Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Gag-Pol polyprotein (Pr160Gag-Pol) [Cleaved into: Matrix protein p17 (MA); Capsid protein p24 (CA); Spacer peptide 1 (SP1) (p2); Nucleocapsid protein p7 (NC); Transframe peptide (TF); p6-pol (p6*); Protease (EC 3.4.23.16) (PR) (Retropepsin); Reverse transcriptase/ribonuclease H (EC 2.7.7.49) (EC 2.7.7.7) (EC 3.1.26.13) (Exoribonuclease H) (EC 3.1.13.2) (p66 RT); p51 RT; p15; Integrase (IN) (EC 2.7.7.-) (EC 3.1.-.-)]

 POL_HV1H2               Reviewed;        1435 AA.
P04585; O09777; Q9WJC5;
13-AUG-1987, integrated into UniProtKB/Swiss-Prot.
23-JAN-2007, sequence version 4.
22-NOV-2017, entry version 217.
RecName: Full=Gag-Pol polyprotein;
AltName: Full=Pr160Gag-Pol;
Contains:
RecName: Full=Matrix protein p17;
Short=MA;
Contains:
RecName: Full=Capsid protein p24;
Short=CA;
Contains:
RecName: Full=Spacer peptide 1 {ECO:0000250|UniProtKB:P12497};
Short=SP1;
AltName: Full=p2;
Contains:
RecName: Full=Nucleocapsid protein p7;
Short=NC;
Contains:
RecName: Full=Transframe peptide;
Short=TF;
Contains:
RecName: Full=p6-pol;
Short=p6*;
Contains:
RecName: Full=Protease;
EC=3.4.23.16;
AltName: Full=PR;
AltName: Full=Retropepsin;
Contains:
RecName: Full=Reverse transcriptase/ribonuclease H;
EC=2.7.7.49;
EC=2.7.7.7;
EC=3.1.26.13;
AltName: Full=Exoribonuclease H;
EC=3.1.13.2;
AltName: Full=p66 RT;
Contains:
RecName: Full=p51 RT;
Contains:
RecName: Full=p15;
Contains:
RecName: Full=Integrase;
Short=IN;
EC=2.7.7.- {ECO:0000305|PubMed:2349226};
EC=3.1.-.- {ECO:0000305|PubMed:2349226};
Name=gag-pol;
Human immunodeficiency virus type 1 group M subtype B (isolate HXB2)
(HIV-1).
Viruses; Retro-transcribing viruses; Retroviridae; Orthoretrovirinae;
Lentivirus; Primate lentivirus group.
NCBI_TaxID=11706;
NCBI_TaxID=9606; Homo sapiens (Human).
[1]
NUCLEOTIDE SEQUENCE [GENOMIC RNA].
PubMed=3040055; DOI=10.1089/aid.1987.3.57;
Ratner L., Fisher A., Jagodzinski L.L., Mitsuya H., Liou R.-S.,
Gallo R.C., Wong-Staal F.;
"Complete nucleotide sequences of functional clones of the AIDS
virus.";
AIDS Res. Hum. Retroviruses 3:57-69(1987).
[2]
SEQUENCE REVISION.
Ogata N., Alter H.J., Miller R.H., Purcell R.H.;
Submitted (JUN-1996) to the EMBL/GenBank/DDBJ databases.
[3]
NUCLEOTIDE SEQUENCE [GENOMIC RNA].
Chappey C.;
Submitted (MAR-1999) to the EMBL/GenBank/DDBJ databases.
[4]
FUNCTION (INTEGRASE).
PubMed=2349226; DOI=10.1073/pnas.87.11.4164;
Farnet C.M., Haseltine W.A.;
"Integration of human immunodeficiency virus type 1 DNA in vitro.";
Proc. Natl. Acad. Sci. U.S.A. 87:4164-4168(1990).
[5]
DIMERIZATION (PROTEASE).
PubMed=2162350;
Weber I.T.;
"Comparison of the crystal structures and intersubunit interactions of
human immunodeficiency and Rous sarcoma virus proteases.";
J. Biol. Chem. 265:10492-10496(1990).
[6]
MUTAGENESIS OF HIS-1159; HIS-1163; GLN-1200; ASP-1211; SER-1228;
ASP-1263; GLU-1299; ARG-1346 AND TRP-1382.
PubMed=8420982;
Leavitt A.D., Shiue L., Varmus H.E.;
"Site-directed mutagenesis of HIV-1 integrase demonstrates
differential effects on integrase functions in vitro.";
J. Biol. Chem. 268:2113-2119(1993).
[7]
MUTAGENESIS OF CYS-1187; CYS-1190; TRP-1208; ASP-1211; THR-1213;
VAL-1222; SER-1228; THR-1262; ASP-1263; GLY-1270; ILE-1282; VAL-1298;
GLU-1299; LYS-1306; ALA-1326 AND TRP-1382.
STRAIN=Isolate WI3;
PubMed=8035478;
Cannon P.M., Wilson W., Byles E., Kingsman S.M., Kingsman A.J.;
"Human immunodeficiency virus type 1 integrase: effect on viral
replication of mutations at highly conserved residues.";
J. Virol. 68:4768-4775(1994).
[8]
INTERACTION OF CAPSID WITH HUMAN PPIA/CYPA.
PubMed=8513493; DOI=10.1016/0092-8674(93)90637-6;
Luban J., Bossolt K.L., Franke E.K., Kalpana G.V., Goff S.P.;
"Human immunodeficiency virus type 1 Gag protein binds to cyclophilins
A and B.";
Cell 73:1067-1078(1993).
[9]
INTERACTION OF INTEGRASE WITH HUMAN SMARCB1/INI1.
PubMed=7801128; DOI=10.1126/science.7801128;
Kalpana G.V., Marmon S., Wang W., Crabtree G.R., Goff S.P.;
"Binding and stimulation of HIV-1 integrase by a human homolog of
yeast transcription factor SNF5.";
Science 266:2002-2006(1994).
[10]
FUNCTION (PROTEASE).
PubMed=7835426; DOI=10.1016/0014-5793(94)01370-G;
Gaedigk-Nitschko K., Schoen A., Wachinger G., Erfle V., Kohleisen B.;
"Cleavage of recombinant and cell derived human immunodeficiency virus
1 (HIV-1) Nef protein by HIV-1 protease.";
FEBS Lett. 357:275-278(1995).
[11]
FUNCTION (CAPSID PROTEIN P24).
PubMed=8648689;
Braaten D., Franke E.K., Luban J.;
"Cyclophilin A is required for an early step in the life cycle of
human immunodeficiency virus type 1 before the initiation of reverse
transcription.";
J. Virol. 70:3551-3560(1996).
[12]
MUTAGENESIS OF PRO-217; VAL-218; HIS-219; ALA-220; GLY-221; PRO-222;
ILE-223; ALA-224 AND PRO-225, AND INTERACTION WITH HUMAN CYPA.
PubMed=9223641; DOI=10.1006/jmbi.1997.1051;
Yoo S., Myszka D.G., Yeh C., McMurray M., Hill C.P., Sundquist W.I.;
"Molecular recognition in the HIV-1 capsid/cyclophilin A complex.";
J. Mol. Biol. 269:780-795(1997).
[13]
MUTAGENESIS OF ASP-1211; ASP-1263 AND GLU-1299.
PubMed=9573231;
Gaur M., Leavitt A.D.;
"Mutations in the human immunodeficiency virus type 1 integrase
D,D(35)E motif do not eliminate provirus formation.";
J. Virol. 72:4678-4685(1998).
[14]
MUTAGENESIS OF LYS-18; ARG-22 AND LYS-27.
PubMed=10604476; DOI=10.1038/45272;
Dupont S., Sharova N., DeHoratius C., Virbasius C.M., Zhu X.,
Bukrinskaya A.G., Stevenson M., Green M.R.;
"A novel nuclear export activity in HIV-1 matrix protein required for
viral replication.";
Nature 402:681-685(1999).
[15]
PROTEOLYTIC PROCESSING OF POLYPROTEIN.
PubMed=10494040; DOI=10.1007/BF02253522;
Chang Y.Y., Yu S.L., Syu W.J.;
"Organization of HIV-1 pol is critical for Pol polyprotein
processing.";
J. Biomed. Sci. 6:333-341(1999).
[16]
FUNCTION (NUCLEOCAPSID PROTEIN P7).
PubMed=9931246; DOI=10.1006/jmbi.1998.2460;
Negroni M., Buc H.;
"Recombination during reverse transcription: an evaluation of the role
of the nucleocapsid protein.";
J. Mol. Biol. 286:15-31(1999).
[17]
FUNCTION (NUCLEOCAPSID PROTEIN P7).
PubMed=11044125; DOI=10.1128/JVI.74.22.10796-10800.2000;
Cen S., Khorchid A., Gabor J., Rong L., Wainberg M.A., Kleiman L.;
"Roles of Pr55(gag) and NCp7 in tRNA(3)(Lys) genomic placement and the
initiation step of reverse transcription in human immunodeficiency
virus type 1.";
J. Virol. 74:10796-10800(2000).
[18]
GAG/GAG-POL RATIO.
PubMed=11160682; DOI=10.1128/JVI.75.4.1834-1841.2001;
Shehu-Xhilaga M., Crowe S.M., Mak J.;
"Maintenance of the Gag/Gag-Pol ratio is important for human
immunodeficiency virus type 1 RNA dimerization and viral
infectivity.";
J. Virol. 75:1834-1841(2001).
[19]
ACTIVE SITES (REVERSE TRANSCRIPTASE/RIBONUCLEASE H), AND MUTAGENESIS
OF GLU-1065 AND ASP-1136.
PubMed=12206668; DOI=10.1021/bi025871v;
Cristofaro J.V., Rausch J.W., Le Grice S.F., DeStefano J.J.;
"Mutations in the ribonuclease H active site of HIV-RT reveal a role
for this site in stabilizing enzyme-primer-template binding.";
Biochemistry 41:10968-10975(2002).
[20]
CIS/TRANS ISOMERIZATION (CAPSID PROTEIN P24).
PubMed=11929983; DOI=10.1073/pnas.082100499;
Bosco D.A., Eisenmesser E.Z., Pochapsky S., Sundquist W.I., Kern D.;
"Catalysis of cis/trans isomerization in native HIV-1 capsid by human
cyclophilin A.";
Proc. Natl. Acad. Sci. U.S.A. 99:5247-5252(2002).
[21]
MUTAGENESIS OF HIS-400; CYS-405; HIS-421 AND CYS-426.
PubMed=11932404; DOI=10.1128/JVI.76.9.4370-4378.2002;
Guo J., Wu T., Kane B.F., Johnson D.G., Henderson L.E., Gorelick R.J.,
Levin J.G.;
"Subtle alterations of the native zinc finger structures have dramatic
effects on the nucleic acid chaperone activity of human
immunodeficiency virus type 1 nucleocapsid protein.";
J. Virol. 76:4370-4378(2002).
[22]
PROTEOLYTIC PROCESSING (GAG-POL POLYPROTEIN).
PubMed=12477841; DOI=10.1128/JVI.77.1.366-374.2003;
Pettit S.C., Gulnik S., Everitt L., Kaplan A.H.;
"The dimer interfaces of protease and extra-protease domains influence
the activation of protease and the specificity of GagPol cleavage.";
J. Virol. 77:366-374(2003).
[23]
QUARTERNARY STRUCTURE (CAPSID PROTEIN P24).
PubMed=12660176; DOI=10.1093/emboj/cdg143;
Briggs J.A., Wilk T., Welker R., Krausslich H.G., Fuller S.D.;
"Structural organization of authentic, mature HIV-1 virions and
cores.";
EMBO J. 22:1707-1715(2003).
[24]
FUNCTION (PROTEASE).
PubMed=12505164; DOI=10.1016/S0014-5793(02)03764-X;
Perales C., Carrasco L., Ventoso I.;
"Cleavage of eIF4G by HIV-1 protease: effects on translation.";
FEBS Lett. 533:89-94(2003).
[25]
CLEAVAGE (NUCLEOCAPSID PROTEIN P7).
PubMed=15065874; DOI=10.1021/bi035625z;
Tozser J., Shulenin S., Louis J.M., Copeland T.D., Oroszlan S.;
"In vitro processing of HIV-1 nucleocapsid protein by the viral
proteinase: effects of amino acid substitutions at the scissile bond
in the proximal zinc finger sequence.";
Biochemistry 43:4304-4312(2004).
[26]
FUNCTION (REVERSE TRANSCRIPTASE/RIBONUCLEASE H).
PubMed=16221683; DOI=10.1074/jbc.M507839200;
Purohit V., Balakrishnan M., Kim B., Bambara R.A.;
"Evidence that HIV-1 reverse transcriptase employs the DNA 3' end
directed primary/secondary RNase H cleavage mechanism during synthesis
and strand transfer.";
J. Biol. Chem. 280:40534-40543(2005).
[27]
MUTAGENESIS OF ASN-394.
PubMed=16904152; DOI=10.1016/j.virol.2006.07.011;
Thomas J.A., Shulenin S., Coren L.V., Bosche W.J., Gagliardi T.D.,
Gorelick R.J., Oroszlan S.;
"Characterization of human immunodeficiency virus type 1 (HIV-1)
containing mutations in the nucleocapsid protein at a putative HIV-1
protease cleavage site.";
Virology 354:261-270(2006).
[28]
FUNCTION (NUCLEOCAPSID PROTEIN P7).
PubMed=17070549; DOI=10.1016/j.jmb.2006.09.081;
Hagan N.A., Fabris D.;
"Dissecting the protein-RNA and RNA-RNA interactions in the
nucleocapsid-mediated dimerization and isomerization of HIV-1 stemloop
1.";
J. Mol. Biol. 365:396-410(2007).
[29]
SUBUNIT (MATRIX PROTEIN P17).
PubMed=17108052; DOI=10.1128/JVI.02122-06;
Alfadhli A., Huseby D., Kapit E., Colman D., Barklis E.;
"Human immunodeficiency virus type 1 matrix protein assembles on
membranes as a hexamer.";
J. Virol. 81:1472-1478(2007).
[30]
MUTAGENESIS OF SER-6; SER-9; SER-67 AND SER-72, AND
POST-TRANSCRIPTIONAL MODIFICATION.
PubMed=17656588; DOI=10.1110/ps.072987607;
Saad J.S., Kim A., Ghanam R.H., Dalton A.K., Vogt V.M., Wu Z., Lu W.,
Summers M.F.;
"Mutations that mimic phosphorylation of the HIV-1 matrix protein do
not perturb the myristyl switch.";
Protein Sci. 16:1793-1797(2007).
[31]
FUNCTION (NUCLEOCAPSID PROTEIN P7).
PubMed=18343475; DOI=10.1016/j.virol.2008.02.001;
Kafaie J., Song R., Abrahamyan L., Mouland A.J., Laughrea M.;
"Mapping of nucleocapsid residues important for HIV-1 genomic RNA
dimerization and packaging.";
Virology 375:592-610(2008).
[32]
SUBUNIT (CAPSID PROTEIN P24), AND FUNCTION (CAPSID PROTEIN P24).
PubMed=19914170; DOI=10.1016/j.cell.2009.10.010;
Byeon I.J., Meng X., Jung J., Zhao G., Yang R., Ahn J., Shi J.,
Concel J., Aiken C., Zhang P., Gronenborn A.M.;
"Structural convergence between Cryo-EM and NMR reveals intersubunit
interactions critical for HIV-1 capsid function.";
Cell 139:780-790(2009).
[33]
FUNCTION (PROTEASE).
PubMed=19956697; DOI=10.1371/journal.pone.0007997;
Castello A., Franco D., Moral-Lopez P., Berlanga J.J., Alvarez E.,
Wimmer E., Carrasco L.;
"HIV- 1 protease inhibits Cap- and poly(A)-dependent translation upon
eIF4GI and PABP cleavage.";
PLoS ONE 4:E7997-E7997(2009).
[34]
SUBUNIT (MATRIX PROTEIN P17).
PubMed=19327811; DOI=10.1016/j.virol.2009.02.048;
Alfadhli A., Barklis R.L., Barklis E.;
"HIV-1 matrix organizes as a hexamer of trimers on membranes
containing phosphatidylinositol-(4,5)-bisphosphate.";
Virology 387:466-472(2009).
[35]
INTERACTION OF GAG POLYPROTEIN WITH PDZD8.
PubMed=20573829; DOI=10.1128/JVI.00843-10;
Henning M.S., Morham S.G., Goff S.P., Naghavi M.H.;
"PDZD8 is a novel Gag-interacting factor that promotes retroviral
infection.";
J. Virol. 84:8990-8995(2010).
[36]
FUNCTION (INTEGRASE), AND INTERACTION OF INTEGRASE WITH HUMAN KPNA3.
PubMed=20554775; DOI=10.1128/JVI.00508-10;
Ao Z., Danappa Jayappa K., Wang B., Zheng Y., Kung S., Rassart E.,
Depping R., Kohler M., Cohen E.A., Yao X.;
"Importin alpha3 interacts with HIV-1 integrase and contributes to
HIV-1 nuclear import and replication.";
J. Virol. 84:8650-8663(2010).
[37]
FUNCTION (NUCLEOCAPSID PROTEIN P7).
PubMed=20828778; DOI=10.1016/j.virol.2010.08.013;
Jalalirad M., Laughrea M.;
"Formation of immature and mature genomic RNA dimers in wild-type and
protease-inactive HIV-1: differential roles of the Gag polyprotein,
nucleocapsid proteins NCp15, NCp9, NCp7, and the dimerization
initiation site.";
Virology 407:225-236(2010).
[38]
INTERACTION WITH MONKEY TRIM5.
PubMed=23785198; DOI=10.1128/JVI.00713-13;
Shi J., Friedman D.B., Aiken C.;
"Retrovirus restriction by TRIM5 proteins requires recognition of only
a small fraction of viral capsid subunits.";
J. Virol. 87:9271-9278(2013).
[39]
DIMERIZATION (PROTEASE).
PubMed=24132393; DOI=10.1007/s10930-013-9517-y;
Naicker P., Seele P., Dirr H.W., Sayed Y.;
"F99 is critical for dimerization and activation of South African HIV-
1 subtype C protease.";
Protein J. 32:560-567(2013).
[40]
INTERACTION OF CAPSID-NUCLEOCAPSID COMPLEX WITH HUMAN PDZD8.
PubMed=24554657; DOI=10.1128/JVI.02945-13;
Guth C.A., Sodroski J.;
"Contribution of PDZD8 to stabilization of the human immunodeficiency
virus type 1 capsid.";
J. Virol. 88:4612-4623(2014).
[41]
INTERACTION OF MATRIX PROTEIN P17 WITH RAT CALM1.
PubMed=24500712; DOI=10.1074/jbc.M113.543694;
Vlach J., Samal A.B., Saad J.S.;
"Solution structure of calmodulin bound to the binding domain of the
HIV-1 matrix protein.";
J. Biol. Chem. 289:8697-8705(2014).
[42]
REVIEW.
PubMed=8791726;
Vogt V.M.;
"Proteolytic processing and particle maturation.";
Curr. Top. Microbiol. Immunol. 214:95-131(1996).
[43]
REVIEW.
PubMed=9878383; DOI=10.1006/jmbi.1998.2354;
Turner B.G., Summers M.F.;
"Structural biology of HIV.";
J. Mol. Biol. 285:1-32(1999).
[44]
REVIEW.
PubMed=11700285; DOI=10.1146/annurev.genet.35.102401.090551;
Negroni M., Buc H.;
"Mechanisms of retroviral recombination.";
Annu. Rev. Genet. 35:275-302(2001).
[45]
REVIEW.
PubMed=11983066; DOI=10.1186/gb-2002-3-4-reviews3006;
Dunn B.M., Goodenow M.M., Gustchina A., Wlodawer A.;
"Retroviral proteases.";
Genome Biol. 3:REVIEWS3006.1-REVIEWS3006.7(2002).
[46]
REVIEW.
PubMed=12873766; DOI=10.1016/S0005-2736(03)00163-9;
Scarlata S., Carter C.;
"Role of HIV-1 Gag domains in viral assembly.";
Biochim. Biophys. Acta 1614:62-72(2003).
[47]
REVIEW.
PubMed=15353349; DOI=10.2741/1472;
Turlure F., Devroe E., Silver P.A., Engelman A.;
"Human cell proteins and human immunodeficiency virus DNA
integration.";
Front. Biosci. 9:3187-3208(2004).
[48]
REVIEW.
PubMed=16815734; DOI=10.1016/j.mib.2006.06.011;
Sokolskaja E., Luban J.;
"Cyclophilin, TRIM5, and innate immunity to HIV-1.";
Curr. Opin. Microbiol. 9:404-408(2006).
[49]
REVIEW.
PubMed=21762797; DOI=10.1016/j.jmb.2011.04.015;
Chukkapalli V., Ono A.;
"Molecular determinants that regulate plasma membrane association of
HIV-1 Gag.";
J. Mol. Biol. 410:512-524(2011).
[50]
REVIEW.
PubMed=24907482; DOI=10.1016/j.virusres.2014.05.011;
Darlix J.L., de Rocquigny H., Mauffret O., Mely Y.;
"Retrospective on the all-in-one retroviral nucleocapsid protein.";
Virus Res. 193:2-15(2014).
[51]
REVIEW.
PubMed=24933691; DOI=10.1016/j.tim.2014.04.012;
Tedbury P.R., Freed E.O.;
"The role of matrix in HIV-1 envelope glycoprotein incorporation.";
Trends Microbiol. 22:372-378(2014).
[52]
X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) OF 489-587.
PubMed=2682266; DOI=10.1038/342299a0;
Lapatto R., Blundell T., Hemmings A., Overington J., Wilderspin A.,
Wood S., Merson J.R., Whittle P.J., Danley D.E., Geoghegan K.F.,
Hawrylik S.J., Lee S.E., Scheld K.G., Hobart P.M.;
"X-ray analysis of HIV-1 proteinase at 2.7-A resolution confirms
structural homology among retroviral enzymes.";
Nature 342:299-302(1989).
[53]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 489-587 IN COMPLEX WITH THE
INHIBITOR RO 32-8959.
PubMed=1956054; DOI=10.1021/jm00115a028;
Krohn A., Redshaw S., Ritchie J.C., Graves B.J., Hatada M.H.;
"Novel binding mode of highly potent HIV-proteinase inhibitors
incorporating the (R)-hydroxyethylamine isostere.";
J. Med. Chem. 34:3340-3342(1991).
[54]
STRUCTURE BY NMR OF 390-406.
PubMed=1959614; DOI=10.1016/0014-5793(91)80825-N;
Omichinski J.G., Clore G.M., Sakaguchi K., Appella E.,
Gronenborn A.M.;
"Structural characterization of a 39-residue synthetic peptide
containing the two zinc binding domains from the HIV-1 p7 nucleocapsid
protein by CD and NMR spectroscopy.";
FEBS Lett. 292:25-30(1991).
[55]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 489-587 IN COMPLEX WITH A
DIHYDROXYETHYLENE-CONTAINING INHIBITOR.
PubMed=1304383; DOI=10.1002/pro.5560010811;
Thanki N., Rao J.K., Foundling S.I., Howe W.J., Moon J.B., Hui J.O.,
Tomasselli A.G., Heinrikson R.L., Thaisrivongs S., Wlodawer A.;
"Crystal structure of a complex of HIV-1 protease with a
dihydroxyethylene-containing inhibitor: comparisons with molecular
modeling.";
Protein Sci. 1:1061-1072(1992).
[56]
STRUCTURE BY NMR OF 390-430.
PubMed=8289249; DOI=10.1016/S0022-2836(05)80033-6;
Morellet N., de Rocquigny H., Mely Y., Jullian N., Demene H.,
Ottmann M., Gerard D., Darlix J.L., Fournie-Zaluski M.-C.,
Roques B.P.;
"Conformational behaviour of the active and inactive forms of the
nucleocapsid NCp7 of HIV-1 studied by 1H NMR.";
J. Mol. Biol. 235:287-301(1994).
[57]
X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 489-587 IN COMPLEX WITH THE
INHIBITOR XK263.
PubMed=8278812; DOI=10.1126/science.8278812;
Lam P.Y.S., Jadhav P.K., Eyermann C.J., Hodge C.N., Ru Y.,
Bacheler L.T., Meek J.L., Otto M.J., Rayner M.M., Wong Y.N.,
Chang C.-H., Weber P.C., Jackson D.A., Sharpe T.R.,
Erickson-Viitanen S.;
"Rational design of potent, bioavailable, nonpeptide cyclic ureas as
HIV protease inhibitors.";
Science 263:380-384(1994).
[58]
X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 588-1147.
PubMed=7523679; DOI=10.1006/jmbi.1994.1604;
Stammers D.K., Somers D.O., Ross C.K., Kirby I., Ray P.H.,
Wilson J.E., Norman M., Ren J.S., Esnouf R.M., Garman E.F.,
Jones E.Y., Stuart D.I.;
"Crystals of HIV-1 reverse transcriptase diffracting to 2.2 A
resolution.";
J. Mol. Biol. 242:586-588(1994).
[59]
STRUCTURE BY NMR OF 1-132.
PubMed=8654825; DOI=10.1042/bst0230725;
Matthews S., Barlow P., Clark N., Kingsman S., Kingsman A.,
Campbell I.;
"Refined solution structure of p17, the HIV matrix protein.";
Biochem. Soc. Trans. 23:725-729(1995).
[60]
X-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS) OF 588-1027.
PubMed=8535785; DOI=10.1016/S0969-2126(01)00226-X;
Ren J.S., Esnouf R.M., Hopkins A.L., Ross C.K., Jones E.Y.,
Stammers D.K., Stuart D.I.;
"The structure of HIV-1 reverse transcriptase complexed with 9-chloro-
TIBO: lessons for inhibitor design.";
Structure 3:915-926(1995).
[61]
X-RAY CRYSTALLOGRAPHY (2.35 ANGSTROMS) OF 588-1147.
PubMed=7540935; DOI=10.1038/nsb0495-303;
Esnouf R.M., Ren J.S., Ross C.K., Jones E.Y., Stammers D.K.,
Stuart D.I.;
"Mechanism of inhibition of HIV-1 reverse transcriptase by non-
nucleoside inhibitors.";
Nat. Struct. Biol. 2:303-308(1995).
[62]
X-RAY CRYSTALLOGRAPHY (2.55 ANGSTROMS) OF 588-1027.
PubMed=8648598; DOI=10.1021/jm960056x;
Hopkins A.L., Ren J.S., Esnouf R.M., Willcox B.E., Jones E.Y.,
Ross C.K., Miyasaka T., Walker R.T., Tanaka H., Stammers D.K.,
Stuart D.I.;
"Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT
series reveal conformational changes relevant to the design of potent
non-nucleoside inhibitors.";
J. Med. Chem. 39:1589-1600(1996).
[63]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 489-587 IN COMPLEX WITH
COMPLEX WITH DMP450.
PubMed=8807858; DOI=10.1016/S1074-5521(96)90110-6;
Hodge C.N., Aldrich P.E., Bacheler L.T., Chang C.-H., Eyermann C.J.,
Garber S.S., Grubb M., Jackson D.A., Jadhav P.K., Korant B.D.,
Lam P.Y.S., Maurin M.B., Meek J.L., Otto M.J., Rayner M.M., Reid C.,
Sharpe T.R., Shum L., Winslow D.L., Erickson-Viitanen S.;
"Improved cyclic urea inhibitors of the HIV-1 protease: synthesis,
potency, resistance profile, human pharmacokinetics and X-ray crystal
structure of DMP 450.";
Chem. Biol. 3:301-314(1996).
[64]
STRUCTURE BY NMR OF 489-587 IN COMPLEX WITH THE INHIBITOR DMP323.
PubMed=8868486; DOI=10.1002/pro.5560050311;
Yamazaki T., Hinck A.P., Wang Y.X., Nicholson L.K., Torchia D.A.,
Wingfield P., Stahl S.J., Kaufman J.D., Chang C.-H., Domaille P.J.,
Lam P.Y.S.;
"Three-dimensional solution structure of the HIV-1 protease complexed
with DMP323, a novel cyclic urea-type inhibitor, determined by nuclear
magnetic resonance spectroscopy.";
Protein Sci. 5:495-506(1996).
[65]
X-RAY CRYSTALLOGRAPHY (2.65 ANGSTROMS) OF 588-1130.
PubMed=9108091; DOI=10.1073/pnas.94.8.3984;
Esnouf R.M., Ren J.S., Hopkins A.L., Ross C.K., Jones E.Y.,
Stammers D.K., Stuart D.I.;
"Unique features in the structure of the complex between HIV-1 reverse
transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain
resistance mutations for this nonnucleoside inhibitor.";
Proc. Natl. Acad. Sci. U.S.A. 94:3984-3989(1997).
[66]
X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 489-587.
PubMed=9003516; DOI=10.1021/jm960586t;
Jadhav P.K., Ala P.J., Woerner F.J., Chang C.-H., Garber S.S.,
Anton E.D., Bacheler L.T.;
"Cyclic urea amides: HIV-1 protease inhibitors with low nanomolar
potency against both wild type and protease inhibitor resistant
mutants of HIV.";
J. Med. Chem. 40:181-191(1997).
[67]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 489-587 IN COMPLEX WITH THE
INHIBITOR LP-130.
PubMed=9827997; DOI=10.1002/pro.5560071108;
Kervinen J., Lubkowski J., Zdanov A., Bhatt D., Dunn B.M., Hui K.Y.,
Powell D.J., Kay J., Wlodawer A., Gustchina A.;
"Toward a universal inhibitor of retroviral proteases: comparative
analysis of the interactions of LP-130 complexed with proteases from
HIV-1, FIV, and EIAV.";
Protein Sci. 7:2314-2323(1998).
[68]
X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 489-587.
PubMed=9554878; DOI=10.1021/jm970524i;
Jadhav P.K., Woerner F.J., Lam P.Y., Hodge C.N., Eyermann C.J.,
Man H.W., Daneker W.F., Bacheler L.T., Rayner M.M., Meek J.L.,
Erickson-Viitanen S., Jackson D.A., Calabrese J.C., Schadt M.C.,
Chang C.-H.;
"Nonpeptide cyclic cyanoguanidines as HIV-1 protease inhibitors:
synthesis, structure-activity relationships, and X-ray crystal
structure studies.";
J. Med. Chem. 41:1446-1455(1998).
[69]
X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 489-587.
PubMed=9790666; DOI=10.1021/bi980386e;
Ala P.J., Huston E.E., Klabe R.M., Jadhav P.K., Lam P.Y.S.,
Chang C.-H.;
"Counteracting HIV-1 protease drug resistance: structural analysis of
mutant proteases complexed with XV638 and SD146, cyclic urea amides
with broad specificities.";
Biochemistry 37:15042-15049(1998).
[70]
X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 489-587.
PubMed=9575185; DOI=10.1074/jbc.273.20.12325;
Ala P.J., DeLoskey R.J., Huston E.E., Jadhav P.K., Lam P.Y.S.,
Eyermann C.J., Hodge C.N., Schadt M.C., Lewandowski F.A., Weber P.C.,
McCabe D.D., Duke J.L., Chang C.-H.;
"Molecular recognition of cyclic urea HIV-1 protease inhibitors.";
J. Biol. Chem. 273:12325-12331(1998).
[71]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 490-587 IN COMPLEX WITH A
TRIPEPTIDE INHIBITOR.
PubMed=9485357; DOI=10.1021/bi972059x;
Louis J.M., Dyda F., Nashed N.T., Kimmel A.R., Davies D.R.;
"Hydrophilic peptides derived from the transframe region of Gag-Pol
inhibit the HIV-1 protease.";
Biochemistry 37:2105-2110(1998).
[72]
X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 588-1130.
PubMed=9689112; DOI=10.1073/pnas.95.16.9518;
Ren J.S., Esnouf R.M., Hopkins A.L., Jones E.Y., Kirby I., Keeling J.,
Ross C.K., Larder B.A., Stuart D.I., Stammers D.K.;
"3'-azido-3'-deoxythymidine drug resistance mutations in HIV-1 reverse
transcriptase can induce long range conformational changes.";
Proc. Natl. Acad. Sci. U.S.A. 95:9518-9523(1998).
[73]
X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS) OF 588-1147 IN COMPLEX WITH
CARBOXANILIDE DERIVATIVES.
PubMed=9772165; DOI=10.1021/bi981309m;
Ren J.S., Esnouf R.M., Hopkins A.L., Warren J., Balzarini J.,
Stuart D.I., Stammers D.K.;
"Crystal structures of HIV-1 reverse transcriptase in complex with
carboxanilide derivatives.";
Biochemistry 37:14394-14403(1998).
[74]
X-RAY CRYSTALLOGRAPHY (1.88 ANGSTROMS) OF 501-599.
PubMed=10429209; DOI=10.1046/j.1432-1327.1999.00514.x;
Mahalingam B., Louis J.M., Reed C.C., Adomat J.M., Krouse J.,
Wang Y.-F., Harrison R.W., Weber I.T.;
"Structural and kinetic analysis of drug resistant mutants of HIV-1
protease.";
Eur. J. Biochem. 263:238-245(1999).
[75]
X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 1199-1435.
PubMed=10890912; DOI=10.1073/pnas.150220297;
Chen J.C., Krucinski J., Miercke L.J., Finer-Moore J.S., Tang A.H.,
Leavitt A.D., Stroud R.M.;
"Crystal structure of the HIV-1 integrase catalytic core and C-
terminal domains: a model for viral DNA binding.";
Proc. Natl. Acad. Sci. U.S.A. 97:8233-8238(2000).
[76]
X-RAY CRYSTALLOGRAPHY (1.9 ANGSTROMS) OF 489-587.
PubMed=11170214;
DOI=10.1002/1097-0134(20010401)43:1<57::AID-PROT1017>3.0.CO;2-D;
Pillai B., Kannan K.K., Hosur M.V.;
"1.9 A X-ray study shows closed flap conformation in crystals of
tethered HIV-1 PR.";
Proteins 43:57-64(2001).
[77]
X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 588-1147 IN COMPLEX WITH
INHIBITORS.
PubMed=11575933; DOI=10.1006/jmbi.2001.4988;
Ren J.S., Nichols C.E., Bird L.E., Chamberlain P.P., Weaver K.L.,
Short S.A., Stuart D.I., Stammers D.K.;
"Structural mechanisms of drug resistance for mutations at codons 181
and 188 in HIV-1 reverse transcriptase and the improved resilience of
second generation non-nucleoside inhibitors.";
J. Mol. Biol. 312:795-805(2001).
[78]
X-RAY CRYSTALLOGRAPHY (2.1 ANGSTROMS) OF 489-587.
PubMed=12051725; DOI=10.1016/S0006-291X(02)00482-5;
Kumar M., Kannan K.K., Hosur M.V., Bhavesh N.S., Chatterjee A.,
Mittal R., Hosur R.V.;
"Effects of remote mutation on the autolysis of HIV-1 PR: X-ray and
NMR investigations.";
Biochem. Biophys. Res. Commun. 294:395-401(2002).
[79]
STRUCTURE BY NMR OF 1014-1147.
PubMed=12534276; DOI=10.1021/bi0204894;
Pari K., Mueller G.A., DeRose E.F., Kirby T.W., London R.E.;
"Solution structure of the RNase H domain of the HIV-1 reverse
transcriptase in the presence of magnesium.";
Biochemistry 42:639-650(2003).
[80]
X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 588-1147 IN COMPLEX WITH
INHIBITORS.
PubMed=15095972; DOI=10.1016/j.jmb.2003.12.055;
Ren J.S., Nichols C.E., Chamberlain P.P., Weaver K.L., Short S.A.,
Stammers D.K.;
"Crystal structures of HIV-1 reverse transcriptases mutated at codons
100, 106 and 108 and mechanisms of resistance to non-nucleoside
inhibitors.";
J. Mol. Biol. 336:569-578(2004).
[81]
X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 588-1147 IN COMPLEX WITH
INHIBITORS.
PubMed=15537347; DOI=10.1021/jm040072r;
Freeman G.A., Andrews C.W. III, Hopkins A.L., Lowell G.S.,
Schaller L.T., Cowan J.R., Gonzales S.S., Koszalka G.W., Hazen R.J.,
Boone L.R., Ferris R.G., Creech K.L., Roberts G.B., Short S.A.,
Weaver K.L., Reynolds D.J., Milton J., Ren J.S., Stuart D.I.,
Stammers D.K., Chan J.H.;
"Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase
with improved drug resistance properties. 2.";
J. Med. Chem. 47:5923-5936(2004).
-!- FUNCTION: Gag-Pol polyprotein: Mediates, with Gag polyprotein, the
essential events in virion assembly, including binding the plasma
membrane, making the protein-protein interactions necessary to
create spherical particles, recruiting the viral Env proteins, and
packaging the genomic RNA via direct interactions with the RNA
packaging sequence (Psi). Gag-Pol polyprotein may regulate its own
translation, by the binding genomic RNA in the 5'-UTR. At low
concentration, the polyprotein would promote translation, whereas
at high concentration, the polyprotein would encapsidate genomic
RNA and then shut off translation.
-!- FUNCTION: Matrix protein p17: Targets the polyprotein to the
plasma membrane via a multipartite membrane-binding signal, that
includes its myristoylated N-terminus (By similarity). Matrix
protein is part of the pre-integration complex. Implicated in the
release from host cell mediated by Vpu. Binds to RNA (By
similarity). {ECO:0000250|UniProtKB:P12497}.
-!- FUNCTION: Capsid protein p24: Forms the conical core that
encapsulates the genomic RNA-nucleocapsid complex in the virion
(PubMed:8648689). Most core are conical, with only 7% tubular. The
core is constituted by capsid protein hexamer subunits. The core
is disassembled soon after virion entry (PubMed:12660176). Host
restriction factors such as monkey TRIM5-alpha or TRIMCyp bind
retroviral capsids and cause premature capsid disassembly, leading
to blocks in reverse transcription. Capsid restriction by TRIM5 is
one of the factors which restricts HIV-1 to the human species
(PubMed:23785198). Host PIN1 apparently facilitates the virion
uncoating (By similarity). On the other hand, interactions with
PDZD8 or CYPA stabilize the capsid (PubMed:24554657).
{ECO:0000250|UniProtKB:P12497, ECO:0000269|PubMed:12660176,
ECO:0000269|PubMed:23785198, ECO:0000269|PubMed:24554657,
ECO:0000269|PubMed:8648689}.
-!- FUNCTION: Nucleocapsid protein p7: Encapsulates and protects viral
dimeric unspliced genomic RNA (gRNA). Binds these RNAs through its
zinc fingers. Acts as a nucleic acid chaperone which is involved
in rearangement of nucleic acid secondary structure during gRNA
retrotranscription. Also facilitates template switch leading to
recombination. As part of the polyprotein, participates in gRNA
dimerization, packaging, tRNA incorporation and virion assembly.
{ECO:0000269|PubMed:11044125, ECO:0000269|PubMed:17070549,
ECO:0000269|PubMed:18343475, ECO:0000269|PubMed:20828778,
ECO:0000269|PubMed:9931246}.
-!- FUNCTION: Protease: Aspartyl protease that mediates proteolytic
cleavages of Gag and Gag-Pol polyproteins during or shortly after
the release of the virion from the plasma membrane
(PubMed:9573231, PubMed:11932404). Cleavages take place as an
ordered, step-wise cascade to yield mature proteins
(PubMed:9573231, PubMed:11932404). This process is called
maturation (PubMed:9573231, PubMed:11932404). Displays maximal
activity during the budding process just prior to particle release
from the cell (PubMed:9573231, PubMed:11932404). Also cleaves Nef
and Vif, probably concomitantly with viral structural proteins on
maturation of virus particles (PubMed:7835426). Hydrolyzes host
EIF4GI and PABP1 in order to shut off the capped cellular mRNA
translation. The resulting inhibition of cellular protein
synthesis serves to ensure maximal viral gene expression and to
evade host immune response (PubMed:12660176, PubMed:19914170).
{ECO:0000250, ECO:0000255|PROSITE-ProRule:PRU00275,
ECO:0000269|PubMed:12505164, ECO:0000269|PubMed:19956697,
ECO:0000269|PubMed:7835426}.
-!- FUNCTION: Reverse transcriptase/ribonuclease H: Multifunctional
enzyme that converts the viral RNA genome into dsDNA in the
cytoplasm, shortly after virus entry into the cell. This enzyme
displays a DNA polymerase activity that can copy either DNA or RNA
templates, and a ribonuclease H (RNase H) activity that cleaves
the RNA strand of RNA-DNA heteroduplexes in a partially processive
3' to 5' endonucleasic mode. Conversion of viral genomic RNA into
dsDNA requires many steps. A tRNA(3)-Lys binds to the primer-
binding site (PBS) situated at the 5'-end of the viral RNA. RT
uses the 3' end of the tRNA primer to perform a short round of
RNA-dependent minus-strand DNA synthesis. The reading proceeds
through the U5 region and ends after the repeated (R) region which
is present at both ends of viral RNA. The portion of the RNA-DNA
heteroduplex is digested by the RNase H, resulting in a ssDNA
product attached to the tRNA primer. This ssDNA/tRNA hybridizes
with the identical R region situated at the 3' end of viral RNA.
This template exchange, known as minus-strand DNA strong stop
transfer, can be either intra- or intermolecular. RT uses the 3'
end of this newly synthesized short ssDNA to perform the RNA-
dependent minus-strand DNA synthesis of the whole template. RNase
H digests the RNA template except for two polypurine tracts (PPTs)
situated at the 5'-end and near the center of the genome. It is
not clear if both polymerase and RNase H activities are
simultaneous. RNase H probably can proceed both in a polymerase-
dependent (RNA cut into small fragments by the same RT performing
DNA synthesis) and a polymerase-independent mode (cleavage of
remaining RNA fragments by free RTs). Secondly, RT performs DNA-
directed plus-strand DNA synthesis using the PPTs that have not
been removed by RNase H as primers. PPTs and tRNA primers are then
removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to
form a circular dsDNA intermediate. Strand displacement synthesis
by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA
copy of the viral genome that includes long terminal repeats
(LTRs) at both ends. {ECO:0000269|PubMed:16221683}.
-!- FUNCTION: Integrase: Catalyzes viral DNA integration into the host
chromosome, by performing a series of DNA cutting and joining
reactions. This enzyme activity takes place after virion entry
into a cell and reverse transcription of the RNA genome in dsDNA.
The first step in the integration process is 3' processing. This
step requires a complex comprising the viral genome, matrix
protein, Vpr and integrase. This complex is called the pre-
integration complex (PIC). The integrase protein removes 2
nucleotides from each 3' end of the viral DNA, leaving recessed CA
OH's at the 3' ends. In the second step, the PIC enters cell
nucleus. This process is mediated through integrase and Vpr
proteins, and allows the virus to infect a non dividing cell. This
ability to enter the nucleus is specific of lentiviruses, other
retroviruses cannot and rely on cell division to access cell
chromosomes. In the third step, termed strand transfer, the
integrase protein joins the previously processed 3' ends to the 5'
ends of strands of target cellular DNA at the site of integration.
The 5'-ends are produced by integrase-catalyzed staggered cuts, 5
bp apart. A Y-shaped, gapped, recombination intermediate results,
with the 5'-ends of the viral DNA strands and the 3' ends of
target DNA strands remaining unjoined, flanking a gap of 5 bp. The
last step is viral DNA integration into host chromosome. This
involves host DNA repair synthesis in which the 5 bp gaps between
the unjoined strands are filled in and then ligated. Since this
process occurs at both cuts flanking the HIV genome, a 5 bp
duplication of host DNA is produced at the ends of HIV-1
integration. Alternatively, Integrase may catalyze the excision of
viral DNA just after strand transfer, this is termed
disintegration. {ECO:0000269|PubMed:20554775,
ECO:0000269|PubMed:2349226}.
-!- CATALYTIC ACTIVITY: Specific for a P1 residue that is hydrophobic,
and P1' variable, but often Pro. {ECO:0000255|PROSITE-
ProRule:PRU00275}.
-!- CATALYTIC ACTIVITY: Endohydrolysis of RNA in RNA/DNA hybrids.
Three different cleavage modes: 1. sequence-specific internal
cleavage of RNA. Human immunodeficiency virus type 1 and Moloney
murine leukemia virus enzymes prefer to cleave the RNA strand one
nucleotide away from the RNA-DNA junction. 2. RNA 5'-end directed
cleavage 13-19 nucleotides from the RNA end. 3. DNA 3'-end
directed cleavage 15-20 nucleotides away from the primer terminus.
-!- CATALYTIC ACTIVITY: 3'-end directed exonucleolytic cleavage of
viral RNA-DNA hybrid.
-!- CATALYTIC ACTIVITY: Deoxynucleoside triphosphate + DNA(n) =
diphosphate + DNA(n+1). {ECO:0000255|PROSITE-ProRule:PRU00405}.
-!- COFACTOR:
Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250};
Note=Binds 2 magnesium ions for reverse transcriptase polymerase
activity. {ECO:0000250};
-!- COFACTOR:
Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250};
Note=Binds 2 magnesium ions for ribonuclease H (RNase H) activity.
Substrate-binding is a precondition for magnesium binding.
{ECO:0000250};
-!- COFACTOR:
Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250};
Note=Magnesium ions are required for integrase activity. Binds at
least 1, maybe 2 magnesium ions. {ECO:0000250};
-!- ENZYME REGULATION: Protease: The viral protease is inhibited by
many synthetic protease inhibitors (PIs), such as amprenavir,
atazanavir, indinavir, loprinavir, nelfinavir, ritonavir and
saquinavir. Use of protease inhibitors in tritherapy regimens
permit more ambitious therapeutic strategies. Reverse
transcriptase/ribonuclease H: RT can be inhibited either by
nucleoside RT inhibitors (NRTIs) or by non nucleoside RT
inhibitors (NNRTIs). NRTIs act as chain terminators, whereas
NNRTIs inhibit DNA polymerization by binding a small hydrophobic
pocket near the RT active site and inducing an allosteric change
in this region. Classical NRTIs are abacavir, adefovir (PMEA),
didanosine (ddI), lamivudine (3TC), stavudine (d4T), tenofovir
(PMPA), zalcitabine (ddC), and zidovudine (AZT). Classical NNRTIs
are atevirdine (BHAP U-87201E), delavirdine, efavirenz (DMP-266),
emivirine (I-EBU), and nevirapine (BI-RG-587). The tritherapies
used as a basic effective treatment of AIDS associate two NRTIs
and one NNRTI.
-!- SUBUNIT: Matrix protein p17: Homotrimer; further assembles as
hexamers of trimers (PubMed:19327811). Matrix protein p17:
Interacts with gp41 (via C-terminus) (By similarity). Matrix
protein p17: interacts with host CALM1; this interaction induces a
conformational change in the Matrix protein, triggering exposure
of the myristate group (PubMed:24500712). Matrix protein p17:
interacts with host AP3D1; this interaction allows the polyprotein
trafficking to multivesicular bodies during virus assembly (By
similarity). Matrix protein p17: Part of the pre-integration
complex (PIC) which is composed of viral genome, matrix protein,
Vpr and integrase (By similarity). Capsid protein p24: Homodimer;
the homodimer further multimerizes as homohexamers or
homopentamers (PubMed:19914170). Capsid protein p24: Interacts
with human PPIA/CYPA (PubMed:9223641); this interaction stabilizes
the capsid. Capsid protein p24: Interacts with human NUP153 (By
similarity). Capsid protein p24: Interacts with host PDZD8; this
interaction stabilizes the capsid (PubMed:20573829). Capsid
protein p24: Interacts with monkey TRIM5; this interaction
destabilizes the capsid (PubMed:23785198). Protease: Homodimer,
whose active site consists of two apposed aspartic acid residues
(PubMed:2162350, PubMed:24132393). Reverse
transcriptase/ribonuclease H: Heterodimer of p66 RT and p51 RT (RT
p66/p51). Heterodimerization of RT is essential for DNA polymerase
activity. Despite the sequence identities, p66 RT and p51 RT have
distinct folding. Integrase: Homodimer; possibly can form
homotetramer. Integrase: Part of the pre-integration complex (PIC)
which is composed of viral genome, matrix protein, Vpr and
integrase. Integrase: Interacts with human SMARCB1/INI1 and human
PSIP1/LEDGF isoform 1 (PubMed:7801128). Integrase: Interacts with
human KPNA3; this interaction might play a role in nuclear import
of the pre-integration complex (PubMed:19914170). Integrase:
Interacts with human NUP153; this interaction might play a role in
nuclear import of the pre-integration complex (By similarity).
{ECO:0000250|UniProtKB:P12497, ECO:0000269|PubMed:19327811,
ECO:0000269|PubMed:19914170, ECO:0000269|PubMed:20573829,
ECO:0000269|PubMed:2162350, ECO:0000269|PubMed:23785198,
ECO:0000269|PubMed:24132393, ECO:0000269|PubMed:24500712,
ECO:0000269|PubMed:7801128, ECO:0000269|PubMed:8513493,
ECO:0000269|PubMed:9223641}.
-!- INTERACTION:
Self; NbExp=29; IntAct=EBI-3989067, EBI-3989067;
O00629:KPNA4 (xeno); NbExp=4; IntAct=EBI-9872653, EBI-396343;
O75475:PSIP1 (xeno); NbExp=21; IntAct=EBI-3989067, EBI-1801773;
O75475-1:PSIP1 (xeno); NbExp=2; IntAct=EBI-9872653, EBI-5279836;
P69718:rev (xeno); NbExp=8; IntAct=EBI-3989067, EBI-8540156;
Q12824:SMARCB1 (xeno); NbExp=3; IntAct=EBI-9872653, EBI-358419;
Q9Y5L0:TNPO3 (xeno); NbExp=6; IntAct=EBI-9872653, EBI-1042571;
-!- SUBCELLULAR LOCATION: Gag-Pol polyprotein: Host cell membrane;
Lipid-anchor {ECO:0000250|UniProtKB:P12493}. Host endosome, host
multivesicular body {ECO:0000250|UniProtKB:P12493}. Note=These
locations are linked to virus assembly sites. The main location is
the cell membrane, but under some circumstances, late endosomal
compartments can serve as productive sites for virion assembly.
{ECO:0000250|UniProtKB:P12493}.
-!- SUBCELLULAR LOCATION: Matrix protein p17: Virion membrane; Lipid-
anchor {ECO:0000305}. Host nucleus {ECO:0000250}. Host cytoplasm
{ECO:0000250}.
-!- SUBCELLULAR LOCATION: Capsid protein p24: Virion {ECO:0000305}.
-!- SUBCELLULAR LOCATION: Nucleocapsid protein p7: Virion
{ECO:0000305}.
-!- SUBCELLULAR LOCATION: Reverse transcriptase/ribonuclease H: Virion
{ECO:0000305}.
-!- SUBCELLULAR LOCATION: Integrase: Virion {ECO:0000305}. Host
nucleus {ECO:0000305}. Host cytoplasm {ECO:0000305}. Note=Nuclear
at initial phase, cytoplasmic at assembly. {ECO:0000305}.
-!- ALTERNATIVE PRODUCTS:
Event=Ribosomal frameshifting; Named isoforms=2;
Comment=Translation results in the formation of the Gag
polyprotein most of the time. Ribosomal frameshifting at the
gag-pol genes boundary occurs at low frequency and produces the
Gag-Pol polyprotein. This strategy of translation probably
allows the virus to modulate the quantity of each viral protein.
Maintenance of a correct Gag to Gag-Pol ratio is essential for
RNA dimerization and viral infectivity.;
Name=Gag-Pol polyprotein;
IsoId=P04585-1; Sequence=Displayed;
Note=Produced by -1 ribosomal frameshifting.;
Name=Gag polyprotein;
IsoId=P04591-1; Sequence=External;
Note=Produced by conventional translation.;
-!- DOMAIN: Reverse transcriptase/ribonuclease H: RT is structured in
five subdomains: finger, palm, thumb, connection and RNase H.
Within the palm subdomain, the 'primer grip' region is thought to
be involved in the positioning of the primer terminus for
accommodating the incoming nucleotide. The RNase H domain
stabilizes the association of RT with primer-template (By
similarity). {ECO:0000250}.
-!- DOMAIN: Reverse transcriptase/ribonuclease H: The tryptophan
repeat motif is involved in RT p66/p51 dimerization.
-!- DOMAIN: Integrase: The core domain contains the D-x(n)-D-x(35)-E
motif, named for the phylogenetically conserved glutamic acid and
aspartic acid residues and the invariant 35 amino acid spacing
between the second and third acidic residues. Each acidic residue
of the D,D(35)E motif is independently essential for the 3'-
processing and strand transfer activities of purified integrase
protein.
-!- PTM: Gag-Pol polyprotein: Specific enzymatic cleavages by the
viral protease yield mature proteins. The protease is released by
autocatalytic cleavage. The polyprotein is cleaved during and
after budding, this process is termed maturation. Proteolytic
cleavage of p66 RT removes the RNase H domain to yield the p51 RT
subunit. Nucleocapsid protein p7 might be further cleaved after
virus entry. {ECO:0000255|PROSITE-ProRule:PRU00405,
ECO:0000269|PubMed:10494040, ECO:0000269|PubMed:12477841,
ECO:0000269|PubMed:15065874}.
-!- PTM: Matrix protein p17: Tyrosine phosphorylated presumably in the
virion by a host kinase. Phosphorylation is apparently not a major
regulator of membrane association (PubMed:17656588).
{ECO:0000269|PubMed:17656588}.
-!- PTM: Capsid protein p24: Phosphorylated possibly by host MAPK1;
this phosphorylation is necessary for Pin1-mediated virion
uncoating. {ECO:0000250|UniProtKB:P12493}.
-!- PTM: Nucleocapsid protein p7: Methylated by host PRMT6, impairing
its function by reducing RNA annealing and the initiation of
reverse transcription. {ECO:0000250|UniProtKB:P03366}.
-!- MISCELLANEOUS: Reverse transcriptase/ribonuclease H: Error-prone
enzyme that lacks a proof-reading function. High mutations rate is
a direct consequence of this characteristic. RT also displays
frequent template switching leading to high recombination rate.
Recombination mostly occurs between homologous regions of the two
copackaged RNA genomes. If these two RNA molecules derive from
different viral strains, reverse transcription will give rise to
highly recombinated proviral DNAs.
-!- MISCELLANEOUS: HIV-1 lineages are divided in three main groups, M
(for Major), O (for Outlier), and N (for New, or Non-M, Non-O).
The vast majority of strains found worldwide belong to the group
M. Group O seems to be endemic to and largely confined to Cameroon
and neighboring countries in West Central Africa, where these
viruses represent a small minority of HIV-1 strains. The group N
is represented by a limited number of isolates from Cameroonian
persons. The group M is further subdivided in 9 clades or subtypes
(A to D, F to H, J and K).
-!- MISCELLANEOUS: Resistance to inhibitors associated with mutations
are observed both in viral protease and in reverse transcriptase.
Most of the time, single mutations confer only a modest reduction
in drug susceptibility. Combination of several mutations is
usually required to develop a high-level drug resistance. These
mutations are predominantly found in clade B viruses and not in
other genotypes. They are listed in this entry which is a
representative of clade B.
-!- WEB RESOURCE: Name=HIV drug resistance mutations;
URL="https://www.iasusa.org/content/hiv-drug-resistance-mutations";
-!- WEB RESOURCE: Name=hivdb; Note=HIV drug resistance database;
URL="http://hivdb.stanford.edu";
-!- WEB RESOURCE: Name=BioAfrica HIV proteomics resource; Note=Pol
entry;
URL="http://www.bioafrica.net/proteomics/POLprot.html";
-!- WEB RESOURCE: Name=BioAfrica HIV proteomics resource; Note=RT
(p51) entry;
URL="http://www.bioafrica.net/proteomics/POL-RTprot.html";
-!- WEB RESOURCE: Name=BioAfrica HIV proteomics resource; Note=RNase H
(p15) entry;
URL="http://www.bioafrica.net/proteomics/POL-RNHprot.html";
-!- WEB RESOURCE: Name=BioAfrica HIV proteomics resource; Note=PR
(p15) entry;
URL="http://www.bioafrica.net/proteomics/POL-PRprot.html";
-!- WEB RESOURCE: Name=BioAfrica HIV proteomics resource; Note=IN
(p31) entry;
URL="http://www.bioafrica.net/proteomics/POL-INprot.html";
-!- WEB RESOURCE: Name=BioAfrica: HIV bioinformatics in Africa;
URL="http://www.bioafrica.net/index.html";
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; K03455; AAB50259.1; ALT_SEQ; Genomic_RNA.
EMBL; AF033819; AAC82598.2; ALT_SEQ; Genomic_RNA.
RefSeq; NP_057849.4; NC_001802.1.
PDB; 1A30; X-ray; 2.00 A; A/B=489-587.
PDB; 1BV7; X-ray; 2.00 A; A/B=489-587.
PDB; 1BV9; X-ray; 2.00 A; A/B=489-587.
PDB; 1BVE; NMR; -; A/B=489-587.
PDB; 1BVG; NMR; -; A/B=489-587.
PDB; 1BWA; X-ray; 1.90 A; A/B=489-587.
PDB; 1BWB; X-ray; 1.80 A; A/B=489-587.
PDB; 1C0T; X-ray; 2.70 A; A=588-1147, B=588-1027.
PDB; 1C0U; X-ray; 2.52 A; A=588-1147, B=588-1027.
PDB; 1C1B; X-ray; 2.50 A; A=588-1147, B=588-1428.
PDB; 1C1C; X-ray; 2.50 A; A=588-1147, B=588-1027.
PDB; 1DMP; X-ray; 2.00 A; A/B=489-587.
PDB; 1DTQ; X-ray; 2.80 A; A=588-1147, B=588-1027.
PDB; 1DTT; X-ray; 3.00 A; A=588-1147, B=588-1027.
PDB; 1E6J; X-ray; 3.00 A; P=143-352.
PDB; 1EP4; X-ray; 2.50 A; A=588-1147, B=588-1027.
PDB; 1ESK; NMR; -; A=390-430.
PDB; 1EX4; X-ray; 2.80 A; A/B=1199-1435.
PDB; 1EXQ; X-ray; 1.60 A; A/B=1203-1356.
PDB; 1FB7; X-ray; 2.60 A; A=489-587.
PDB; 1FK9; X-ray; 2.50 A; A=588-1130, B=588-1027.
PDB; 1FKO; X-ray; 2.90 A; A=588-1130, B=588-1027.
PDB; 1FKP; X-ray; 2.90 A; A=588-1130, B=588-1027.
PDB; 1G6L; X-ray; 1.90 A; A=484-587.
PDB; 1HIV; X-ray; 2.00 A; A/B=489-587.
PDB; 1HVH; X-ray; 1.80 A; A/B=489-587.
PDB; 1HVR; X-ray; 1.80 A; A/B=489-587.
PDB; 1HWR; X-ray; 1.80 A; A/B=489-587.
PDB; 1HXB; X-ray; 2.30 A; A/B=489-587.
PDB; 1JKH; X-ray; 2.50 A; A=588-1147, B=588-1027.
PDB; 1JLA; X-ray; 2.50 A; A=588-1147, B=588-1027.
PDB; 1JLB; X-ray; 3.00 A; A=588-1147, B=588-1027.
PDB; 1JLC; X-ray; 3.00 A; A=588-1147, B=588-1027.
PDB; 1JLE; X-ray; 2.80 A; A=588-1147, B=588-1027.
PDB; 1JLF; X-ray; 2.60 A; A=588-1147, B=588-1027.
PDB; 1JLG; X-ray; 2.60 A; A=588-1147, B=588-1027.
PDB; 1JLQ; X-ray; 3.00 A; A=588-1147, B=588-1027.
PDB; 1KLM; X-ray; 2.65 A; A=588-1147, B=588-1027.
PDB; 1LV1; X-ray; 2.10 A; A=484-587.
PDB; 1LW0; X-ray; 2.80 A; A=588-1147, B=588-1027.
PDB; 1LW2; X-ray; 3.00 A; A=588-1147, B=588-1027.
PDB; 1LWC; X-ray; 2.62 A; A=588-1147, B=588-1027.
PDB; 1LWE; X-ray; 2.81 A; A=588-1147, B=588-1027.
PDB; 1LWF; X-ray; 2.80 A; A=588-1147, B=588-1027.
PDB; 1NCP; NMR; -; N=390-406.
PDB; 1O1W; NMR; -; A=1014-1147.
PDB; 1ODW; X-ray; 2.10 A; A/B=489-587.
PDB; 1ODY; X-ray; 2.00 A; A/B=489-587.
PDB; 1QBR; X-ray; 1.80 A; A/B=489-587.
PDB; 1QBS; X-ray; 1.80 A; A/B=489-587.
PDB; 1QBT; X-ray; 2.10 A; A/B=489-587.
PDB; 1QBU; X-ray; 1.80 A; A/B=489-587.
PDB; 1REV; X-ray; 2.60 A; A=588-1147, B=588-1027.
PDB; 1RT1; X-ray; 2.55 A; A=588-1147, B=588-1027.
PDB; 1RT2; X-ray; 2.55 A; A=588-1147, B=588-1027.
PDB; 1RT3; X-ray; 3.00 A; A=588-1147, B=588-1027.
PDB; 1RT4; X-ray; 2.90 A; A=588-1147, B=588-1027.
PDB; 1RT5; X-ray; 2.90 A; A=588-1147, B=588-1027.
PDB; 1RT6; X-ray; 2.80 A; A=588-1147, B=588-1027.
PDB; 1RT7; X-ray; 3.00 A; A=588-1147, B=588-1027.
PDB; 1RTD; X-ray; 3.20 A; B/D=588-1027.
PDB; 1RTH; X-ray; 2.20 A; A=588-1147, B=588-1027.
PDB; 1RTI; X-ray; 3.00 A; A=588-1147, B=588-1027.
PDB; 1RTJ; X-ray; 2.35 A; A=588-1147, B=588-1027.
PDB; 1S1T; X-ray; 2.40 A; A=588-1147, B=588-1027.
PDB; 1S1U; X-ray; 3.00 A; A=588-1147, B=588-1027.
PDB; 1S1V; X-ray; 2.60 A; A=588-1147, B=588-1027.
PDB; 1S1W; X-ray; 2.70 A; A=588-1147, B=588-1027.
PDB; 1S1X; X-ray; 2.80 A; A=588-1147, B=588-1027.
PDB; 1T05; X-ray; 3.00 A; B=588-1016.
PDB; 1TAM; NMR; -; A=1-132.
PDB; 1TKT; X-ray; 2.60 A; A=588-1147, B=588-1027.
PDB; 1TKX; X-ray; 2.85 A; A=588-1147, B=588-1027.
PDB; 1TKZ; X-ray; 2.81 A; A=588-1147, B=588-1027.
PDB; 1TL1; X-ray; 2.90 A; A=588-1147, B=588-1027.
PDB; 1TL3; X-ray; 2.80 A; A=588-1147, B=588-1027.
PDB; 1VRT; X-ray; 2.20 A; A=588-1147, B=588-1027.
PDB; 1VRU; X-ray; 2.40 A; A=588-1147, B=588-1027.
PDB; 2HND; X-ray; 2.50 A; A=591-1124.
PDB; 2HNY; X-ray; 2.50 A; A=591-1124.
PDB; 2HNZ; X-ray; 3.00 A; A=591-1124, B=594-1015.
PDB; 2KOD; NMR; -; A/B=276-363.
PDB; 2NPH; X-ray; 1.65 A; A/B=489-587.
PDB; 2OPP; X-ray; 2.55 A; A=591-1132, B=592-1018.
PDB; 2OPQ; X-ray; 2.80 A; A=591-1124, B=592-1015.
PDB; 2OPR; X-ray; 2.90 A; A=589-1135, B=593-1018.
PDB; 2OPS; X-ray; 2.30 A; A=589-1130, B=593-1027.
PDB; 2RF2; X-ray; 2.40 A; A=588-1147, B=588-1027.
PDB; 2RKI; X-ray; 2.30 A; A=588-1147, B=588-1027.
PDB; 2WHH; X-ray; 1.69 A; A=489-587.
PDB; 2WOM; X-ray; 3.20 A; A=588-1147, B=588-1027.
PDB; 2WON; X-ray; 2.80 A; A=588-1147, B=588-1027.
PDB; 2YNF; X-ray; 2.36 A; A=588-1147, B=588-1015.
PDB; 2YNG; X-ray; 2.12 A; A=588-1147, B=588-1015.
PDB; 2YNH; X-ray; 2.90 A; A=588-1147, B=588-1015.
PDB; 2YNI; X-ray; 2.49 A; A=588-1147, B=588-1015.
PDB; 3AO2; X-ray; 1.80 A; A/B=1197-1359.
PDB; 3C6T; X-ray; 2.70 A; A=588-1147, B=588-1027.
PDB; 3C6U; X-ray; 2.70 A; A=588-1147, B=588-1027.
PDB; 3DI6; X-ray; 2.65 A; A=588-1148, B=588-1027.
PDB; 3DLE; X-ray; 2.50 A; A=588-1147, B=588-1027.
PDB; 3DLG; X-ray; 2.20 A; A=588-1147, B=588-1027.
PDB; 3DM2; X-ray; 3.10 A; A=588-1147, B=588-1027.
PDB; 3DMJ; X-ray; 2.60 A; A=588-1147, B=588-1027.
PDB; 3DOK; X-ray; 2.90 A; A=588-1147, B=588-1027.
PDB; 3DOL; X-ray; 2.50 A; A=588-1147, B=588-1027.
PDB; 3DOX; X-ray; 2.00 A; A=484-587.
PDB; 3DRP; X-ray; 2.60 A; A=588-1147, B=588-1027.
PDB; 3DRR; X-ray; 2.89 A; A=588-1147, B=588-1027.
PDB; 3DRS; X-ray; 3.15 A; A=588-1147, B=588-1027.
PDB; 3DYA; X-ray; 2.30 A; A=588-1148, B=588-1027.
PDB; 3E01; X-ray; 2.95 A; A=588-1148, B=588-1027.
PDB; 3FFI; X-ray; 2.60 A; A=588-1147, B=588-1027.
PDB; 3I0R; X-ray; 2.98 A; A=588-1147, B=588-1027.
PDB; 3I0S; X-ray; 2.70 A; A=588-1147, B=588-1027.
PDB; 3KJV; X-ray; 3.10 A; A=588-1147, B=588-1027.
PDB; 3KK1; X-ray; 2.70 A; A=588-1147, B=588-1027.
PDB; 3KK2; X-ray; 2.90 A; A=588-1147, B=588-1027.
PDB; 3KK3; X-ray; 2.90 A; A=588-1147, B=588-1027.
PDB; 3KT2; X-ray; 1.65 A; A=484-587.
PDB; 3KT5; X-ray; 1.80 A; A=484-587.
PDB; 3LAK; X-ray; 2.30 A; A/B=588-1147.
PDB; 3LAL; X-ray; 2.51 A; A/B=588-1147.
PDB; 3LAM; X-ray; 2.76 A; A/B=588-1147.
PDB; 3LAN; X-ray; 2.55 A; A/B=588-1147.
PDB; 3LP0; X-ray; 2.79 A; A=588-1147, B=588-1027.
PDB; 3LP1; X-ray; 2.23 A; A=588-1147, B=588-1027.
PDB; 3LP2; X-ray; 2.80 A; A=588-1147, B=588-1027.
PDB; 3M8P; X-ray; 2.67 A; A=588-1148, B=588-1027.
PDB; 3M8Q; X-ray; 2.70 A; A=588-1148, B=588-1027.
PDB; 3MEC; X-ray; 2.30 A; A=588-1147, B=588-1027.
PDB; 3MED; X-ray; 2.50 A; A=588-1147, B=588-1027.
PDB; 3MEE; X-ray; 2.40 A; A=588-1147, B=588-1027.
PDB; 3MEG; X-ray; 2.80 A; A=588-1147, B=588-1027.
PDB; 3MIM; X-ray; 1.76 A; A/B=489-587.
PDB; 3N3I; X-ray; 2.50 A; A=484-587.
PDB; 3NBP; X-ray; 2.95 A; A=588-1148, B=588-1027.
PDB; 3PHV; X-ray; 2.70 A; A=489-587.
PDB; 3QIN; X-ray; 1.70 A; A=1014-1103, A=1142-1148.
PDB; 3QIO; X-ray; 1.40 A; A=1014-1148.
PDB; 3QIP; X-ray; 2.09 A; A=588-1147, B=588-1027.
PDB; 3T19; X-ray; 2.60 A; A/B=588-1147.
PDB; 3T1A; X-ray; 2.40 A; A/B=588-1147.
PDB; 3TAM; X-ray; 2.51 A; A=590-1147, B=588-1027.
PDB; 4B3O; X-ray; 3.30 A; A=588-1145, B=588-1027.
PDB; 4B3P; X-ray; 4.84 A; A=588-1145, B=588-1027.
PDB; 4B3Q; X-ray; 5.00 A; A=588-1145, B=588-1027.
PDB; 4I7F; X-ray; 2.50 A; A=588-1147, B=588-1027.
PDB; 4KSE; X-ray; 2.68 A; B=588-1017.
PDB; 4KV8; X-ray; 2.30 A; A=588-1147, B=588-1027.
PDB; 4NCG; X-ray; 2.58 A; A=588-1147, B=585-1027.
PDB; 4Q1W; X-ray; 1.85 A; A/B=496-587.
PDB; 4Q1X; X-ray; 1.90 A; A/B=496-587.
PDB; 4Q1Y; X-ray; 1.50 A; A/B=496-587.
PDB; 4Q5M; X-ray; 1.79 A; A=484-587.
PDB; 4QLH; X-ray; 2.45 A; A=489-592.
PDB; 4U1H; X-ray; 1.59 A; C=180-188.
PDB; 4U1I; X-ray; 1.92 A; C=180-188.
PDB; 4U1J; X-ray; 1.38 A; C=180-188.
PDB; 4U7Q; X-ray; 1.70 A; A/B=496-587.
PDB; 4U7V; X-ray; 1.38 A; A/B=496-587.
PDB; 5DGU; X-ray; 1.22 A; A/B=496-587.
PDB; 5DGW; X-ray; 1.62 A; A/B=496-587.
PDB; 5EU7; X-ray; 2.64 A; A/B=1204-1356.
PDB; 5HRN; X-ray; 1.75 A; A=1197-1359.
PDB; 5HRP; X-ray; 1.81 A; A=1197-1359.
PDB; 5HRR; X-ray; 1.88 A; A=1197-1359.
PDB; 5HRS; X-ray; 1.86 A; A=1197-1359.
PDB; 5IM7; X-ray; 2.50 A; E/F=308-316.
PDB; 5J2M; X-ray; 2.43 A; A=588-1147, B=588-1027.
PDB; 5J2N; X-ray; 2.90 A; A=588-1147, B=588-1027.
PDB; 5J2P; X-ray; 2.53 A; A=588-1147, B=588-1027.
PDB; 5J2Q; X-ray; 2.79 A; A=588-1147, B=588-1027.
PDB; 5K14; X-ray; 2.40 A; A=588-1147.
PDB; 5T82; NMR; -; A=824-905.
PDB; 5XOS; X-ray; 1.70 A; C=880-888.
PDB; 5XOT; X-ray; 2.79 A; C=880-888.
PDBsum; 1A30; -.
PDBsum; 1BV7; -.
PDBsum; 1BV9; -.
PDBsum; 1BVE; -.
PDBsum; 1BVG; -.
PDBsum; 1BWA; -.
PDBsum; 1BWB; -.
PDBsum; 1C0T; -.
PDBsum; 1C0U; -.
PDBsum; 1C1B; -.
PDBsum; 1C1C; -.
PDBsum; 1DMP; -.
PDBsum; 1DTQ; -.
PDBsum; 1DTT; -.
PDBsum; 1E6J; -.
PDBsum; 1EP4; -.
PDBsum; 1ESK; -.
PDBsum; 1EX4; -.
PDBsum; 1EXQ; -.
PDBsum; 1FB7; -.
PDBsum; 1FK9; -.
PDBsum; 1FKO; -.
PDBsum; 1FKP; -.
PDBsum; 1G6L; -.
PDBsum; 1HIV; -.
PDBsum; 1HVH; -.
PDBsum; 1HVR; -.
PDBsum; 1HWR; -.
PDBsum; 1HXB; -.
PDBsum; 1JKH; -.
PDBsum; 1JLA; -.
PDBsum; 1JLB; -.
PDBsum; 1JLC; -.
PDBsum; 1JLE; -.
PDBsum; 1JLF; -.
PDBsum; 1JLG; -.
PDBsum; 1JLQ; -.
PDBsum; 1KLM; -.
PDBsum; 1LV1; -.
PDBsum; 1LW0; -.
PDBsum; 1LW2; -.
PDBsum; 1LWC; -.
PDBsum; 1LWE; -.
PDBsum; 1LWF; -.
PDBsum; 1NCP; -.
PDBsum; 1O1W; -.
PDBsum; 1ODW; -.
PDBsum; 1ODY; -.
PDBsum; 1QBR; -.
PDBsum; 1QBS; -.
PDBsum; 1QBT; -.
PDBsum; 1QBU; -.
PDBsum; 1REV; -.
PDBsum; 1RT1; -.
PDBsum; 1RT2; -.
PDBsum; 1RT3; -.
PDBsum; 1RT4; -.
PDBsum; 1RT5; -.
PDBsum; 1RT6; -.
PDBsum; 1RT7; -.
PDBsum; 1RTD; -.
PDBsum; 1RTH; -.
PDBsum; 1RTI; -.
PDBsum; 1RTJ; -.
PDBsum; 1S1T; -.
PDBsum; 1S1U; -.
PDBsum; 1S1V; -.
PDBsum; 1S1W; -.
PDBsum; 1S1X; -.
PDBsum; 1T05; -.
PDBsum; 1TAM; -.
PDBsum; 1TKT; -.
PDBsum; 1TKX; -.
PDBsum; 1TKZ; -.
PDBsum; 1TL1; -.
PDBsum; 1TL3; -.
PDBsum; 1VRT; -.
PDBsum; 1VRU; -.
PDBsum; 2HND; -.
PDBsum; 2HNY; -.
PDBsum; 2HNZ; -.
PDBsum; 2KOD; -.
PDBsum; 2NPH; -.
PDBsum; 2OPP; -.
PDBsum; 2OPQ; -.
PDBsum; 2OPR; -.
PDBsum; 2OPS; -.
PDBsum; 2RF2; -.
PDBsum; 2RKI; -.
PDBsum; 2WHH; -.
PDBsum; 2WOM; -.
PDBsum; 2WON; -.
PDBsum; 2YNF; -.
PDBsum; 2YNG; -.
PDBsum; 2YNH; -.
PDBsum; 2YNI; -.
PDBsum; 3AO2; -.
PDBsum; 3C6T; -.
PDBsum; 3C6U; -.
PDBsum; 3DI6; -.
PDBsum; 3DLE; -.
PDBsum; 3DLG; -.
PDBsum; 3DM2; -.
PDBsum; 3DMJ; -.
PDBsum; 3DOK; -.
PDBsum; 3DOL; -.
PDBsum; 3DOX; -.
PDBsum; 3DRP; -.
PDBsum; 3DRR; -.
PDBsum; 3DRS; -.
PDBsum; 3DYA; -.
PDBsum; 3E01; -.
PDBsum; 3FFI; -.
PDBsum; 3I0R; -.
PDBsum; 3I0S; -.
PDBsum; 3KJV; -.
PDBsum; 3KK1; -.
PDBsum; 3KK2; -.
PDBsum; 3KK3; -.
PDBsum; 3KT2; -.
PDBsum; 3KT5; -.
PDBsum; 3LAK; -.
PDBsum; 3LAL; -.
PDBsum; 3LAM; -.
PDBsum; 3LAN; -.
PDBsum; 3LP0; -.
PDBsum; 3LP1; -.
PDBsum; 3LP2; -.
PDBsum; 3M8P; -.
PDBsum; 3M8Q; -.
PDBsum; 3MEC; -.
PDBsum; 3MED; -.
PDBsum; 3MEE; -.
PDBsum; 3MEG; -.
PDBsum; 3MIM; -.
PDBsum; 3N3I; -.
PDBsum; 3NBP; -.
PDBsum; 3PHV; -.
PDBsum; 3QIN; -.
PDBsum; 3QIO; -.
PDBsum; 3QIP; -.
PDBsum; 3T19; -.
PDBsum; 3T1A; -.
PDBsum; 3TAM; -.
PDBsum; 4B3O; -.
PDBsum; 4B3P; -.
PDBsum; 4B3Q; -.
PDBsum; 4I7F; -.
PDBsum; 4KSE; -.
PDBsum; 4KV8; -.
PDBsum; 4NCG; -.
PDBsum; 4Q1W; -.
PDBsum; 4Q1X; -.
PDBsum; 4Q1Y; -.
PDBsum; 4Q5M; -.
PDBsum; 4QLH; -.
PDBsum; 4U1H; -.
PDBsum; 4U1I; -.
PDBsum; 4U1J; -.
PDBsum; 4U7Q; -.
PDBsum; 4U7V; -.
PDBsum; 5DGU; -.
PDBsum; 5DGW; -.
PDBsum; 5EU7; -.
PDBsum; 5HRN; -.
PDBsum; 5HRP; -.
PDBsum; 5HRR; -.
PDBsum; 5HRS; -.
PDBsum; 5IM7; -.
PDBsum; 5J2M; -.
PDBsum; 5J2N; -.
PDBsum; 5J2P; -.
PDBsum; 5J2Q; -.
PDBsum; 5K14; -.
PDBsum; 5T82; -.
PDBsum; 5XOS; -.
PDBsum; 5XOT; -.
ProteinModelPortal; P04585; -.
SMR; P04585; -.
BioGrid; 1205538; 127.
IntAct; P04585; 6.
MINT; MINT-111862; -.
BindingDB; P04585; -.
ChEMBL; CHEMBL3638360; -.
DrugBank; DB07892; 1-(2-HYDROXYETHYLOXYMETHYL)-6-PHENYL THIOTHYMINE.
DrugBank; DB08372; 1-[2-(4-ETHOXY-3-FLUOROPYRIDIN-2-YL)ETHYL]-3-(5-METHYLPYRIDIN-2-YL)THIOUREA.
DrugBank; DB08681; 1-METHYL ETHYL 2-CHLORO-5-[[[(1-METHYLETHOXY)THIOOXO]METHYL]AMINO]-BENZOATE.
DrugBank; DB07826; 2-[4-chloro-2-(phenylcarbonyl)phenoxy]-N-phenylacetamide.
DrugBank; DB08679; 2-METHYL-FURAN-3-CARBOTHIOIC ACID [4-CHLORO-3-(3-METHYL-BUT-2-ENYLOXY)-PHENYL]-AMIDE.
DrugBank; DB08154; 3-chloro-5-[2-chloro-5-(1H-indazol-3-ylmethoxy)phenoxy]benzonitrile.
DrugBank; DB07864; 4-[(CYCLOPROPYLETHYNYL)OXY]-6-FLUORO-3-ISOPROPYLQUINOLIN-2(1H)-ONE.
DrugBank; DB08211; 5-bromo-3-(pyrrolidin-1-ylsulfonyl)-1H-indole-2-carboxamide.
DrugBank; DB08379; 6-(4-chloro-2-fluoro-3-phenoxybenzyl)pyridazin-3(2H)-one.
DrugBank; DB08634; 6-BENZYL-1-BENZYLOXYMETHYL-5-ISOPROPYL URACIL.
DrugBank; DB08188; 6-BENZYL-1-ETHOXYMETHYL-5-ISOPROPYL URACIL.
DrugBank; DB07871; 6-CHLORO-4-(CYCLOHEXYLOXY)-3-ISOPROPYLQUINOLIN-2(1H)-ONE.
DrugBank; DB07867; 6-CHLORO-4-(CYCLOHEXYLOXY)-3-PROPYLQUINOLIN-2(1H)-ONE.
DrugBank; DB07868; 6-CHLORO-4-(CYCLOHEXYLSULFANYL)-3-PROPYLQUINOLIN-2(1H)-ONE.
DrugBank; DB07869; 6-CHLORO-4-(CYCLOHEXYLSULFINYL)-3-PROPYLQUINOLIN-2(1H)-ONE.
DrugBank; DB06581; Bevirimat.
DrugBank; DB02102; DMP450.
DrugBank; DB04609; INHIBITOR Q8467 OF DUPONT MERCK.
DrugBank; DB08680; N-[4-CLORO-3-(T-BUTYLOXOME)PHENYL-2-METHYL-3-FURAN-CARBOTHIAMIDE.
DrugBank; DB07797; N-[[3-FLUORO-4-ETHOXY-PYRID-2-YL]ETHYL]-N'-[5-CHLORO-PYRIDYL]-THIOUREA.
DrugBank; DB07781; N-[[3-FLUORO-4-ETHOXY-PYRID-2-YL]ETHYL]-N'-[5-NITRILOMETHYL-PYRIDYL]-THIOUREA.
DrugBank; DB08286; NAPHTHYLOXYACETIC ACID.
DrugBank; DB07910; PHENYLALANINDIOL.
DrugBank; DB02729; SD146.
DrugBank; DB05328; VGV-1.
DrugBank; DB02702; XV638.
GeneID; 155348; -.
KEGG; vg:155348; -.
OrthoDB; VOG09000135; -.
BRENDA; 2.7.7.49; 2676.
BRENDA; 3.4.23.16; 2676.
Reactome; R-HSA-162585; Uncoating of the HIV Virion.
Reactome; R-HSA-162588; Budding and maturation of HIV virion.
Reactome; R-HSA-162592; Integration of provirus.
Reactome; R-HSA-162594; Early Phase of HIV Life Cycle.
Reactome; R-HSA-164516; Minus-strand DNA synthesis.
Reactome; R-HSA-164525; Plus-strand DNA synthesis.
Reactome; R-HSA-164843; 2-LTR circle formation.
Reactome; R-HSA-173107; Binding and entry of HIV virion.
Reactome; R-HSA-175474; Assembly Of The HIV Virion.
Reactome; R-HSA-175567; Integration of viral DNA into host genomic DNA.
Reactome; R-HSA-177539; Autointegration results in viral DNA circles.
Reactome; R-HSA-180689; APOBEC3G mediated resistance to HIV-1 infection.
Reactome; R-HSA-180910; Vpr-mediated nuclear import of PICs.
SABIO-RK; P04585; -.
EvolutionaryTrace; P04585; -.
PRO; PR:P04585; -.
Proteomes; UP000002241; Genome.
Proteomes; UP000105453; Genome.
GO; GO:0005829; C:cytosol; TAS:Reactome.
GO; GO:0005576; C:extracellular region; TAS:Reactome.
GO; GO:0042025; C:host cell nucleus; IEA:UniProtKB-SubCell.
GO; GO:0020002; C:host cell plasma membrane; IEA:UniProtKB-SubCell.
GO; GO:0072494; C:host multivesicular body; IEA:UniProtKB-SubCell.
GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
GO; GO:0005886; C:plasma membrane; TAS:Reactome.
GO; GO:0019013; C:viral nucleocapsid; IEA:UniProtKB-KW.
GO; GO:0055036; C:virion membrane; IEA:UniProtKB-SubCell.
GO; GO:0004190; F:aspartic-type endopeptidase activity; IEA:UniProtKB-KW.
GO; GO:0003677; F:DNA binding; IEA:UniProtKB-KW.
GO; GO:0003887; F:DNA-directed DNA polymerase activity; IEA:UniProtKB-KW.
GO; GO:0004533; F:exoribonuclease H activity; IEA:UniProtKB-EC.
GO; GO:0042802; F:identical protein binding; IDA:UniProtKB.
GO; GO:0008907; F:integrase activity; TAS:Reactome.
GO; GO:0008289; F:lipid binding; IEA:UniProtKB-KW.
GO; GO:0008233; F:peptidase activity; TAS:Reactome.
GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
GO; GO:0003964; F:RNA-directed DNA polymerase activity; IEA:UniProtKB-KW.
GO; GO:0004523; F:RNA-DNA hybrid ribonuclease activity; TAS:Reactome.
GO; GO:0005198; F:structural molecule activity; IEA:InterPro.
GO; GO:0008270; F:zinc ion binding; IDA:CAFA.
GO; GO:0006310; P:DNA recombination; IEA:UniProtKB-KW.
GO; GO:0030260; P:entry into host cell; TAS:Reactome.
GO; GO:0075713; P:establishment of integrated proviral latency; TAS:Reactome.
GO; GO:0019064; P:fusion of virus membrane with host plasma membrane; TAS:Reactome.
GO; GO:0039651; P:induction by virus of host cysteine-type endopeptidase activity involved in apoptotic process; IEA:UniProtKB-KW.
GO; GO:0051169; P:nuclear transport; TAS:Reactome.
GO; GO:0006278; P:RNA-dependent DNA biosynthetic process; TAS:Reactome.
GO; GO:0039657; P:suppression by virus of host gene expression; IEA:UniProtKB-KW.
GO; GO:0019061; P:uncoating of virus; TAS:Reactome.
GO; GO:0044826; P:viral genome integration into host DNA; IEA:UniProtKB-KW.
GO; GO:0019072; P:viral genome packaging; IMP:UniProtKB.
GO; GO:0019058; P:viral life cycle; TAS:Reactome.
GO; GO:0075732; P:viral penetration into host nucleus; IEA:UniProtKB-KW.
GO; GO:0019068; P:virion assembly; TAS:Reactome.
CDD; cd05482; HIV_retropepsin_like; 1.
Gene3D; 1.10.10.200; -; 1.
Gene3D; 1.10.1200.30; -; 1.
Gene3D; 1.10.375.10; -; 1.
Gene3D; 2.30.30.10; -; 1.
Gene3D; 2.40.70.10; -; 1.
Gene3D; 3.30.420.10; -; 2.
Gene3D; 4.10.60.10; -; 3.
InterPro; IPR001969; Aspartic_peptidase_AS.
InterPro; IPR000721; Gag_p24.
InterPro; IPR017856; Integrase-like_N.
InterPro; IPR036862; Integrase_C_dom_sf_retrovir.
InterPro; IPR001037; Integrase_C_retrovir.
InterPro; IPR001584; Integrase_cat-core.
InterPro; IPR003308; Integrase_Zn-bd_dom_N.
InterPro; IPR000071; Lentvrl_matrix_N.
InterPro; IPR001995; Peptidase_A2_cat.
InterPro; IPR021109; Peptidase_aspartic_dom_sf.
InterPro; IPR034170; Retropepsin-like_cat_dom.
InterPro; IPR018061; Retropepsins.
InterPro; IPR008916; Retrov_capsid_C.
InterPro; IPR008919; Retrov_capsid_N.
InterPro; IPR010999; Retrovr_matrix.
InterPro; IPR012337; RNaseH-like_sf.
InterPro; IPR002156; RNaseH_domain.
InterPro; IPR036397; RNaseH_sf.
InterPro; IPR000477; RT_dom.
InterPro; IPR010659; RVT_connect.
InterPro; IPR010661; RVT_thumb.
InterPro; IPR001878; Znf_CCHC.
InterPro; IPR036875; Znf_CCHC_sf.
Pfam; PF00540; Gag_p17; 1.
Pfam; PF00607; Gag_p24; 1.
Pfam; PF00552; IN_DBD_C; 1.
Pfam; PF02022; Integrase_Zn; 1.
Pfam; PF00075; RNase_H; 1.
Pfam; PF00665; rve; 1.
Pfam; PF00077; RVP; 1.
Pfam; PF00078; RVT_1; 1.
Pfam; PF06815; RVT_connect; 1.
Pfam; PF06817; RVT_thumb; 1.
Pfam; PF00098; zf-CCHC; 2.
PRINTS; PR00234; HIV1MATRIX.
SMART; SM00343; ZnF_C2HC; 2.
SUPFAM; SSF46919; SSF46919; 1.
SUPFAM; SSF47353; SSF47353; 1.
SUPFAM; SSF47836; SSF47836; 1.
SUPFAM; SSF47943; SSF47943; 1.
SUPFAM; SSF50122; SSF50122; 1.
SUPFAM; SSF50630; SSF50630; 1.
SUPFAM; SSF53098; SSF53098; 2.
SUPFAM; SSF57756; SSF57756; 1.
PROSITE; PS50175; ASP_PROT_RETROV; 1.
PROSITE; PS00141; ASP_PROTEASE; 1.
PROSITE; PS50994; INTEGRASE; 1.
PROSITE; PS51027; INTEGRASE_DBD; 1.
PROSITE; PS50879; RNASE_H; 1.
PROSITE; PS50878; RT_POL; 1.
PROSITE; PS50158; ZF_CCHC; 2.
PROSITE; PS50876; ZF_INTEGRASE; 1.
1: Evidence at protein level;
3D-structure; Activation of host caspases by virus; AIDS;
Aspartyl protease; Capsid protein; Complete proteome; DNA integration;
DNA recombination; DNA-binding; DNA-directed DNA polymerase;
Endonuclease; Eukaryotic host gene expression shutoff by virus;
Eukaryotic host translation shutoff by virus; Host cell membrane;
Host cytoplasm; Host endosome; Host gene expression shutoff by virus;
Host membrane; Host nucleus; Host-virus interaction; Hydrolase;
Lipid-binding; Lipoprotein; Magnesium; Membrane; Metal-binding;
Modulation of host cell apoptosis by virus; Multifunctional enzyme;
Myristate; Nuclease; Nucleotidyltransferase; Phosphoprotein; Protease;
Reference proteome; Repeat; Ribosomal frameshifting; RNA-binding;
RNA-directed DNA polymerase; Transferase; Viral genome integration;
Viral nucleoprotein; Viral penetration into host nucleus;
Viral release from host cell; Virion; Virion maturation;
Virus entry into host cell; Zinc; Zinc-finger.
INIT_MET 1 1 Removed; by host. {ECO:0000250}.
CHAIN 2 1435 Gag-Pol polyprotein.
/FTId=PRO_0000223620.
CHAIN 2 132 Matrix protein p17. {ECO:0000250}.
/FTId=PRO_0000042439.
CHAIN 133 363 Capsid protein p24. {ECO:0000250}.
/FTId=PRO_0000042440.
PEPTIDE 364 377 Spacer peptide 1. {ECO:0000250}.
/FTId=PRO_0000042441.
CHAIN 378 432 Nucleocapsid protein p7. {ECO:0000250}.
/FTId=PRO_0000042442.
PEPTIDE 433 440 Transframe peptide. {ECO:0000255}.
/FTId=PRO_0000246716.
CHAIN 441 488 p6-pol. {ECO:0000255}.
/FTId=PRO_0000042443.
CHAIN 489 587 Protease.
/FTId=PRO_0000038665.
CHAIN 588 1147 Reverse transcriptase/ribonuclease H.
/FTId=PRO_0000042444.
CHAIN 588 1027 p51 RT.
/FTId=PRO_0000042445.
CHAIN 1028 1147 p15.
/FTId=PRO_0000042446.
CHAIN 1148 1435 Integrase. {ECO:0000250}.
/FTId=PRO_0000042447.
DOMAIN 508 577 Peptidase A2. {ECO:0000255|PROSITE-
ProRule:PRU00275}.
DOMAIN 631 821 Reverse transcriptase.
{ECO:0000255|PROSITE-ProRule:PRU00405}.
DOMAIN 1021 1144 RNase H. {ECO:0000255|PROSITE-
ProRule:PRU00408}.
DOMAIN 1201 1351 Integrase catalytic.
{ECO:0000255|PROSITE-ProRule:PRU00457}.
ZN_FING 390 407 CCHC-type 1. {ECO:0000255|PROSITE-
ProRule:PRU00047}.
ZN_FING 411 428 CCHC-type 2. {ECO:0000255|PROSITE-
ProRule:PRU00047}.
ZN_FING 1150 1191 Integrase-type. {ECO:0000255|PROSITE-
ProRule:PRU00450}.
DNA_BIND 1370 1417 Integrase-type. {ECO:0000255|PROSITE-
ProRule:PRU00506}.
REGION 7 31 Interaction with Gp41.
{ECO:0000250|UniProtKB:P12497}.
REGION 8 43 Interaction with host CALM1.
{ECO:0000269|PubMed:24500712}.
REGION 12 19 Interaction with host AP3D1.
{ECO:0000250|UniProtKB:P12497}.
REGION 14 33 Interaction with membrane
phosphatidylinositol 4,5-bisphosphate and
RNA. {ECO:0000250|UniProtKB:P12497}.
REGION 73 77 Interaction with membrane
phosphatidylinositol 4,5-bisphosphate.
{ECO:0000250|UniProtKB:P12497}.
REGION 189 227 Interaction with host PPIA/CYPA and
NUP153. {ECO:0000250|UniProtKB:P12497}.
REGION 217 225 PPIA/CYPA-binding loop.
REGION 277 363 Dimerization/Multimerization of capsid
protein p24.
REGION 489 493 Dimerization of protease.
{ECO:0000269|PubMed:2162350}.
REGION 537 543 Dimerization of protease.
{ECO:0000269|PubMed:2162350}.
REGION 576 588 Dimerization of protease.
{ECO:0000269|PubMed:2162350}.
REGION 814 822 RT 'primer grip'. {ECO:0000250}.
MOTIF 16 22 Nuclear export signal. {ECO:0000250}.
MOTIF 26 32 Nuclear localization signal.
{ECO:0000250}.
MOTIF 985 1001 Tryptophan repeat motif. {ECO:0000250}.
ACT_SITE 513 513 For protease activity; shared with
dimeric partner. {ECO:0000255|PROSITE-
ProRule:PRU10094}.
METAL 697 697 Magnesium; catalytic; for reverse
transcriptase activity. {ECO:0000250}.
METAL 772 772 Magnesium; catalytic; for reverse
transcriptase activity. {ECO:0000250}.
METAL 773 773 Magnesium; catalytic; for reverse
transcriptase activity. {ECO:0000250}.
METAL 1030 1030 Magnesium; catalytic; for RNase H
activity.
METAL 1065 1065 Magnesium; catalytic; for RNase H
activity. {ECO:0000269|PubMed:12206668}.
METAL 1085 1085 Magnesium; catalytic; for RNase H
activity.
METAL 1136 1136 Magnesium; catalytic; for RNase H
activity. {ECO:0000269|PubMed:12206668}.
METAL 1211 1211 Magnesium; catalytic; for integrase
activity. {ECO:0000250}.
METAL 1263 1263 Magnesium; catalytic; for integrase
activity. {ECO:0000250}.
METAL 1299 1299 Magnesium; catalytic; for integrase
activity. {ECO:0000305}.
SITE 132 133 Cleavage; by viral protease.
{ECO:0000250}.
SITE 221 222 Cis/trans isomerization of proline
peptide bond; by human PPIA/CYPA.
SITE 363 364 Cleavage; by viral protease.
{ECO:0000250}.
SITE 377 378 Cleavage; by viral protease.
{ECO:0000250}.
SITE 393 394 Cleavage; by viral protease.
{ECO:0000255}.
SITE 426 427 Cleavage; by viral protease.
{ECO:0000255}.
SITE 432 433 Cleavage; by viral protease.
{ECO:0000255}.
SITE 440 441 Cleavage; by viral protease.
{ECO:0000250}.
SITE 488 489 Cleavage; by viral protease.
{ECO:0000250}.
SITE 587 588 Cleavage; by viral protease.
{ECO:0000250}.
SITE 988 988 Essential for RT p66/p51
heterodimerization. {ECO:0000250}.
SITE 1001 1001 Essential for RT p66/p51
heterodimerization. {ECO:0000250}.
SITE 1027 1028 Cleavage; by viral protease; partial.
{ECO:0000250}.
SITE 1147 1148 Cleavage; by viral protease.
{ECO:0000250}.
MOD_RES 132 132 Phosphotyrosine; by host. {ECO:0000250}.
LIPID 2 2 N-myristoyl glycine; by host.
{ECO:0000250}.
VARIANT 496 496 R -> K (confers to resistance to A-77003;
when associated with other amino acid
changes).
VARIANT 496 496 R -> Q (confers to resistance to A-
77003).
VARIANT 498 498 L -> F (confers resistance to amprenavir,
atazanavir, lopinavir; when associated
with other amino acid changes).
VARIANT 498 498 L -> I (confers resistance to indinavir,
lopinavir, ritonavir and saquinavir; when
associated with other amino acid
changes).
VARIANT 498 498 L -> R (confers resistance to indinavir
and lopinavir; when associated with other
amino acid changes).
VARIANT 498 498 L -> V (confers resistance to indinavir
and lopinavir; when associated with other
amino acid changes).
VARIANT 498 498 L -> Y (confers resistance to atazanavir;
when associated with other amino acid
changes).
VARIANT 503 503 I -> V (confers resistance to
tipranavir).
VARIANT 504 504 G -> E (confers resistance to lopinavir,
ritonavir and saquinavir; when associated
with other amino acid changes).
VARIANT 508 508 K -> I (confers resistance to lopinavir).
VARIANT 508 508 K -> M (confers resistance to indinavir,
lopinavir and nelfinavir; when associated
with other amino acid changes).
VARIANT 508 508 K -> R (confers resistance to indinavir,
lopinavir and ritonavir; when associated
with other amino acid changes).
VARIANT 511 511 L -> I (confers resistance to BILA 2185
BS).
VARIANT 512 512 L -> I (confers resistance to amprenavir,
indinavir, lopinavir, ritonavir and
saquinavir; when associated with other
amino acid changes).
VARIANT 518 518 D -> N (confers resistance to nelfinavir;
when associated with other amino acid
changes).
VARIANT 520 520 V -> I (confers resistance to A-77003,
amprenavir, atazanavir, indinavir,
kynostatin, lopinavir, ritonavir and
saquinavir; when associated with other
amino acid changes).
VARIANT 521 521 L -> F (confers resistance to atazanavir
nelfinavir and ritonavir; when associated
with other amino acid changes).
VARIANT 522 522 E -> Q (confers resistance to lopinavir;
when associated with other amino acid
changes).
VARIANT 523 523 E -> D (confers resistance to
tipranavir).
VARIANT 524 524 M -> I (confers resistance to nelfinavir
and ritonavir; when associated with other
amino acid changes).
VARIANT 524 524 M -> L (confers resistance to ritonavir;
when associated with other amino acid
changes).
VARIANT 525 525 S -> D (confers resistance to indinavir
and tipranavir; when associated with
other amino acid changes).
VARIANT 529 529 R -> K (confers resistance to
tipranavir).
VARIANT 533 533 K -> I (confers resistance to DMD-323;
when associated with other amino acid
changes).
VARIANT 534 534 M -> F (confers resistance to A-77003).
VARIANT 534 534 M -> I (confers resistance to A-77003,
amprenavir, atazanavir, indinavir,
kynostatin, lopinavir, ritonavir,
saquinavir and telinavir; when associated
with other amino acid changes).
VARIANT 534 534 M -> L (confers resistance to A-77003,
amprenavir, indinavir, lopinavir,
ritonavir and saquinavir; when associated
with other amino acid changes).
VARIANT 535 535 I -> V (confers resistance to amprenavir,
lopinavir, kynostatin, ritonavir and
saquinavir; when associated with other
amino acid changes).
VARIANT 536 536 G -> V (confers resistance to A-77003,
amprenavir, indinavir, ritonavir,
saquinavir and telinavir; when associated
with other amino acid changes).
VARIANT 538 538 I -> L (confers resistance to atazanavir;
when associated with other amino acid
changes).
VARIANT 538 538 I -> V (confers resistance to amprenavir,
lopinavir and ritonavir; when associated
with other amino acid changes).
VARIANT 541 541 F -> L (confers resistance to lopinavir
and telinavir; when associated with other
amino acid changes).
VARIANT 541 541 F -> Y (confers resistance to indinavir,
ritonavir and saquinavir; when associated
with other amino acid changes).
VARIANT 542 542 I -> A (confers resistance to lopinavir).
VARIANT 542 542 I -> L (confers resistance to amprenavir
and lopinavir; when associated with other
amino acid changes).
VARIANT 542 542 I -> M (confers resistance to amprenavir
and lopinavir).
VARIANT 542 542 I -> S (confers resistance to lopinavir).
VARIANT 542 542 I -> T (confers resistance to lopinavir;
when associated with other amino acid
changes).
VARIANT 542 542 I -> V (confers resistance to indinavir,
lopinavir, ritonavir and saquinavir; when
associated with other amino acid
changes).
VARIANT 543 543 K -> R (confers resistance to
nelfinavir).
VARIANT 545 545 R -> K (confers resistance to
nelfinavir).
VARIANT 546 546 Q -> E (confers resistance to lopinavir
and ritonavir; when associated with other
amino acid changes).
VARIANT 548 548 D -> E (confers resistance to
tripanavir).
VARIANT 549 549 Q -> H (confers resistance to lopinavir;
when associated with other amino acid
changes).
VARIANT 551 551 L -> P (confers resistance to atazanavir,
indinavir, lopinavir, ritonavir and
saquinavir; when associated with other
amino acid changes).
VARIANT 551 551 L -> T (confers resistance to lopinavir).
VARIANT 553 553 E -> Q (confers resistance to lopinavir;
when associated with other amino acid
changes).
VARIANT 554 554 I -> F (confers resistance to indinavir,
ritonavir and saquinavir; when associated
with other amino acid changes).
VARIANT 557 557 H -> Y (confers resistance to lopinavir;
when associated with other amino acid
changes).
VARIANT 559 559 A -> I (confers resistance to lopinavir;
when associated with other amino acid
changes).
VARIANT 559 559 A -> L (confers resistance to lopinavir;
when associated with other amino acid
changes).
VARIANT 559 559 A -> T (confers resistance to A-77003,
indinavir, lopinavir, nelfinavir and
tripanavir; when associated with other
amino acid changes).
VARIANT 559 559 A -> V (confers resistance to amprenavir,
atazanavir, indinavir, kynostatin,
lopinavir, nelfinavir, ritonavir,
saquinavir and telinavir; when associated
with other amino acid changes).
VARIANT 561 561 G -> S (confers resistance to indinavir,
nelfinavir, ritonavir and saquinavir;
when associated with other amino acid
changes).
VARIANT 565 565 V -> I (confers resistance to indinavir,
nelfinavir, ritonavir and saquinavir;
when associated with other amino acid
changes).
VARIANT 570 570 V -> A (confers resistance to A-77003,
indinavir, lopinavir, nelfinavir,
ritonavir and saquinavir; when associated
with other amino acid changes).
VARIANT 570 570 V -> F (confers resistance to lopinavir
and ritonavir; when associated with other
amino acid changes).
VARIANT 570 570 V -> I (confers resistance to A-77003 and
kynostatin; when associated with other
amino acid changes).
VARIANT 570 570 V -> S (confers resistance to lopinavir
and ritonavir).
VARIANT 570 570 V -> T (confers resistance to indinavir,
lopinavir, ritonavir and saquinavir; when
associated with other amino acid
changes).
VARIANT 572 572 I -> A (confers resistance to atazanavir,
indinavir, lopinavir, nelfinavir,
ritonavir and saquinavir; when associated
with other amino acid changes).
VARIANT 572 572 I -> V (confers resistance to amprenavir,
atazanavir, indinavir, kynostatin,
lopinavir, nelfinavir, ritonavir,
saquinavir and telinavir; when associated
with other amino acid changes).
VARIANT 576 576 N -> D (confers resistance to nelfinavir;
when associated with other amino acid
changes).
VARIANT 576 576 N -> S (confers resistance to atazanavir,
indinavir and nelfinavir; when associated
with other amino acid changes).
VARIANT 577 577 L -> M (confers resistance to atazanavir;
when associated with other amino acid
changes).
VARIANT 578 578 L -> M (confers resistance to indinavir,
lopinavir, nelfinavir, ritonavir and
saquinavir; when associated with other
amino acid changes).
VARIANT 579 579 T -> S (confers resistance to lopinavir,
ritonavir and saquinavir; when associated
with other amino acid changes).
VARIANT 581 581 I -> L (confers resistance to indinavir).
VARIANT 628 628 M -> L (confers resistance to zidovudine;
when associated with other amino acid
changes).
VARIANT 631 631 E -> A (confers resistance to
lamivudine).
VARIANT 631 631 E -> D (confers resistance to zidovudine;
when associated with other amino acid
changes).
VARIANT 639 639 P -> R (confers resistance to stavudine).
VARIANT 641 641 N -> D (confers resistance to stavudine).
VARIANT 649 649 A -> V (confers multi-NRTI resistance;
when associated with other amino acid
changes).
VARIANT 652 652 K -> R (confers resistance to abacavir,
adefovir, didenosine, lamivudine,
stavudine, tenofir and zidovuline; when
associated with other amino acid
changes).
VARIANT 654 654 D -> A (confers resistance to
zidovudine).
VARIANT 654 654 D -> E (confers multi-NRTI resistance).
VARIANT 654 654 D -> G (confers multi-NRTI resistance).
VARIANT 654 654 D -> N (confers resistance to
zidovudine).
VARIANT 654 654 D -> S (confers multi-NRTI resistance).
VARIANT 655 655 S -> G (confers multi-NRTI resistance;
when associated with other amino acid
changes).
VARIANT 655 655 S -> N (confers multi-NRTI resistance).
VARIANT 655 655 S -> Y (confers multi-NRTI resistance).
VARIANT 656 656 T -> A (confers resistance to lamivudine
and stavudine).
VARIANT 656 656 T -> D (confers resistance to lamivudine,
stavudine and rarely to zalcitabine).
VARIANT 656 656 T -> G (confers resistance to didanosine,
zalcitabine and zidovudine).
VARIANT 656 656 T -> N (confers resistance to lamivudine
and stavudine).
VARIANT 657 657 K -> E (confers resistance to adefovir
and lamivudine).
VARIANT 657 657 K -> R (confers resistance to zidovudine;
when associated with other amino acid
changes).
VARIANT 657 657 K -> S (confers resistance to didanosine
and stavudine).
VARIANT 661 661 L -> I (confers resistance to HBY 097).
VARIANT 661 661 L -> V (confers resistance to abacavir,
didanosine, HBY 097 and zalcitabine; when
associated with other amino acid
changes).
VARIANT 662 662 V -> I (confers multi-NRTI resistance;
when associated with other amino acid
changes).
VARIANT 662 662 V -> L (confers resistance to HBY 097).
VARIANT 662 662 V -> M (confers resistance to stavudine
and zalcitabine).
VARIANT 662 662 V -> T (confers resistance to d4C,
didanosine, stavudine and zalcitabine).
VARIANT 664 664 F -> L (confers multi-NRTI resistance;
when associated with other amino acid
changes).
VARIANT 675 675 W -> G (confers resistance to
pyrophosphate analog PFA).
VARIANT 675 675 W -> S (confers resistance to
pyrophosphate analog PFA).
VARIANT 676 676 E -> G (confers resistance to
pyrophosphate analog PFA).
VARIANT 676 676 E -> K (confers resistance to
pyrophosphate analog PFA).
VARIANT 679 679 L -> I (confers resistance to
pyrophosphate analog PFA).
VARIANT 687 687 L -> I (confers resistance to nevirapine
and efavirenz).
VARIANT 688 688 K -> E (confers resistance to atevirdine,
efavirenz, nevirapine and zidovudine).
VARIANT 688 688 K -> P (confers resistance to TMC125;
when associated with E-142).
VARIANT 688 688 K -> Q (confers resistance to efavirenz;
when associated with I-19).
VARIANT 690 690 K -> E (confers resistance to atevirdine;
when associated with other amino acid
changes).
VARIANT 690 690 K -> N (confers resistance to atevirdine,
efavirenz, emivirine and nevirapine; when
associated with other amino acid
changes).
VARIANT 690 690 K -> R (confers resistance to emivirine
and trovirdine; when associated with
other D-179 and C-181).
VARIANT 693 693 V -> A (confers resistance to
nevirapine).
VARIANT 693 693 V -> I (confers resistance to HBY 097).
VARIANT 693 693 V -> M (confers resistance to
delavirdine, efavirenz and nevirapine).
VARIANT 695 695 V -> I (confers resistance to efavirenz,
emivirine, nevirapine and trovirdine;
when associated with other amino acid
changes).
VARIANT 702 702 Y -> F (confers resistance to abacavir;
when associated with other amino acid
changes).
VARIANT 703 703 F -> Y (confers multi-NRTI resistance;
when associated with other amino acid
changes).
VARIANT 705 705 V -> I (confers resistance to zidovudine;
when associated with other amino acid
changes).
VARIANT 706 706 P -> S (confers resistance to
lodenosine).
VARIANT 722 722 I -> L (confers resistance to
delavirdine, efavirenz and nevirapine;
when associated with I-239).
VARIANT 722 722 I -> M (confers resistance to
delavirdine, efavirenz and nevirapine;
when associated with I-239).
VARIANT 722 722 I -> T (confers resistance to
delavirdine, efavirenz and nevirapine;
when associated with I-239).
VARIANT 725 725 E -> K (confers resistance to emivirine).
VARIANT 732 732 Q -> M (confers both multi-NRTI and
multi-NNRTI resistance).
VARIANT 738 738 Q -> M (confers multi-NRTI resistance;
when associated with other amino acid
changes).
VARIANT 743 743 S -> A (confers resistance to
pyrophosphate analog PFA).
VARIANT 744 744 P -> S (confers resistance to
lamivudine).
VARIANT 748 748 Q -> L (confers resistance to
pyrophosphate analog PFA).
VARIANT 766 766 V -> D (confers resistance to efavirenz,
tivirapine and trovirdine; when
associated with other amino acid
changes).
VARIANT 768 768 Y -> C (confers multi-NNRTI resistance).
VARIANT 771 771 M -> I (confers resistance to lamivudine
and emtricitabine).
VARIANT 771 771 M -> T (confers resistance to abacavir,
didanosine, emtricitabine, lamivudine and
zalcitabine).
VARIANT 771 771 M -> V (confers resistance to
lamivudine).
VARIANT 775 775 Y -> C (confers resistance to
nevirapine).
VARIANT 775 775 Y -> H (confers resistance to atevirdine,
efavirenz, loviride and zidovudine).
VARIANT 775 775 Y -> L (confers resistance to efavirenz).
VARIANT 776 776 V -> I (confers resistance to HBY 097).
VARIANT 777 777 G -> A (confers resistance to efavirenz
and nevirapine).
VARIANT 777 777 G -> C (confers resistance to efavirenz
and nevirapine).
VARIANT 777 777 G -> E (confers resistance to efavirenz,
nevirapine and quinoxaline).
VARIANT 777 777 G -> Q (confers resistance to efavirenz,
HBY 097 and nevirapine).
VARIANT 777 777 G -> S (confers resistance to efavirenz
and nevirapine).
VARIANT 777 777 G -> T (confers resistance to efavirenz,
HBY 097 and nevirapine).
VARIANT 777 777 G -> V (confers resistance to efavirenz
and nevirapine).
VARIANT 795 795 H -> Y (confers resistance to lamivudine,
pyrophosphate analog PFA and zidovudine).
VARIANT 797 797 L -> W (confers resistance to
zidovudine).
VARIANT 798 798 R -> K (confers resistance to lamivudine
and zidovudine).
VARIANT 801 801 L -> F (confers resistance to ph-AZT and
zidovudine).
VARIANT 802 802 T -> F (confers resistance to zidovudine;
when associated with other amino acid
changes).
VARIANT 802 802 T -> Y (confers resistance to zidovudine;
when associated with other amino acid
changes).
VARIANT 806 806 K -> E (confers resistance to
zidovudine).
VARIANT 806 806 K -> Q (confers resistance to zidovudine;
when associated with other amino acid
changes).
VARIANT 806 806 K -> R (confers resistance to lamivudine,
stavudine, zalcicabine and zidovudine).
VARIANT 812 812 P -> H (confers resistance to efavirenz,
emivirine, HBY 097 and quinoxaline; when
associated with A-17).
VARIANT 823 823 P -> L (confers resistance to atevirdine
and delavirdine).
VARIANT 825 825 K -> T (confers resistance to atevirdine
and zidovudine; when associated with
other amino acid changes).
VARIANT 870 870 L -> I (confers resistance to
delavirdine, efavirenz and nevirapine).
VARIANT 905 905 Y -> F (confers resistance to delavirdine
and nevirapine).
VARIANT 920 920 G -> D (confers resistance to abacavir,
lamivudine and zidovudine).
VARIANT 920 920 G -> E (confers resistance to abacavir,
lamivudine and zidovudine).
VARIANT 973 973 T -> I (confers resistance to abacavir,
lamivudine and zidovudine).
MUTAGEN 6 6 S->D: No influence on the PIP2- or
concentration-dependent myristyl switch
mechanism. {ECO:0000269|PubMed:17656588}.
MUTAGEN 9 9 S->D: No influence on the PIP2- or
concentration-dependent myristyl switch
mechanism. {ECO:0000269|PubMed:17656588}.
MUTAGEN 18 18 K->A: Replication-defective, induces
nuclear mislocalization of matrix
protein; when associated with G-22.
{ECO:0000269|PubMed:10604476}.
MUTAGEN 22 22 R->G: Replication-defective, induces
nuclear mislocalization of matrix
protein; when associated with A-18.
{ECO:0000269|PubMed:10604476}.
MUTAGEN 27 27 K->A: No effect on subcellular
localization of matrix protein; when
associated with A-18 and G-22.
{ECO:0000269|PubMed:10604476}.
MUTAGEN 67 67 S->D: No influence on the PIP2- or
concentration-dependent myristyl switch
mechanism. {ECO:0000269|PubMed:17656588}.
MUTAGEN 72 72 S->D: No influence on the PIP2- or
concentration-dependent myristyl switch
mechanism. {ECO:0000269|PubMed:17656588}.
MUTAGEN 217 217 P->A: 3-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 218 218 V->A: 2.7-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 219 219 H->A,Q: 8-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 220 220 A->G: 44-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 220 220 A->V: 3.4-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 221 221 G->A: 31-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 221 221 G->V: 154-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 222 222 P->A: 36-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 222 222 P->V: More than 150-fold decrease of
PPIA-binding affinity.
{ECO:0000269|PubMed:9223641}.
MUTAGEN 223 223 I->A: 1.2-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 223 223 I->V: 1.0-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 224 224 A->G: 2.3-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 224 224 A->V: 1.7-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 225 225 P->A: 1.6-fold decrease of PPIA-binding
affinity. {ECO:0000269|PubMed:9223641}.
MUTAGEN 394 394 N->F,G: Decreases infectivity and
replication.
{ECO:0000269|PubMed:16904152}.
MUTAGEN 400 400 H->C: Complete loss of infectivity and in
vitro chaperone activity.
{ECO:0000269|PubMed:11932404}.
MUTAGEN 405 405 C->H: Complete loss of infectivity and
DNA synthesis.
{ECO:0000269|PubMed:11932404}.
MUTAGEN 421 421 H->C: Partial loss of infectivity.
Complete loss of in vitro chaperone
activity. {ECO:0000269|PubMed:11932404}.
MUTAGEN 426 426 C->H: Partial loss of infectivity.
{ECO:0000269|PubMed:11932404}.
MUTAGEN 1065 1065 E->Q: Complete loss of RNase H activity.
{ECO:0000269|PubMed:12206668}.
MUTAGEN 1136 1136 D->N: Complete loss of RNase H activity.
{ECO:0000269|PubMed:12206668}.
MUTAGEN 1159 1159 H->C: No effect on integrase activity in
vitro. {ECO:0000269|PubMed:8420982}.
MUTAGEN 1163 1163 H->C,V: 75% increase of integrase
activity in vitro.
{ECO:0000269|PubMed:8420982}.
MUTAGEN 1187 1187 C->A: Complete loss of integrase activity
in vivo. {ECO:0000269|PubMed:8035478}.
MUTAGEN 1190 1190 C->A: Complete loss of integrase activity
in vivo. {ECO:0000269|PubMed:8035478}.
MUTAGEN 1200 1200 Q->C: 75% increase of integrase activity
in vitro. {ECO:0000269|PubMed:8420982}.
MUTAGEN 1208 1208 W->A: Complete loss of integrase activity
in vivo. {ECO:0000269|PubMed:8035478}.
MUTAGEN 1211 1211 D->A,V: Complete loss of integrase
activity in vivo and in vitro.
{ECO:0000269|PubMed:8035478,
ECO:0000269|PubMed:8420982,
ECO:0000269|PubMed:9573231}.
MUTAGEN 1213 1213 T->A: No effect on infectivity.
{ECO:0000269|PubMed:8035478}.
MUTAGEN 1222 1222 V->P: Complete loss of integrase
activity. {ECO:0000269|PubMed:8035478}.
MUTAGEN 1228 1228 S->A: Complete loss of integrase activity
in vivo. {ECO:0000269|PubMed:8035478,
ECO:0000269|PubMed:8420982}.
MUTAGEN 1228 1228 S->R: No effect on integrase activity in
vitro. {ECO:0000269|PubMed:8035478,
ECO:0000269|PubMed:8420982}.
MUTAGEN 1262 1262 T->A: No effect infectivity.
{ECO:0000269|PubMed:8035478}.
MUTAGEN 1263 1263 D->A,I: Complete loss of integrase
activity in vivo and in vitro.
{ECO:0000269|PubMed:8035478,
ECO:0000269|PubMed:8420982,
ECO:0000269|PubMed:9573231}.
MUTAGEN 1270 1270 G->A: No effect on infectivity.
{ECO:0000269|PubMed:8035478}.
MUTAGEN 1282 1282 I->P: Complete loss of integrase activity
in vivo. {ECO:0000269|PubMed:8035478}.
MUTAGEN 1298 1298 V->A: No effect on infectivity.
{ECO:0000269|PubMed:8035478}.
MUTAGEN 1299 1299 E->G,P: Complete loss of integrase
activity in vitro.
{ECO:0000269|PubMed:8035478,
ECO:0000269|PubMed:8420982,
ECO:0000269|PubMed:9573231}.
MUTAGEN 1306 1306 K->P: Slow down virus replication.
{ECO:0000269|PubMed:8035478}.
MUTAGEN 1326 1326 A->P: Complete loss of integrase activity
in vivo. {ECO:0000269|PubMed:8035478}.
MUTAGEN 1346 1346 R->C: 75% increase of integrase activity
in vitro. {ECO:0000269|PubMed:8420982}.
MUTAGEN 1382 1382 W->A: Complete loss of infectivity. No
effect on integrase activity in vitro.
{ECO:0000269|PubMed:8035478,
ECO:0000269|PubMed:8420982}.
MUTAGEN 1382 1382 W->E: 75% increase of integrase activity
in vitro. {ECO:0000269|PubMed:8035478,
ECO:0000269|PubMed:8420982}.
STRAND 7 10 {ECO:0000244|PDB:1TAM}.
HELIX 11 18 {ECO:0000244|PDB:1TAM}.
STRAND 19 21 {ECO:0000244|PDB:1TAM}.
STRAND 23 25 {ECO:0000244|PDB:1TAM}.
HELIX 31 45 {ECO:0000244|PDB:1TAM}.
STRAND 46 48 {ECO:0000244|PDB:1TAM}.
TURN 50 52 {ECO:0000244|PDB:1TAM}.
HELIX 54 67 {ECO:0000244|PDB:1TAM}.
TURN 68 70 {ECO:0000244|PDB:1TAM}.
HELIX 72 90 {ECO:0000244|PDB:1TAM}.
HELIX 97 108 {ECO:0000244|PDB:1TAM}.
HELIX 109 112 {ECO:0000244|PDB:1TAM}.
STRAND 116 118 {ECO:0000244|PDB:1TAM}.
HELIX 282 284 {ECO:0000244|PDB:2KOD}.
HELIX 293 304 {ECO:0000244|PDB:2KOD}.
HELIX 311 324 {ECO:0000244|PDB:2KOD}.
HELIX 330 337 {ECO:0000244|PDB:2KOD}.
HELIX 343 349 {ECO:0000244|PDB:2KOD}.
TURN 350 353 {ECO:0000244|PDB:2KOD}.
STRAND 357 360 {ECO:0000244|PDB:2KOD}.
STRAND 393 395 {ECO:0000244|PDB:1ESK}.
TURN 402 404 {ECO:0000244|PDB:1ESK}.
STRAND 414 416 {ECO:0000244|PDB:1ESK}.
TURN 423 425 {ECO:0000244|PDB:1ESK}.
STRAND 490 492 {ECO:0000244|PDB:1HVR}.
STRAND 493 495 {ECO:0000244|PDB:5DGU}.
STRAND 498 503 {ECO:0000244|PDB:5DGU}.
STRAND 506 512 {ECO:0000244|PDB:5DGU}.
STRAND 517 521 {ECO:0000244|PDB:5DGU}.
STRAND 530 537 {ECO:0000244|PDB:5DGU}.
STRAND 540 554 {ECO:0000244|PDB:5DGU}.
STRAND 557 566 {ECO:0000244|PDB:5DGU}.
STRAND 569 573 {ECO:0000244|PDB:1ODW}.
HELIX 575 578 {ECO:0000244|PDB:5DGU}.
HELIX 579 581 {ECO:0000244|PDB:5DGU}.
STRAND 584 586 {ECO:0000244|PDB:5DGU}.
STRAND 594 599 {ECO:0000244|PDB:1G6L}.
STRAND 600 602 {ECO:0000244|PDB:2RF2}.
STRAND 607 611 {ECO:0000244|PDB:3DOX}.
STRAND 613 618 {ECO:0000244|PDB:3DOX}.
HELIX 625 629 {ECO:0000244|PDB:3KJV}.
TURN 630 632 {ECO:0000244|PDB:1VRU}.
STRAND 633 636 {ECO:0000244|PDB:3QIP}.
STRAND 639 641 {ECO:0000244|PDB:2RF2}.
STRAND 647 651 {ECO:0000244|PDB:3QIP}.
TURN 653 656 {ECO:0000244|PDB:3LAK}.
STRAND 658 662 {ECO:0000244|PDB:3QIP}.
HELIX 665 670 {ECO:0000244|PDB:3QIP}.
HELIX 672 676 {ECO:0000244|PDB:3QIP}.
TURN 677 679 {ECO:0000244|PDB:3QIP}.
HELIX 684 686 {ECO:0000244|PDB:3QIP}.
HELIX 687 689 {ECO:0000244|PDB:3QIP}.
STRAND 691 697 {ECO:0000244|PDB:3QIP}.
TURN 699 701 {ECO:0000244|PDB:3QIP}.
HELIX 702 704 {ECO:0000244|PDB:3QIP}.
STRAND 705 707 {ECO:0000244|PDB:1EP4}.
HELIX 709 715 {ECO:0000244|PDB:3QIP}.
STRAND 717 719 {ECO:0000244|PDB:3QIP}.
HELIX 722 724 {ECO:0000244|PDB:3QIP}.
STRAND 725 727 {ECO:0000244|PDB:1VRU}.
STRAND 729 735 {ECO:0000244|PDB:3QIP}.
HELIX 743 761 {ECO:0000244|PDB:3QIP}.
STRAND 762 765 {ECO:0000244|PDB:1C0T}.
STRAND 766 770 {ECO:0000244|PDB:3QIP}.
STRAND 773 778 {ECO:0000244|PDB:3QIP}.
HELIX 782 798 {ECO:0000244|PDB:3QIP}.
HELIX 806 808 {ECO:0000244|PDB:3QIP}.
STRAND 812 816 {ECO:0000244|PDB:3QIP}.
STRAND 819 821 {ECO:0000244|PDB:3QIP}.
HELIX 823 825 {ECO:0000244|PDB:3QIP}.
STRAND 826 828 {ECO:0000244|PDB:3QIP}.
STRAND 837 840 {ECO:0000244|PDB:1RTH}.
HELIX 841 854 {ECO:0000244|PDB:3QIP}.
TURN 855 857 {ECO:0000244|PDB:3QIP}.
STRAND 858 860 {ECO:0000244|PDB:1JLG}.
HELIX 864 869 {ECO:0000244|PDB:3QIP}.
TURN 870 872 {ECO:0000244|PDB:3QIP}.
STRAND 876 879 {ECO:0000244|PDB:2YNI}.
HELIX 884 896 {ECO:0000244|PDB:3QIP}.
STRAND 902 904 {ECO:0000244|PDB:1JLG}.
STRAND 908 910 {ECO:0000244|PDB:4NCG}.
STRAND 913 918 {ECO:0000244|PDB:3QIP}.
STRAND 920 922 {ECO:0000244|PDB:3QIP}.
STRAND 924 931 {ECO:0000244|PDB:3QIP}.
STRAND 935 941 {ECO:0000244|PDB:3QIP}.
STRAND 945 949 {ECO:0000244|PDB:3QIP}.
HELIX 951 970 {ECO:0000244|PDB:3QIP}.
STRAND 975 980 {ECO:0000244|PDB:3QIP}.
HELIX 982 991 {ECO:0000244|PDB:3QIP}.
STRAND 992 995 {ECO:0000244|PDB:3QIP}.
STRAND 1000 1003 {ECO:0000244|PDB:3QIP}.
HELIX 1008 1013 {ECO:0000244|PDB:3QIP}.
STRAND 1022 1024 {ECO:0000244|PDB:1RT2}.
STRAND 1025 1033 {ECO:0000244|PDB:3QIO}.
TURN 1035 1037 {ECO:0000244|PDB:3QIO}.
STRAND 1040 1046 {ECO:0000244|PDB:3QIO}.
STRAND 1047 1049 {ECO:0000244|PDB:3DRP}.
STRAND 1051 1058 {ECO:0000244|PDB:3QIO}.
HELIX 1061 1075 {ECO:0000244|PDB:3QIO}.
STRAND 1078 1085 {ECO:0000244|PDB:3QIO}.
HELIX 1087 1093 {ECO:0000244|PDB:3QIO}.
STRAND 1098 1102 {ECO:0000244|PDB:3QIP}.
HELIX 1105 1112 {ECO:0000244|PDB:3QIO}.
STRAND 1116 1122 {ECO:0000244|PDB:3QIO}.
STRAND 1125 1127 {ECO:0000244|PDB:3LP1}.
HELIX 1130 1140 {ECO:0000244|PDB:3QIO}.
TURN 1141 1143 {ECO:0000244|PDB:3QIO}.
HELIX 1204 1206 {ECO:0000244|PDB:1EXQ}.
STRAND 1207 1215 {ECO:0000244|PDB:1EXQ}.
STRAND 1218 1225 {ECO:0000244|PDB:1EXQ}.
TURN 1226 1228 {ECO:0000244|PDB:1EXQ}.
STRAND 1231 1240 {ECO:0000244|PDB:1EXQ}.
HELIX 1241 1254 {ECO:0000244|PDB:1EXQ}.
STRAND 1259 1261 {ECO:0000244|PDB:1EXQ}.
HELIX 1266 1268 {ECO:0000244|PDB:1EXQ}.
HELIX 1271 1280 {ECO:0000244|PDB:1EXQ}.
STRAND 1283 1286 {ECO:0000244|PDB:5EU7}.
HELIX 1292 1294 {ECO:0000244|PDB:5HRN}.
HELIX 1302 1312 {ECO:0000244|PDB:1EXQ}.
HELIX 1313 1315 {ECO:0000244|PDB:1EXQ}.
HELIX 1319 1332 {ECO:0000244|PDB:1EXQ}.
STRAND 1335 1339 {ECO:0000244|PDB:1EXQ}.
HELIX 1343 1355 {ECO:0000244|PDB:1EXQ}.
HELIX 1358 1368 {ECO:0000244|PDB:1EX4}.
STRAND 1370 1374 {ECO:0000244|PDB:1EX4}.
STRAND 1383 1391 {ECO:0000244|PDB:1EX4}.
STRAND 1393 1399 {ECO:0000244|PDB:1EX4}.
STRAND 1404 1408 {ECO:0000244|PDB:1EX4}.
HELIX 1409 1411 {ECO:0000244|PDB:1EX4}.
STRAND 1412 1414 {ECO:0000244|PDB:1EX4}.
SEQUENCE 1435 AA; 162042 MW; 8487B36BDEAC5FE4 CRC64;
MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPGL LETSEGCRQI
LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA LDKIEEEQNK SKKKAQQAAA
DTGHSNQVSQ NYPIVQNIQG QMVHQAISPR TLNAWVKVVE EKAFSPEVIP MFSALSEGAT
PQDLNTMLNT VGGHQAAMQM LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT
STLQEQIGWM TNNPPIPVGE IYKRWIILGL NKIVRMYSPT SILDIRQGPK EPFRDYVDRF
YKTLRAEQAS QEVKNWMTET LLVQNANPDC KTILKALGPA ATLEEMMTAC QGVGGPGHKA
RVLAEAMSQV TNSATIMMQR GNFRNQRKIV KCFNCGKEGH TARNCRAPRK KGCWKCGKEG
HQMKDCTERQ ANFLREDLAF LQGKAREFSS EQTRANSPTR RELQVWGRDN NSPSEAGADR
QGTVSFNFPQ VTLWQRPLVT IKIGGQLKEA LLDTGADDTV LEEMSLPGRW KPKMIGGIGG
FIKVRQYDQI LIEICGHKAI GTVLVGPTPV NIIGRNLLTQ IGCTLNFPIS PIETVPVKLK
PGMDGPKVKQ WPLTEEKIKA LVEICTEMEK EGKISKIGPE NPYNTPVFAI KKKDSTKWRK
LVDFRELNKR TQDFWEVQLG IPHPAGLKKK KSVTVLDVGD AYFSVPLDED FRKYTAFTIP
SINNETPGIR YQYNVLPQGW KGSPAIFQSS MTKILEPFRK QNPDIVIYQY MDDLYVGSDL
EIGQHRTKIE ELRQHLLRWG LTTPDKKHQK EPPFLWMGYE LHPDKWTVQP IVLPEKDSWT
VNDIQKLVGK LNWASQIYPG IKVRQLCKLL RGTKALTEVI PLTEEAELEL AENREILKEP
VHGVYYDPSK DLIAEIQKQG QGQWTYQIYQ EPFKNLKTGK YARMRGAHTN DVKQLTEAVQ
KITTESIVIW GKTPKFKLPI QKETWETWWT EYWQATWIPE WEFVNTPPLV KLWYQLEKEP
IVGAETFYVD GAANRETKLG KAGYVTNRGR QKVVTLTDTT NQKTELQAIY LALQDSGLEV
NIVTDSQYAL GIIQAQPDQS ESELVNQIIE QLIKKEKVYL AWVPAHKGIG GNEQVDKLVS
AGIRKVLFLD GIDKAQDEHE KYHSNWRAMA SDFNLPPVVA KEIVASCDKC QLKGEAMHGQ
VDCSPGIWQL DCTHLEGKVI LVAVHVASGY IEAEVIPAET GQETAYFLLK LAGRWPVKTI
HTDNGSNFTG ATVRAACWWA GIKQEFGIPY NPQSQGVVES MNKELKKIIG QVRDQAEHLK
TAVQMAVFIH NFKRKGGIGG YSAGERIVDI IATDIQTKEL QKQITKIQNF RVYYRDSRNP
LWKGPAKLLW KGEGAVVIQD NSDIKVVPRR KAKIIRDYGK QMAGDDCVAS RQDED


Related products :

Catalog number Product name Quantity
orb71687 HIV Integrase Protein Inhibitor (1) peptide This is HIV Integrase Protein Inhibitor (1) peptide. For research use only. 1 mg
10-663-45456 HIV-I pol Integrase - Pr160Gag-Pol N_A 0.002 mg
10-663-45456 HIV-I pol Integrase - Pr160Gag-Pol N_A 0.01 mg
10-663-45456 HIV-I pol Integrase - Pr160Gag-Pol N_A 0.1 mg
PCR-505L Polymerase chain reaction PCR and reverse transcriptase polymerase chain reaction RT PCR products: SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50units
PCR-505S Polymerase chain reaction PCR and reverse transcriptase polymerase chain reaction RT PCR products: SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10units
5-42649 HIV Integrase Protein Inhibitor(1), peptide reagents 2 mg
5-42648 HIV Integrase Protein Inhibitor(1), peptide reagents 1 mg
5-42650 HIV Integrase Protein Inhibitor(1), peptide reagents 5 mg
PCR-505S SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10000units
PCR-505L SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50kunits
PCR-505L SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50000 units
PCR-505L SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50000units
PCR-505S SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10kunits
PCR-505S SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10000 units
SCH-OBT1906 RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 0.1 mg
OBT1904X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa340_390), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Appli 1 mg
SCH-OBT1906X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 1 mg
SCH-OBT1904X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa340_390), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Appli 1 mg
OBT1905X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Applicat 1 mg
OBT1906 RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 0.1 mg
OBT1906X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 1 mg
SCH-OBT1905X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Applicat 1 mg
PCR-501L M_MLV Reverse Transcriptase (RNase H_), L pack Reverse Transcriptase 50000units
PCR-501S M_MLV Reverse Transcriptase (RNase H_), S pack Reverse Transcriptase 10000units


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur