 RT.
{ECO:0000269|PubMed:16140771}.
MUTAGEN 1038 1038 T->S: Almost complete loss of virion
production; when associated with G-1041.
{ECO:0000269|PubMed:16140771}.
MUTAGEN 1039 1039 F->A: Virions contain primarily p51 RT.
{ECO:0000269|PubMed:16140771,
ECO:0000269|PubMed:2044756}.
MUTAGEN 1039 1039 F->I: Loss of cleavage between p51 RT and
p15. {ECO:0000269|PubMed:16140771,
ECO:0000269|PubMed:2044756}.
MUTAGEN 1039 1039 F->L: No effect on cleavage between p51
RT and p15. {ECO:0000269|PubMed:16140771,
ECO:0000269|PubMed:2044756}.
MUTAGEN 1039 1039 F->V: Slight delays in replication.
Virions contain primarily p51 RT.
{ECO:0000269|PubMed:16140771,
ECO:0000269|PubMed:2044756}.
MUTAGEN 1039 1039 F->W: Slight delays in replication.
Virions contain primarily p51 RT.
{ECO:0000269|PubMed:16140771,
ECO:0000269|PubMed:2044756}.
MUTAGEN 1040 1040 Y->A: Virions contain primarily p51 RT;
when associated with A-1039.
{ECO:0000269|PubMed:16140771}.
MUTAGEN 1040 1040 Y->I: Almost complete loss of virion
production; when associated with K-1041.
{ECO:0000269|PubMed:16140771}.
MUTAGEN 1040 1040 Y->W: Virions contain primarily p51 RT;
when associated with W-1039.
{ECO:0000269|PubMed:16140771}.
MUTAGEN 1041 1041 V->G: Almost complete loss of virion
production; when associated with S-1038.
{ECO:0000269|PubMed:16140771}.
MUTAGEN 1041 1041 V->K: Almost complete loss of virion
production; when associated with I-1038.
{ECO:0000269|PubMed:16140771}.
MUTAGEN 1041 1041 V->S: Slight delays in replication.
{ECO:0000269|PubMed:16140771}.
MUTAGEN 1077 1077 E->Q: No loss of polymerase activity.
complete loss of RNase H activity.
{ECO:0000269|PubMed:9533880}.
MUTAGEN 1100 1100 Y->A,G,H,L,S,Q: Complete loss of RNAase H
activity. {ECO:0000269|PubMed:11684697}.
MUTAGEN 1100 1100 Y->E: Almost complete loss of RNAase H
activity. {ECO:0000269|PubMed:11684697}.
MUTAGEN 1100 1100 Y->F: Almost no effect on RNAase H
activity and replication.
{ECO:0000269|PubMed:11684697}.
MUTAGEN 1100 1100 Y->R: Almost no effect on RNAase H
activity. Unable to replicate. Completely
resistant to inhibition by BBNH.
{ECO:0000269|PubMed:11684697}.
MUTAGEN 1100 1100 Y->W: Almost no effect on RNAase H
activity and replication. 6-fold
resistance to inhibition by BBNH.
{ECO:0000269|PubMed:11684697}.
MUTAGEN 1138 1138 H->D,N: Severely reduces exonuclease
activity of RNase H. Probably also
reduces substrate binding affinity.
Modifies cleavage preferences of RNase H.
No effect on the endonuclease activity.
{ECO:0000269|PubMed:1714505}.
MUTAGEN 1138 1138 H->D: Severely reduced exonuclease
activity of RNase H, but no effect on
endonucleonuclease activity.
{ECO:0000269|PubMed:1714505}.
MUTAGEN 1138 1138 H->N: Severely reduced exonuclease
activity of RNase H, but no effect on
endonucleonuclease activity.
{ECO:0000269|PubMed:1714505}.
MUTAGEN 1159 1159 L->F: No effect on cleavage between
reverse transcriptase/ribonuclease H and
integrase. {ECO:0000269|PubMed:2044756}.
MUTAGEN 1159 1159 L->I: Loss of cleavage between reverse
transcriptase/ribonuclease H and
integrase. {ECO:0000269|PubMed:2044756}.
TURN 393 395 {ECO:0000244|PDB:2EXF}.
STRAND 398 400 {ECO:0000244|PDB:2EXF}.
TURN 402 404 {ECO:0000244|PDB:2EXF}.
STRAND 414 416 {ECO:0000244|PDB:2EXF}.
STRAND 419 421 {ECO:0000244|PDB:2EXF}.
TURN 423 425 {ECO:0000244|PDB:2EXF}.
STRAND 426 429 {ECO:0000244|PDB:2L4L}.
STRAND 502 504 {ECO:0000244|PDB:1MER}.
STRAND 505 507 {ECO:0000244|PDB:3NU3}.
STRAND 510 515 {ECO:0000244|PDB:3NU3}.
STRAND 518 524 {ECO:0000244|PDB:3NU3}.
STRAND 529 533 {ECO:0000244|PDB:3NU3}.
STRAND 542 549 {ECO:0000244|PDB:3NU3}.
STRAND 552 566 {ECO:0000244|PDB:3NU3}.
STRAND 569 578 {ECO:0000244|PDB:3NU3}.
STRAND 581 585 {ECO:0000244|PDB:5JG1}.
HELIX 587 590 {ECO:0000244|PDB:3NU3}.
TURN 591 594 {ECO:0000244|PDB:3NU3}.
STRAND 596 598 {ECO:0000244|PDB:3NU3}.
STRAND 602 604 {ECO:0000244|PDB:1S9G}.
STRAND 611 614 {ECO:0000244|PDB:4I2Q}.
HELIX 627 642 {ECO:0000244|PDB:4G1Q}.
STRAND 645 648 {ECO:0000244|PDB:4G1Q}.
STRAND 651 653 {ECO:0000244|PDB:1S9E}.
STRAND 659 663 {ECO:0000244|PDB:4G1Q}.
STRAND 665 668 {ECO:0000244|PDB:4G1Q}.
STRAND 670 674 {ECO:0000244|PDB:4G1Q}.
HELIX 677 682 {ECO:0000244|PDB:4G1Q}.
HELIX 684 687 {ECO:0000244|PDB:4PQU}.
HELIX 689 691 {ECO:0000244|PDB:4ICL}.
HELIX 696 698 {ECO:0000244|PDB:4G1Q}.
HELIX 699 701 {ECO:0000244|PDB:4G1Q}.
STRAND 703 709 {ECO:0000244|PDB:4G1Q}.
HELIX 710 712 {ECO:0000244|PDB:3ITH}.
HELIX 713 716 {ECO:0000244|PDB:4G1Q}.
HELIX 721 727 {ECO:0000244|PDB:4G1Q}.
STRAND 729 731 {ECO:0000244|PDB:4G1Q}.
HELIX 734 736 {ECO:0000244|PDB:4G1Q}.
STRAND 737 739 {ECO:0000244|PDB:1S9G}.
STRAND 741 747 {ECO:0000244|PDB:4G1Q}.
STRAND 752 754 {ECO:0000244|PDB:3IG1}.
HELIX 755 773 {ECO:0000244|PDB:4G1Q}.
STRAND 774 776 {ECO:0000244|PDB:3V6D}.
STRAND 777 782 {ECO:0000244|PDB:4G1Q}.
STRAND 785 790 {ECO:0000244|PDB:4G1Q}.
HELIX 794 808 {ECO:0000244|PDB:4G1Q}.
HELIX 809 811 {ECO:0000244|PDB:4G1Q}.
HELIX 817 819 {ECO:0000244|PDB:5D3G}.
STRAND 820 822 {ECO:0000244|PDB:1R0A}.
STRAND 824 828 {ECO:0000244|PDB:4G1Q}.
STRAND 831 833 {ECO:0000244|PDB:4G1Q}.
HELIX 835 837 {ECO:0000244|PDB:4G1Q}.
STRAND 838 841 {ECO:0000244|PDB:4G1Q}.
STRAND 849 852 {ECO:0000244|PDB:2ZD1}.
HELIX 853 866 {ECO:0000244|PDB:4G1Q}.
TURN 867 869 {ECO:0000244|PDB:4G1Q}.
STRAND 870 872 {ECO:0000244|PDB:1DLO}.
HELIX 876 879 {ECO:0000244|PDB:4G1Q}.
HELIX 880 882 {ECO:0000244|PDB:4G1Q}.
TURN 883 885 {ECO:0000244|PDB:4O4G}.
STRAND 886 888 {ECO:0000244|PDB:3IS9}.
STRAND 890 892 {ECO:0000244|PDB:1QE1}.
HELIX 896 908 {ECO:0000244|PDB:4G1Q}.
STRAND 909 911 {ECO:0000244|PDB:3IS9}.
STRAND 913 916 {ECO:0000244|PDB:3DLK}.
STRAND 920 922 {ECO:0000244|PDB:2BE2}.
STRAND 925 932 {ECO:0000244|PDB:4G1Q}.
STRAND 935 943 {ECO:0000244|PDB:4G1Q}.
STRAND 946 954 {ECO:0000244|PDB:4G1Q}.
STRAND 957 961 {ECO:0000244|PDB:4G1Q}.
HELIX 963 982 {ECO:0000244|PDB:4G1Q}.
STRAND 987 992 {ECO:0000244|PDB:4G1Q}.
HELIX 994 1003 {ECO:0000244|PDB:4G1Q}.
STRAND 1004 1006 {ECO:0000244|PDB:3DLK}.
STRAND 1012 1015 {ECO:0000244|PDB:4G1Q}.
STRAND 1017 1019 {ECO:0000244|PDB:3HVT}.
STRAND 1020 1022 {ECO:0000244|PDB:3V81}.
HELIX 1023 1026 {ECO:0000244|PDB:4G1Q}.
STRAND 1029 1031 {ECO:0000244|PDB:1HQU}.
STRAND 1036 1045 {ECO:0000244|PDB:4G1Q}.
TURN 1047 1049 {ECO:0000244|PDB:4G1Q}.
STRAND 1052 1058 {ECO:0000244|PDB:4G1Q}.
STRAND 1059 1061 {ECO:0000244|PDB:1HQE}.
STRAND 1063 1070 {ECO:0000244|PDB:4G1Q}.
HELIX 1073 1087 {ECO:0000244|PDB:4G1Q}.
STRAND 1090 1096 {ECO:0000244|PDB:4G1Q}.
HELIX 1099 1105 {ECO:0000244|PDB:4G1Q}.
STRAND 1110 1114 {ECO:0000244|PDB:4G1Q}.
HELIX 1115 1126 {ECO:0000244|PDB:4G1Q}.
STRAND 1128 1134 {ECO:0000244|PDB:4G1Q}.
STRAND 1137 1139 {ECO:0000244|PDB:2ZD1}.
STRAND 1140 1142 {ECO:0000244|PDB:1SUQ}.
HELIX 1144 1152 {ECO:0000244|PDB:4G1Q}.
TURN 1153 1155 {ECO:0000244|PDB:4QAG}.
STRAND 1219 1227 {ECO:0000244|PDB:3AVI}.
STRAND 1230 1237 {ECO:0000244|PDB:3AVI}.
TURN 1238 1240 {ECO:0000244|PDB:3AVI}.
STRAND 1243 1250 {ECO:0000244|PDB:3AVI}.
HELIX 1253 1266 {ECO:0000244|PDB:3AVI}.
STRAND 1271 1273 {ECO:0000244|PDB:3AVI}.
HELIX 1277 1281 {ECO:0000244|PDB:3AVI}.
HELIX 1283 1292 {ECO:0000244|PDB:3AVI}.
STRAND 1295 1297 {ECO:0000244|PDB:3AVI}.
HELIX 1305 1324 {ECO:0000244|PDB:3AVI}.
HELIX 1325 1327 {ECO:0000244|PDB:3AVI}.
HELIX 1331 1344 {ECO:0000244|PDB:3AVI}.
HELIX 1355 1367 {ECO:0000244|PDB:3AVI}.
STRAND 1380 1386 {ECO:0000244|PDB:1QMC}.
STRAND 1395 1403 {ECO:0000244|PDB:1QMC}.
STRAND 1405 1420 {ECO:0000244|PDB:1QMC}.
HELIX 1421 1423 {ECO:0000244|PDB:1QMC}.
STRAND 1424 1428 {ECO:0000244|PDB:1QMC}.
HELIX 1436 1439 {ECO:0000244|PDB:1BQN}.
SEQUENCE 1447 AA; 163288 MW; AC3EE1439592E0AD CRC64;
MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPGL LETSEGCRQI
LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA LDKIEEEQNK SKKKAQQAAA
DTGHSSQVSQ NYPIVQNIQG QMVHQAISPR TLNAWVKVVE EKAFSPEVIP MFSALSEGAT
PQDLNTMLNT VGGHQAAMQM LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT
STLQEQIGWM TNNPPIPVGE IYKRWIILGL NKIVRMYSPT SILDIRQGPK EPFRDYVDRF
YKTLRAEQAS QEVKNWMTET LLVQNANPDC KTILKALGPA ATLEEMMTAC QGVGGPGHKA
RVLAEAMSQV TNTATIMMQR GNFRNQRKMV KCFNCGKEGH TARNCRAPRK KGCWKCGKEG
HQMKDCTERQ ANFLREDLAF LQGKAREFSS EQTRANSPTI SSEQTRANSP TRRELQVWGR
DNNSPSEAGA DRQGTVSFNF PQITLWQRPL VTIKIGGQLK EALLDTGADD TVLEEMSLPG
RWKPKMIGGI GGFIKVRQYD QILIEICGHK AIGTVLVGPT PVNIIGRNLL TQIGCTLNFP
ISPIETVPVK LKPGMDGPKV KQWPLTEEKI KALVEICTEM EKEGKISKIG PENPYNTPVF
AIKKKDSTKW RKLVDFRELN KRTQDFWEVQ LGIPHPAGLK KKKSVTVLDV GDAYFSVPLD
EDFRKYTAFT IPSINNETPG IRYQYNVLPQ GWKGSPAIFQ SSMTKILEPF KKQNPDIVIY
QYMDDLYVGS DLEIGQHRTK IEELRQHLLR WGLTTPDKKH QKEPPFLWMG YELHPDKWTV
QPIVLPEKDS WTVNDIQKLV GKLNWASQIY PGIKVRQLCK LLRGTKALTE VIPLTEEAEL
ELAENREILK EPVHGVYYDP SKDLIAEIQK QGQGQWTYQI YQEPFKNLKT GKYARMRGAH
TNDVKQLTEA VQKITTESIV IWGKTPKFKL PIQKETWETW WTEYWQATWI PEWEFVNTPP
LVKLWYQLEK EPIVGAETFY VDGAANRETK LGKAGYVTNK GRQKVVPLTN TTNQKTELQA
IYLALQDSGL EVNIVTDSQY ALGIIQAQPD KSESELVNQI IEQLIKKEKV YLAWVPAHKG
IGGNEQVDKL VSAGIRKILF LDGIDKAQDE HEKYHSNWRA MASDFNLPPV VAKEIVASCD
KCQLKGEAMH GQVDCSPGIW QLDCTHLEGK VILVAVHVAS GYIEAEVIPA ETGQETAYFL
LKLAGRWPVK TIHTDNGSNF TSATVKAACW WAGIKQEFGI PYNPQSQGVV ESMNKELKKI
IGQVRDQAEH LKTAVQMAVF IHNFKRKGGI GGYSAGERIV DIIATDIQTK ELQKQITKIQ
NFRVYYRDSR NPLWKGPAKL LWKGEGAVVI QDNSDIKVVP RRKAKIIRDY GKQMAGDDCV
ASRQDED


Related products :

Catalog number Product name Quantity
orb71687 HIV Integrase Protein Inhibitor (1) peptide This is HIV Integrase Protein Inhibitor (1) peptide. For research use only. 1 mg
10-663-45456 HIV-I pol Integrase - Pr160Gag-Pol N_A 0.002 mg
10-663-45456 HIV-I pol Integrase - Pr160Gag-Pol N_A 0.01 mg
10-663-45456 HIV-I pol Integrase - Pr160Gag-Pol N_A 0.1 mg
PCR-505L Polymerase chain reaction PCR and reverse transcriptase polymerase chain reaction RT PCR products: SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50units
PCR-505S Polymerase chain reaction PCR and reverse transcriptase polymerase chain reaction RT PCR products: SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10units
5-42649 HIV Integrase Protein Inhibitor(1), peptide reagents 2 mg
5-42648 HIV Integrase Protein Inhibitor(1), peptide reagents 1 mg
5-42650 HIV Integrase Protein Inhibitor(1), peptide reagents 5 mg
PCR-505S SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10000units
PCR-505L SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50kunits
PCR-505L SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50000 units
PCR-505L SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50000units
PCR-505S SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10kunits
PCR-505S SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10000 units
SCH-OBT1906 RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 0.1 mg
OBT1904X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa340_390), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Appli 1 mg
SCH-OBT1906X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 1 mg
SCH-OBT1904X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa340_390), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Appli 1 mg
OBT1905X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Applicat 1 mg
OBT1906 RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 0.1 mg
OBT1906X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 1 mg
SCH-OBT1905X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Applicat 1 mg
PCR-501L M_MLV Reverse Transcriptase (RNase H_), L pack Reverse Transcriptase 50000units
PCR-501S M_MLV Reverse Transcriptase (RNase H_), S pack Reverse Transcriptase 10000units


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur