Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Gag-Pol polyprotein (Pr160Gag-Pol) [Cleaved into: Matrix protein p17 (MA); Capsid protein p24 (CA); Spacer peptide 1 (SP1) (p2); Nucleocapsid protein p7 (NC); Transframe peptide (TF); p6-pol (p6*); Protease (EC 3.4.23.16) (PR) (Retropepsin); Reverse transcriptase/ribonuclease H (EC 2.7.7.49) (EC 2.7.7.7) (EC 3.1.26.13) (Exoribonuclease H) (EC 3.1.13.2) (p66 RT); p51 RT; p15; Integrase (IN) (EC 2.7.7.-) (EC 3.1.-.-)]

 POL_HV1N5               Reviewed;        1435 AA.
P12497;
01-OCT-1989, integrated into UniProtKB/Swiss-Prot.
27-JUL-2011, sequence version 4.
07-JUN-2017, entry version 202.
RecName: Full=Gag-Pol polyprotein;
AltName: Full=Pr160Gag-Pol;
Contains:
RecName: Full=Matrix protein p17;
Short=MA;
Contains:
RecName: Full=Capsid protein p24;
Short=CA;
Contains:
RecName: Full=Spacer peptide 1 {ECO:0000303|PubMed:22334652};
Short=SP1;
AltName: Full=p2;
Contains:
RecName: Full=Nucleocapsid protein p7;
Short=NC;
Contains:
RecName: Full=Transframe peptide;
Short=TF;
Contains:
RecName: Full=p6-pol;
Short=p6*;
Contains:
RecName: Full=Protease;
EC=3.4.23.16;
AltName: Full=PR;
AltName: Full=Retropepsin;
Contains:
RecName: Full=Reverse transcriptase/ribonuclease H;
EC=2.7.7.49;
EC=2.7.7.7;
EC=3.1.26.13;
AltName: Full=Exoribonuclease H;
EC=3.1.13.2;
AltName: Full=p66 RT;
Contains:
RecName: Full=p51 RT;
Contains:
RecName: Full=p15;
Contains:
RecName: Full=Integrase;
Short=IN;
EC=2.7.7.- {ECO:0000250|UniProtKB:P04585};
EC=3.1.-.- {ECO:0000250|UniProtKB:P04585};
Name=gag-pol;
Human immunodeficiency virus type 1 group M subtype B (isolate NY5)
(HIV-1).
Viruses; Retro-transcribing viruses; Retroviridae; Orthoretrovirinae;
Lentivirus; Primate lentivirus group.
NCBI_TaxID=11698;
NCBI_TaxID=9606; Homo sapiens (Human).
[1]
NUCLEOTIDE SEQUENCE [GENOMIC RNA].
STRAIN=Clone pNL4-3;
Buckler C.E., Buckler-White A.J., Willey R.L., McCoy J.;
Submitted (JUN-1988) to the EMBL/GenBank/DDBJ databases.
[2]
SEQUENCE REVISION TO 545.
Strebel K.J., Martin M.A.;
Submitted (MAY-2010) to the EMBL/GenBank/DDBJ databases.
[3]
INTERACTION OF MATRIX PROTEIN P17 WITH GP41.
PubMed=8918455;
Cosson P.;
"Direct interaction between the envelope and matrix proteins of HIV-
1.";
EMBO J. 15:5783-5788(1996).
[4]
INTERACTION OF MATRIX PROTEIN P17 WITH HUMAN AP3D1.
PubMed=15766529; DOI=10.1016/j.cell.2004.12.023;
Dong X., Li H., Derdowski A., Ding L., Burnett A., Chen X.,
Peters T.R., Dermody T.S., Woodruff E., Wang J.J., Spearman P.;
"AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a
key role in particle assembly.";
Cell 120:663-674(2005).
[5]
INTERACTION OF INTEGRASE WITH HUMAN NUP153.
STRAIN=Clone pNL4-3;
PubMed=19369352; DOI=10.1128/JVI.02061-08;
Woodward C.L., Prakobwanakit S., Mosessian S., Chow S.A.;
"Integrase interacts with nucleoporin NUP153 to mediate the nuclear
import of human immunodeficiency virus type 1.";
J. Virol. 83:6522-6533(2009).
[6]
MUTAGENESIS OF SER-9; SER-67; SER-72 AND SER-77.
PubMed=19059618; DOI=10.1016/j.virol.2008.10.047;
Bhatia A.K., Kaushik R., Campbell N.A., Pontow S.E., Ratner L.;
"Mutation of critical serine residues in HIV-1 matrix result in an
envelope incorporation defect which can be rescued by truncation of
the gp41 cytoplasmic tail.";
Virology 384:233-241(2009).
[7]
SUBCELLULAR LOCATION OF GAG-POL POLYPROTEIN.
PubMed=19297499; DOI=10.1128/JVI.00109-09;
Joshi A., Ablan S.D., Soheilian F., Nagashima K., Freed E.O.;
"Evidence that productive human immunodeficiency virus type 1 assembly
can occur in an intracellular compartment.";
J. Virol. 83:5375-5387(2009).
[8]
INTERACTION OF MATRIX PROTEIN P17 WITH RAT CALM1.
PubMed=21799007; DOI=10.1074/jbc.M111.273623;
Samal A.B., Ghanam R.H., Fernandez T.F., Monroe E.B., Saad J.S.;
"NMR, biophysical, and biochemical studies reveal the minimal
Calmodulin binding domain of the HIV-1 matrix protein.";
J. Biol. Chem. 286:33533-33543(2011).
[9]
PROTEOLYTIC PROCESSING OF POLYPROTEIN.
PubMed=22334652; DOI=10.1074/jbc.M112.339374;
Lee S.K., Potempa M., Kolli M., Ozen A., Schiffer C.A., Swanstrom R.;
"Context surrounding processing sites is crucial in determining
cleavage rate of a subset of processing sites in HIV-1 Gag and Gag-
Pro-Pol polyprotein precursors by viral protease.";
J. Biol. Chem. 287:13279-13290(2012).
[10]
INTERACTION OF CAPSID WITH HUMAN NUP153.
STRAIN=Clone pNL4-3;
PubMed=24130490; DOI=10.1371/journal.ppat.1003693;
Matreyek K.A., Yucel S.S., Li X., Engelman A.;
"Nucleoporin NUP153 phenylalanine-glycine motifs engage a common
binding pocket within the HIV-1 capsid protein to mediate lentiviral
infectivity.";
PLoS Pathog. 9:E1003693-E1003693(2013).
[11]
SUBUNIT (CAPSID PROTEIN P24).
PubMed=24066695; DOI=10.1021/ja406246z;
Deshmukh L., Schwieters C.D., Grishaev A., Ghirlando R., Baber J.L.,
Clore G.M.;
"Structure and dynamics of full-length HIV-1 capsid protein in
solution.";
J. Am. Chem. Soc. 135:16133-16147(2013).
[12]
INTERACTION OF MATRIX PROTEIN P17 WITH RNA.
PubMed=23552424; DOI=10.1128/JVI.00075-13;
Chukkapalli V., Inlora J., Todd G.C., Ono A.;
"Evidence in support of RNA-mediated inhibition of phosphatidylserine-
dependent HIV-1 Gag membrane binding in cells.";
J. Virol. 87:7155-7159(2013).
[13]
PHOSPHORYLATION AT SER-148 (CAPSID PROTEIN P24).
PubMed=24509437; DOI=10.1099/vir.0.060053-0;
Dochi T., Nakano T., Inoue M., Takamune N., Shoji S., Sano K.,
Misumi S.;
"Phosphorylation of human immunodeficiency virus type 1 capsid protein
at serine 16, required for peptidyl-prolyl isomerase-dependent
uncoating, is mediated by virion-incorporated extracellular signal-
regulated kinase 2.";
J. Gen. Virol. 95:1156-1166(2014).
[14]
REVIEW.
PubMed=8791726;
Vogt V.M.;
"Proteolytic processing and particle maturation.";
Curr. Top. Microbiol. Immunol. 214:95-131(1996).
[15]
REVIEW.
PubMed=9878383; DOI=10.1006/jmbi.1998.2354;
Turner B.G., Summers M.F.;
"Structural biology of HIV.";
J. Mol. Biol. 285:1-32(1999).
[16]
REVIEW.
PubMed=11700285; DOI=10.1146/annurev.genet.35.102401.090551;
Negroni M., Buc H.;
"Mechanisms of retroviral recombination.";
Annu. Rev. Genet. 35:275-302(2001).
[17]
REVIEW.
PubMed=11983066; DOI=10.1186/gb-2002-3-4-reviews3006;
Dunn B.M., Goodenow M.M., Gustchina A., Wlodawer A.;
"Retroviral proteases.";
Genome Biol. 3:REVIEWS3006.1-REVIEWS3006.7(2002).
[18]
REVIEW.
PubMed=12873766; DOI=10.1016/S0005-2736(03)00163-9;
Scarlata S., Carter C.;
"Role of HIV-1 Gag domains in viral assembly.";
Biochim. Biophys. Acta 1614:62-72(2003).
[19]
X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 489-587.
PubMed=2645523; DOI=10.1038/337615a0;
Navia M.A., Fitzgerald P.M.D., McKeever B.M., Leu C.-T.,
Heimbach J.C., Herber W.K., Sigal I.S., Darke P.L., Springer J.P.;
"Three-dimensional structure of aspartyl protease from human
immunodeficiency virus HIV-1.";
Nature 337:615-620(1989).
[20]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 489-587.
PubMed=2548279; DOI=10.1126/science.2548279;
Wlodawer A., Miller M., Jaskolski M., Sathyanarayana B.K., Baldwin E.,
Weber I.T., Selk L.M., Clawson L., Schneider J., Kent S.B.H.;
"Conserved folding in retroviral proteases: crystal structure of a
synthetic HIV-1 protease.";
Science 245:616-621(1989).
[21]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 489-587.
PubMed=2201682;
Fitzgerald P.M.D., McKeever B.M., van Middlesworth J.F.,
Springer J.P., Heimbach J.C., Leu C.-T., Herber W.K., Dixon R.A.F.,
Darke P.L.;
"Crystallographic analysis of a complex between human immunodeficiency
virus type 1 protease and acetyl-pepstatin at 2.0-A resolution.";
J. Biol. Chem. 265:14209-14219(1990).
[22]
X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 489-587.
PubMed=2200122; DOI=10.1126/science.2200122;
Erickson J., Neidhart D.J., Vandrie J., Kempf D.J., Wang X.C.,
Norbeck D.W., Plattner J.J., Rittenhouse J.W., Turon M.,
Wideburg N.E., Kohlbrenner W.E., Simmer R., Helfrich R., Paul D.A.,
Knigge M.;
"Design, activity, and 2.8 A crystal structure of a C2 symmetric
inhibitor complexed to HIV-1 protease.";
Science 249:527-533(1990).
[23]
X-RAY CRYSTALLOGRAPHY (3.7 ANGSTROMS) OF 133-283.
PubMed=2123631; DOI=10.1089/aid.1990.6.1169;
Ehrlich L.S., Krausslich H.G., Wimmer E., Carter C.A.;
"Expression in Escherichia coli and purification of human
immunodeficiency virus type 1 capsid protein (p24).";
AIDS Res. Hum. Retroviruses 6:1169-1175(1990).
[24]
STRUCTURE BY NMR OF 1-132.
PubMed=7966331; DOI=10.1006/jmbi.1994.1719;
Massiah M.A., Starich M.R., Paschall C., Summers M.F.,
Christensen A.M., Sundquist W.I.;
"Three-dimensional structure of the human immunodeficiency virus type
1 matrix protein.";
J. Mol. Biol. 244:198-223(1994).
[25]
X-RAY CRYSTALLOGRAPHY (1.9 ANGSTROMS) OF 501-599 IN COMPLEX WITH THE
INHIBITOR L-736,524.
PubMed=7929352;
Chen Z., Li Y., Chen E., Hall D.L., Darke P.L., Culberson C.,
Shafer J.A., Kuo L.C.;
"Crystal structure at 1.9-A resolution of human immunodeficiency virus
(HIV) II protease complexed with L-735,524, an orally bioavailable
inhibitor of the HIV proteases.";
J. Biol. Chem. 269:26344-26348(1994).
[26]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 1197-1359.
PubMed=7801124; DOI=10.1126/science.7801124;
Dyda F., Hickman A.B., Jenkins T.M., Engelman A., Craigie R.,
Davies D.R.;
"Crystal structure of the catalytic domain of HIV-1 integrase:
similarity to other polynucleotidyl transferases.";
Science 266:1981-1986(1994).
[27]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 1-132.
PubMed=8610175; DOI=10.1073/pnas.93.7.3099;
Hill C.P., Worthylake D.K., Bancroft D.P., Christensen A.M.,
Sundquist W.I.;
"Crystal structures of the trimeric human immunodeficiency virus type
1 matrix protein: implications for membrane association and
assembly.";
Proc. Natl. Acad. Sci. U.S.A. 93:3099-3104(1996).
[28]
X-RAY CRYSTALLOGRAPHY (2.36 ANGSTROMS) OF 133-277, AND INTERACTION OF
CAPSID PROTEIN WITH HUMAN PPIA/CYPA.
PubMed=8980234; DOI=10.1016/S0092-8674(00)81823-1;
Gamble T.R., Vajdos F.F., Yoo S., Worthylake D.K., Houseweart M.,
Sundquist W.I., Hill C.P.;
"Crystal structure of human cyclophilin A bound to the amino-terminal
domain of HIV-1 capsid.";
Cell 87:1285-1294(1996).
[29]
X-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS) OF 1197-1359, AND ACTIVE SITES
OF INTEGRASE.
PubMed=8977101; DOI=10.1016/S0014-5793(96)01236-7;
Bujacz G., Alexandratos J., Qing Z.L., Clement-Mella C., Wlodawer A.;
"The catalytic domain of human immunodeficiency virus integrase:
ordered active site in the F185H mutant.";
FEBS Lett. 398:175-178(1996).
[30]
X-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS) OF 278-377.
PubMed=9346481; DOI=10.1126/science.278.5339.849;
Gamble T.R., Yoo S., Vajdos F.F., von Schwedler U.K., Worthylake D.K.,
Wang H., McCutcheon J.P., Sundquist W.I., Hill C.P.;
"Structure of the carboxyl-terminal dimerization domain of the HIV-1
capsid protein.";
Science 278:849-853(1997).
[31]
STRUCTURE BY NMR OF 1148-1202.
PubMed=9228950; DOI=10.1038/nsb0797-567;
Cai M., Zheng R., Caffrey M., Craigie R., Clore G.M., Gronenborn A.M.;
"Solution structure of the N-terminal zinc binding domain of HIV-1
integrase.";
Nat. Struct. Biol. 4:567-577(1997).
[32]
X-RAY CRYSTALLOGRAPHY (1.95 ANGSTROMS) OF 1197-1356.
PubMed=9689049; DOI=10.1073/pnas.95.16.9150;
Goldgur Y., Dyda F., Hickman A.B., Jenkins T.M., Craigie R.,
Davies D.R.;
"Three new structures of the core domain of HIV-1 integrase: an active
site that binds magnesium.";
Proc. Natl. Acad. Sci. U.S.A. 95:9150-9154(1998).
[33]
X-RAY CRYSTALLOGRAPHY (1.7 ANGSTROMS) OF 1197-1359.
PubMed=10413462; DOI=10.1021/bi9907173;
Greenwald J., Le V., Butler S.L., Bushman F.D., Choe S.;
"The mobility of an HIV-1 integrase active site loop is correlated
with catalytic activity.";
Biochemistry 38:8892-8898(1999).
[34]
STRUCTURE BY NMR OF 133-283.
PubMed=12032547; DOI=10.1038/nsb806;
Tang C., Ndassa Y., Summers M.F.;
"Structure of the N-terminal 283-residue fragment of the immature HIV-
1 Gag polyprotein.";
Nat. Struct. Biol. 9:537-543(2002).
[35]
STRUCTURE BY NMR OF 1-132.
PubMed=14699046; DOI=10.1073/pnas.0305665101;
Tang C., Loeliger E., Luncsford P., Kinde I., Beckett D.,
Summers M.F.;
"Entropic switch regulates myristate exposure in the HIV-1 matrix
protein.";
Proc. Natl. Acad. Sci. U.S.A. 101:517-522(2004).
[36]
STRUCTURE BY NMR OF 2-132, INTERACTION OF MATRIX PROTEIN P17 WITH
PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE, AND FUNCTION (MATRIX PROTEIN
P17).
PubMed=16840558; DOI=10.1073/pnas.0602818103;
Saad J.S., Miller J., Tai J., Kim A., Ghanam R.H., Summers M.F.;
"Structural basis for targeting HIV-1 Gag proteins to the plasma
membrane for virus assembly.";
Proc. Natl. Acad. Sci. U.S.A. 103:11364-11369(2006).
-!- FUNCTION: Gag-Pol polyprotein: Mediates, with Gag polyrotein, the
essential events in virion assembly, including binding the plasma
membrane, making the protein-protein interactions necessary to
create spherical particles, recruiting the viral Env proteins, and
packaging the genomic RNA via direct interactions with the RNA
packaging sequence (Psi). Gag-Pol polyprotein may regulate its own
translation, by the binding genomic RNA in the 5'-UTR. At low
concentration, the polyprotein would promote translation, whereas
at high concentration, the polyprotein would encapsidate genomic
RNA and then shutt off translation. {ECO:0000250}.
-!- FUNCTION: Matrix protein p17: Targets the polyprotein to the
plasma membrane via a multipartite membrane-binding signal, that
includes its myristoylated N-terminus (PubMed:16840558). Matrix
protein is part of the pre-integration complex. Implicated in the
release from host cell mediated by Vpu. Binds to RNA.
{ECO:0000250, ECO:0000269|PubMed:16840558,
ECO:0000269|PubMed:23552424}.
-!- FUNCTION: Capsid protein p24: Forms the conical core that
encapsulates the genomic RNA-nucleocapsid complex in the virion.
Most core are conical, with only 7% tubular. The core is
constituted by capsid protein hexamer subunits. The core is
disassembled soon after virion entry (By similarity). Host
restriction factors such as TRIM5-alpha or TRIMCyp bind retroviral
capsids and cause premature capsid disassembly, leading to blocks
in reverse transcription. Capsid restriction by TRIM5 is one of
the factors which restricts HIV-1 to the human species. Host PIN1
apparently facilitates the virion uncoating (PubMed:24509437). On
the other hand, interactions with PDZD8 or CYPA stabilize the
capsid. {ECO:0000250|UniProtKB:P04585,
ECO:0000269|PubMed:24509437}.
-!- FUNCTION: Nucleocapsid protein p7: Encapsulates and protects viral
dimeric unspliced genomic RNA (gRNA). Binds these RNAs through its
zinc fingers. Acts as a nucleic acid chaperone which is involved
in rearangement of nucleic acid secondary structure during gRNA
retrotranscription. Also facilitates template switch leading to
recombination. As part of the polyprotein, participates in gRNA
dimerization, packaging, tRNA incorporation and virion assembly.
{ECO:0000250|UniProtKB:P04585}.
-!- FUNCTION: Protease: Aspartyl protease that mediates proteolytic
cleavages of Gag and Gag-Pol polyproteins during or shortly after
the release of the virion from the plasma membrane. Cleavages take
place as an ordered, step-wise cascade to yield mature proteins.
This process is called maturation. Displays maximal activity
during the budding process just prior to particle release from the
cell. Also cleaves Nef and Vif, probably concomitantly with viral
structural proteins on maturation of virus particles. Hydrolyzes
host EIF4GI and PABP1 in order to shut off the capped cellular
mRNA translation. The resulting inhibition of cellular protein
synthesis serves to ensure maximal viral gene expression and to
evade host immune response (By similarity).
{ECO:0000250|UniProtKB:P04585, ECO:0000255|PROSITE-
ProRule:PRU00275}.
-!- FUNCTION: Reverse transcriptase/ribonuclease H: Multifunctional
enzyme that converts the viral RNA genome into dsDNA in the
cytoplasm, shortly after virus entry into the cell. This enzyme
displays a DNA polymerase activity that can copy either DNA or RNA
templates, and a ribonuclease H (RNase H) activity that cleaves
the RNA strand of RNA-DNA heteroduplexes in a partially processive
3' to 5' endonucleasic mode. Conversion of viral genomic RNA into
dsDNA requires many steps. A tRNA(3)-Lys binds to the primer-
binding site (PBS) situated at the 5'-end of the viral RNA. RT
uses the 3' end of the tRNA primer to perform a short round of
RNA-dependent minus-strand DNA synthesis. The reading proceeds
through the U5 region and ends after the repeated (R) region which
is present at both ends of viral RNA. The portion of the RNA-DNA
heteroduplex is digested by the RNase H, resulting in a ssDNA
product attached to the tRNA primer. This ssDNA/tRNA hybridizes
with the identical R region situated at the 3' end of viral RNA.
This template exchange, known as minus-strand DNA strong stop
transfer, can be either intra- or intermolecular. RT uses the 3'
end of this newly synthesized short ssDNA to perform the RNA-
dependent minus-strand DNA synthesis of the whole template. RNase
H digests the RNA template except for two polypurine tracts (PPTs)
situated at the 5'-end and near the center of the genome. It is
not clear if both polymerase and RNase H activities are
simultaneous. RNase H probably can proceed both in a polymerase-
dependent (RNA cut into small fragments by the same RT performing
DNA synthesis) and a polymerase-independent mode (cleavage of
remaining RNA fragments by free RTs). Secondly, RT performs DNA-
directed plus-strand DNA synthesis using the PPTs that have not
been removed by RNase H as primers. PPTs and tRNA primers are then
removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to
form a circular dsDNA intermediate. Strand displacement synthesis
by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA
copy of the viral genome that includes long terminal repeats
(LTRs) at both ends. {ECO:0000250|UniProtKB:P04585}.
-!- FUNCTION: Integrase: Catalyzes viral DNA integration into the host
chromosome, by performing a series of DNA cutting and joining
reactions. This enzyme activity takes place after virion entry
into a cell and reverse transcription of the RNA genome in dsDNA.
The first step in the integration process is 3' processing. This
step requires a complex comprising the viral genome, matrix
protein, Vpr and integrase. This complex is called the pre-
integration complex (PIC). The integrase protein removes 2
nucleotides from each 3' end of the viral DNA, leaving recessed CA
OH's at the 3' ends. In the second step, the PIC enters cell
nucleus. This process is mediated through integrase and Vpr
proteins, and allows the virus to infect a non dividing cell. This
ability to enter the nucleus is specific of lentiviruses, other
retroviruses cannot and rely on cell division to access cell
chromosomes. In the third step, termed strand transfer, the
integrase protein joins the previously processed 3' ends to the 5'
ends of strands of target cellular DNA at the site of integration.
The 5'-ends are produced by integrase-catalyzed staggered cuts, 5
bp apart. A Y-shaped, gapped, recombination intermediate results,
with the 5'-ends of the viral DNA strands and the 3' ends of
target DNA strands remaining unjoined, flanking a gap of 5 bp. The
last step is viral DNA integration into host chromosome. This
involves host DNA repair synthesis in which the 5 bp gaps between
the unjoined strands are filled in and then ligated. Since this
process occurs at both cuts flanking the HIV genome, a 5 bp
duplication of host DNA is produced at the ends of HIV-1
integration. Alternatively, Integrase may catalyze the excision of
viral DNA just after strand transfer, this is termed
disintegration. {ECO:0000250|UniProtKB:P04585}.
-!- CATALYTIC ACTIVITY: Specific for a P1 residue that is hydrophobic,
and P1' variable, but often Pro. {ECO:0000255|PROSITE-
ProRule:PRU00275}.
-!- CATALYTIC ACTIVITY: Endohydrolysis of RNA in RNA/DNA hybrids.
Three different cleavage modes: 1. sequence-specific internal
cleavage of RNA. Human immunodeficiency virus type 1 and Moloney
murine leukemia virus enzymes prefer to cleave the RNA strand one
nucleotide away from the RNA-DNA junction. 2. RNA 5'-end directed
cleavage 13-19 nucleotides from the RNA end. 3. DNA 3'-end
directed cleavage 15-20 nucleotides away from the primer terminus.
{ECO:0000250}.
-!- CATALYTIC ACTIVITY: 3'-end directed exonucleolytic cleavage of
viral RNA-DNA hybrid. {ECO:0000250}.
-!- CATALYTIC ACTIVITY: Deoxynucleoside triphosphate + DNA(n) =
diphosphate + DNA(n+1). {ECO:0000255|PROSITE-ProRule:PRU00405}.
-!- COFACTOR:
Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250};
Note=Binds 2 magnesium ions for reverse transcriptase polymerase
activity. {ECO:0000250};
-!- COFACTOR:
Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250};
Note=Binds 2 magnesium ions for ribonuclease H (RNase H) activity.
Substrate-binding is a precondition for magnesium binding.
{ECO:0000250};
-!- COFACTOR:
Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250};
Note=Magnesium ions are required for integrase activity. Binds at
least 1, maybe 2 magnesium ions. {ECO:0000250};
-!- ENZYME REGULATION: Protease: The viral protease is inhibited by
many synthetic protease inhibitors (PIs), such as amprenavir,
atazanavir, indinavir, loprinavir, nelfinavir, ritonavir and
saquinavir. Use of protease inhibitors in tritherapy regimens
permit more ambitious therapeutic strategies. Reverse
transcriptase/ribonuclease H: RT can be inhibited either by
nucleoside RT inhibitors (NRTIs) or by non nucleoside RT
inhibitors (NNRTIs). NRTIs act as chain terminators, whereas
NNRTIs inhibit DNA polymerization by binding a small hydrophobic
pocket near the RT active site and inducing an allosteric change
in this region. Classical NRTIs are abacavir, adefovir (PMEA),
didanosine (ddI), lamivudine (3TC), stavudine (d4T), tenofovir
(PMPA), zalcitabine (ddC), and zidovudine (AZT). Classical NNRTIs
are atevirdine (BHAP U-87201E), delavirdine, efavirenz (DMP-266),
emivirine (I-EBU), and nevirapine (BI-RG-587). The tritherapies
used as a basic effective treatment of AIDS associate two NRTIs
and one NNRTI. {ECO:0000250}.
-!- SUBUNIT: Matrix protein p17: Homotrimer; further assembles as
hexamers of trimers (By similarity). Matrix protein p17: Interacts
with gp41 (via C-terminus) (By similarity). Matrix protein p17:
interacts with host CALM1; this interaction induces a
conformational change in the Matrix protein, triggering exposure
of the myristate group (By similarity). Matrix protein p17:
interacts with host AP3D1; this interaction allows the polyprotein
trafficking to multivesicular bodies during virus assembly (By
similarity). Matrix protein p17: Part of the pre-integration
complex (PIC) which is composed of viral genome, matrix protein,
Vpr and integrase (By similarity). Capsid protein p24: Homodimer;
the homodimer further multimerizes as homohexamers or
homopentamers. Capsid protein p24: Interacts with human PPIA/CYPA
(By similarity); This interaction stabilizes the capsid. Capsid
protein p24: Interacts with human NUP153 (By similarity). Capsid
protein p24: Interacts with host PDZD8; this interaction
stabilizes the capsid (By similarity). Capsid protein p24:
Interacts with monkey TRIM5; this interaction destabilizes the
capsid (By similarity).Protease: Homodimer, whose active site
consists of two apposed aspartic acid residues. Reverse
transcriptase/ribonuclease H: Heterodimer of p66 RT and p51 RT (RT
p66/p51). Heterodimerization of RT is essential for DNA polymerase
activity. Despite the sequence identities, p66 RT and p51 RT have
distinct folding. Integrase: Homodimer; possibly can form
homotetramer. Integrase: Part of the pre-integration complex (PIC)
which is composed of viral genome, matrix protein, Vpr and
integrase. Integrase: Interacts with human SMARCB1/INI1 and human
PSIP1/LEDGF isoform 1. Integrase: Interacts with human KPNA3; this
interaction might play a role in nuclear import of the pre-
integration complex (By similarity). Integrase: Interacts with
human NUP153; this interaction might play a role in nuclear import
of the pre-integration complex (By similarity).
{ECO:0000250|UniProtKB:P04585}.
-!- INTERACTION:
O75475-1:PSIP1 (xeno); NbExp=3; IntAct=EBI-10131955, EBI-5279836;
-!- SUBCELLULAR LOCATION: Gag-Pol polyprotein: Host cell membrane;
Lipid-anchor {ECO:0000269|PubMed:19297499}. Host endosome, host
multivesicular body {ECO:0000269|PubMed:19297499}. Note=These
locations are linked to virus assembly sites. The main location is
the cell membrane, but under some circumstances, late endosomal
compartments can serve as productive sites for virion assembly.
{ECO:0000269|PubMed:19297499}.
-!- SUBCELLULAR LOCATION: Matrix protein p17: Virion membrane; Lipid-
anchor {ECO:0000305}. Host nucleus {ECO:0000250}. Host cytoplasm
{ECO:0000250}.
-!- SUBCELLULAR LOCATION: Capsid protein p24: Virion {ECO:0000305}.
-!- SUBCELLULAR LOCATION: Nucleocapsid protein p7: Virion
{ECO:0000305}.
-!- SUBCELLULAR LOCATION: Reverse transcriptase/ribonuclease H: Virion
{ECO:0000305}.
-!- SUBCELLULAR LOCATION: Integrase: Virion {ECO:0000305}. Host
nucleus {ECO:0000305}. Host cytoplasm {ECO:0000305}. Note=Nuclear
at initial phase, cytoplasmic at assembly. {ECO:0000305}.
-!- ALTERNATIVE PRODUCTS:
Event=Ribosomal frameshifting; Named isoforms=2;
Comment=Translation results in the formation of the Gag
polyprotein most of the time. Ribosomal frameshifting at the
gag-pol genes boundary occurs at low frequency and produces the
Gag-Pol polyprotein. This strategy of translation probably
allows the virus to modulate the quantity of each viral protein.
Maintenance of a correct Gag to Gag-Pol ratio is essential for
RNA dimerization and viral infectivity.;
Name=Gag-Pol polyprotein;
IsoId=P12497-1; Sequence=Displayed;
Note=Produced by -1 ribosomal frameshifting.;
Name=Gag polyprotein;
IsoId=P12493-1; Sequence=External;
Note=Produced by conventional translation.;
-!- DOMAIN: Reverse transcriptase/ribonuclease H: RT is structured in
five subdomains: finger, palm, thumb, connection and RNase H.
Within the palm subdomain, the 'primer grip' region is thought to
be involved in the positioning of the primer terminus for
accommodating the incoming nucleotide. The RNase H domain
stabilizes the association of RT with primer-template.
{ECO:0000250}.
-!- DOMAIN: Reverse transcriptase/ribonuclease H: The tryptophan
repeat motif is involved in RT p66/p51 dimerization (By
similarity). {ECO:0000250}.
-!- DOMAIN: Integrase: The core domain contains the D-x(n)-D-x(35)-E
motif, named for the phylogenetically conserved glutamic acid and
aspartic acid residues and the invariant 35 amino acid spacing
between the second and third acidic residues. Each acidic residue
of the D,D(35)E motif is independently essential for the 3'-
processing and strand transfer activities of purified integrase
protein. {ECO:0000250}.
-!- PTM: Gag-Pol polyprotein: Specific enzymatic cleavages by the
viral protease yield mature proteins. The protease is released by
autocatalytic cleavage. The polyprotein is cleaved during and
after budding, this process is termed maturation. Proteolytic
cleavage of p66 RT removes the RNase H domain to yield the p51 RT
subunit. Nucleocapsid protein p7 might be further cleaved after
virus entry. {ECO:0000255|PROSITE-ProRule:PRU00405,
ECO:0000269|PubMed:22334652}.
-!- PTM: Matrix protein p17: Tyrosine phosphorylated presumably in the
virion by a host kinase. Phosphorylation is apparently not a major
regulator of membrane association. {ECO:0000250|UniProtKB:P04585}.
-!- PTM: Capsid protein p24: Phosphorylated possibly by host MAPK1;
this phosphorylation is necessary for Pin1-mediated virion
uncoating. {ECO:0000269|PubMed:24509437}.
-!- PTM: Nucleocapsid protein p7: Methylated by host PRMT6, impairing
its function by reducing RNA annealing and the initiation of
reverse transcription. {ECO:0000250|UniProtKB:P03347}.
-!- MISCELLANEOUS: Reverse transcriptase/ribonuclease H: Error-prone
enzyme that lacks a proof-reading function. High mutations rate is
a direct consequence of this characteristic. RT also displays
frequent template switching leading to high recombination rate.
Recombination mostly occurs between homologous regions of the two
copackaged RNA genomes. If these two RNA molecules derive from
different viral strains, reverse transcription will give rise to
highly recombinated proviral DNAs. {ECO:0000250}.
-!- MISCELLANEOUS: HIV-1 lineages are divided in three main groups, M
(for Major), O (for Outlier), and N (for New, or Non-M, Non-O).
The vast majority of strains found worldwide belong to the group
M. Group O seems to be endemic to and largely confined to Cameroon
and neighboring countries in West Central Africa, where these
viruses represent a small minority of HIV-1 strains. The group N
is represented by a limited number of isolates from Cameroonian
persons. The group M is further subdivided in 9 clades or subtypes
(A to D, F to H, J and K). {ECO:0000250}.
-!- MISCELLANEOUS: Resistance to inhibitors associated with mutations
are observed both in viral protease and in reverse transcriptase.
Most of the time, single mutations confer only a modest reduction
in drug susceptibility. Combination of several mutations is
usually required to develop a high-level drug resistance. These
mutations are predominantly found in clade B viruses and not in
other genotypes. They are listed in the clade B representative
isolate HXB2 (AC P04585). {ECO:0000250}.
-!- WEB RESOURCE: Name=HIV drug resistance mutations;
URL="https://www.iasusa.org/content/hiv-drug-resistance-mutations";
-!- WEB RESOURCE: Name=hivdb; Note=HIV drug resistance database;
URL="http://hivdb.stanford.edu";
-!- WEB RESOURCE: Name=BioAfrica: HIV bioinformatics in Africa;
URL="http://www.bioafrica.net/index.html";
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; M19921; AAA44988.2; ALT_SEQ; Genomic_RNA.
PDB; 1A43; X-ray; 2.60 A; A=278-363.
PDB; 1A8O; X-ray; 1.70 A; A=284-352.
PDB; 1AFV; X-ray; 3.70 A; A/B=133-283.
PDB; 1AK4; X-ray; 2.36 A; C/D=133-277.
PDB; 1AUM; X-ray; 3.00 A; A=283-352.
PDB; 1B92; X-ray; 2.02 A; A=1197-1359.
PDB; 1B9D; X-ray; 1.70 A; A=1197-1359.
PDB; 1B9F; X-ray; 1.70 A; A=1197-1359.
PDB; 1BAJ; X-ray; 2.60 A; A=278-377.
PDB; 1BHL; X-ray; 2.20 A; A=1204-1354.
PDB; 1BI4; X-ray; 2.50 A; A/B/C=1197-1356.
PDB; 1BIS; X-ray; 1.95 A; A/B=1194-1356.
PDB; 1BIU; X-ray; 2.50 A; A/B/C=1194-1359.
PDB; 1BIZ; X-ray; 1.95 A; A/B=1197-1359.
PDB; 1BL3; X-ray; 2.00 A; A/B/C=1197-1356.
PDB; 1GWP; NMR; -; A=133-283.
PDB; 1HIW; X-ray; 2.30 A; A/B/C/Q/R/S=1-132.
PDB; 1HYV; X-ray; 1.70 A; A=1194-1359.
PDB; 1HYZ; X-ray; 2.30 A; A=1194-1359.
PDB; 1ITG; X-ray; 2.30 A; A=1194-1359.
PDB; 1K6Y; X-ray; 2.40 A; A/B/C/D=1148-1359.
PDB; 1M9D; X-ray; 1.90 A; C/D=133-278.
PDB; 1QS4; X-ray; 2.10 A; A/B/C=1203-1356.
PDB; 1UPH; NMR; -; A=2-132.
PDB; 1WJB; NMR; -; A/B=1148-1202.
PDB; 1WJD; NMR; -; A/B=1148-1202.
PDB; 1WKN; Model; -; A/B=1148-1417.
PDB; 1ZA9; Model; -; A/D/H/K=1148-1194, B/E/I/L=1197-1356, C/F/J/M=1367-1417.
PDB; 2B4J; X-ray; 2.02 A; A/B=1197-1359.
PDB; 2GOL; X-ray; 2.20 A; A=2-131, B/D=133-277.
PDB; 2GON; X-ray; 1.90 A; A/B/C/D=133-278.
PDB; 2H3F; NMR; -; A=2-132.
PDB; 2H3I; NMR; -; A=2-132.
PDB; 2H3Q; NMR; -; A=2-132.
PDB; 2H3V; NMR; -; A=2-132.
PDB; 2H3Z; NMR; -; A=2-132.
PDB; 2HMX; NMR; -; A=1-132.
PDB; 2HVP; X-ray; 3.00 A; A=489-587.
PDB; 2ITG; X-ray; 2.60 A; A=1197-1359.
PDB; 2JPR; NMR; -; A=133-277.
PDB; 2JYG; NMR; -; A=280-363.
PDB; 2JYL; NMR; -; A=280-363.
PDB; 2LF4; NMR; -; A=133-363.
PDB; 2LYA; NMR; -; A=2-132.
PDB; 2LYB; NMR; -; A=2-132.
PDB; 2M3Z; NMR; -; A=378-432.
PDB; 2M8L; NMR; -; A/B=133-363.
PDB; 2M8N; NMR; -; A=133-363.
PDB; 2M8P; NMR; -; A=133-363.
PDB; 2ONT; X-ray; 2.40 A; A=278-352.
PDB; 2PWM; X-ray; 1.90 A; A/B/C/D/E/F/G/H=133-278.
PDB; 2PWO; X-ray; 1.45 A; A/B/C/D=133-278.
PDB; 2PXR; X-ray; 1.50 A; C=133-278.
PDB; 2X2D; X-ray; 1.95 A; D/E=133-278.
PDB; 2XDE; X-ray; 1.40 A; A/B=133-278.
PDB; 2XV6; X-ray; 1.89 A; A/C=278-352.
PDB; 2XXM; X-ray; 1.65 A; A=278-352.
PDB; 3AV9; X-ray; 1.70 A; A/B=1197-1359.
PDB; 3AVA; X-ray; 1.70 A; A/B=1197-1359.
PDB; 3AVB; X-ray; 1.85 A; A/B=1197-1359.
PDB; 3AVC; X-ray; 1.77 A; A/B=1197-1359.
PDB; 3AVF; X-ray; 1.70 A; A/B=1197-1356.
PDB; 3AVG; X-ray; 1.70 A; A/B=1197-1359.
PDB; 3AVH; X-ray; 1.88 A; A/B=1197-1359.
PDB; 3AVJ; X-ray; 1.70 A; A/B=1197-1359.
PDB; 3AVK; X-ray; 1.75 A; A/B=1197-1359.
PDB; 3AVL; X-ray; 1.88 A; A/B=1197-1359.
PDB; 3AVM; X-ray; 1.88 A; A/B=1197-1359.
PDB; 3AVN; X-ray; 2.10 A; A/B=1197-1359.
PDB; 3DIK; EM; 9.00 A; A=133-351.
PDB; 3DPH; X-ray; 2.01 A; A/B=278-363.
PDB; 3DS0; X-ray; 1.60 A; A=278-363.
PDB; 3DS1; X-ray; 1.60 A; A=278-363.
PDB; 3DS2; X-ray; 1.20 A; A/B=278-363.
PDB; 3DS3; X-ray; 2.70 A; A/B=278-363.
PDB; 3DS4; X-ray; 1.12 A; A/B=278-363.
PDB; 3DS5; X-ray; 2.40 A; A/B/C/D=278-363.
PDB; 3DTJ; X-ray; 4.00 A; A/B/C/D=278-363.
PDB; 3GV2; X-ray; 7.00 A; A/B/C/D/E/F=133-355.
PDB; 3H47; X-ray; 1.90 A; A=133-363.
PDB; 3H4E; X-ray; 2.70 A; A/B/C/D/E/F/G/H/I/J/K/L=133-363.
PDB; 3L3U; X-ray; 1.40 A; A/B=1197-1359.
PDB; 3L3V; X-ray; 2.00 A; A/B=1197-1359.
PDB; 3LPT; X-ray; 2.00 A; A=1197-1359.
PDB; 3LPU; X-ray; 1.95 A; A=1197-1359.
PDB; 3LRY; X-ray; 1.98 A; A/B=278-363.
PDB; 3MGE; X-ray; 1.90 A; A=133-363.
PDB; 3NF6; X-ray; 1.90 A; A/B=1197-1359.
PDB; 3NF7; X-ray; 1.80 A; A/B=1197-1359.
PDB; 3NF8; X-ray; 1.90 A; A/B=1197-1359.
PDB; 3NF9; X-ray; 1.95 A; A/B=1197-1359.
PDB; 3NFA; X-ray; 1.95 A; A/B=1197-1359.
PDB; 3P05; X-ray; 2.50 A; A/B/C/D/E=133-363.
PDB; 3P0A; X-ray; 5.95 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T=133-363.
PDB; 3S85; X-ray; 2.80 A; A/B/C/D/E/F/G/H/I/J/K/L=489-587.
PDB; 3WNE; X-ray; 1.70 A; A/B=1203-1359.
PDB; 3WNF; X-ray; 1.45 A; A/B=1203-1359.
PDB; 3WNG; X-ray; 1.75 A; A/B=1203-1359.
PDB; 3WNH; X-ray; 1.50 A; A/B=1203-1359.
PDB; 4AH9; X-ray; 1.70 A; A/B=1197-1359.
PDB; 4AHR; X-ray; 1.90 A; A/B=1197-1359.
PDB; 4AHS; X-ray; 1.75 A; A/B=1197-1359.
PDB; 4AHT; X-ray; 1.80 A; A/B=1197-1359.
PDB; 4AHU; X-ray; 1.90 A; A/B=1197-1359.
PDB; 4AHV; X-ray; 1.80 A; A/B=1197-1359.
PDB; 4COC; X-ray; 1.59 A; A/B/C=278-363.
PDB; 4COP; X-ray; 1.85 A; A/B=278-363.
PDB; 4DGA; X-ray; 1.90 A; C/D=133-277.
PDB; 4DGE; X-ray; 2.20 A; C/D=133-277.
PDB; 4DMN; X-ray; 2.45 A; A=1197-1359.
PDB; 4E1M; X-ray; 1.90 A; A=1197-1359.
PDB; 4E1N; X-ray; 2.00 A; A=1197-1359.
PDB; 4E91; X-ray; 1.70 A; A/B=133-278.
PDB; 4E92; X-ray; 1.80 A; A/B=133-278.
PDB; 4GVM; X-ray; 2.16 A; A=1197-1359.
PDB; 4GW6; X-ray; 2.65 A; A=1197-1359.
PDB; 4ID1; X-ray; 1.87 A; A=1197-1359.
PDB; 4IPY; X-ray; 1.64 A; A/B/C/D=278-363.
PDB; 4JLH; X-ray; 2.09 A; A=1197-1359.
PDB; 4JMU; X-ray; 2.00 A; A=1-111.
PDB; 4LQW; X-ray; 1.95 A; C/D=133-278.
PDB; 4NX4; X-ray; 1.50 A; C=133-278.
PDB; 4O0J; X-ray; 2.05 A; A=1197-1359.
PDB; 4O55; X-ray; 2.24 A; A=1197-1359.
PDB; 4O5B; X-ray; 2.37 A; A=1197-1359.
PDB; 4PHV; X-ray; 2.10 A; A/B=489-587.
PDB; 4QNB; X-ray; 2.00 A; A=133-363.
PDB; 4WYM; X-ray; 2.60 A; A/B/C/D/E/F/G/H/I/J/K/L=133-363.
PDB; 4ZHR; X-ray; 2.60 A; A=588-1147, B=588-1015.
PDB; 5HVP; X-ray; 2.00 A; A/B=489-587.
PDB; 9HVP; X-ray; 2.80 A; A/B=489-587.
PDBsum; 1A43; -.
PDBsum; 1A8O; -.
PDBsum; 1AFV; -.
PDBsum; 1AK4; -.
PDBsum; 1AUM; -.
PDBsum; 1B92; -.
PDBsum; 1B9D; -.
PDBsum; 1B9F; -.
PDBsum; 1BAJ; -.
PDBsum; 1BHL; -.
PDBsum; 1BI4; -.
PDBsum; 1BIS; -.
PDBsum; 1BIU; -.
PDBsum; 1BIZ; -.
PDBsum; 1BL3; -.
PDBsum; 1GWP; -.
PDBsum; 1HIW; -.
PDBsum; 1HYV; -.
PDBsum; 1HYZ; -.
PDBsum; 1ITG; -.
PDBsum; 1K6Y; -.
PDBsum; 1M9D; -.
PDBsum; 1QS4; -.
PDBsum; 1UPH; -.
PDBsum; 1WJB; -.
PDBsum; 1WJD; -.
PDBsum; 1WKN; -.
PDBsum; 1ZA9; -.
PDBsum; 2B4J; -.
PDBsum; 2GOL; -.
PDBsum; 2GON; -.
PDBsum; 2H3F; -.
PDBsum; 2H3I; -.
PDBsum; 2H3Q; -.
PDBsum; 2H3V; -.
PDBsum; 2H3Z; -.
PDBsum; 2HMX; -.
PDBsum; 2HVP; -.
PDBsum; 2ITG; -.
PDBsum; 2JPR; -.
PDBsum; 2JYG; -.
PDBsum; 2JYL; -.
PDBsum; 2LF4; -.
PDBsum; 2LYA; -.
PDBsum; 2LYB; -.
PDBsum; 2M3Z; -.
PDBsum; 2M8L; -.
PDBsum; 2M8N; -.
PDBsum; 2M8P; -.
PDBsum; 2ONT; -.
PDBsum; 2PWM; -.
PDBsum; 2PWO; -.
PDBsum; 2PXR; -.
PDBsum; 2X2D; -.
PDBsum; 2XDE; -.
PDBsum; 2XV6; -.
PDBsum; 2XXM; -.
PDBsum; 3AV9; -.
PDBsum; 3AVA; -.
PDBsum; 3AVB; -.
PDBsum; 3AVC; -.
PDBsum; 3AVF; -.
PDBsum; 3AVG; -.
PDBsum; 3AVH; -.
PDBsum; 3AVJ; -.
PDBsum; 3AVK; -.
PDBsum; 3AVL; -.
PDBsum; 3AVM; -.
PDBsum; 3AVN; -.
PDBsum; 3DIK; -.
PDBsum; 3DPH; -.
PDBsum; 3DS0; -.
PDBsum; 3DS1; -.
PDBsum; 3DS2; -.
PDBsum; 3DS3; -.
PDBsum; 3DS4; -.
PDBsum; 3DS5; -.
PDBsum; 3DTJ; -.
PDBsum; 3GV2; -.
PDBsum; 3H47; -.
PDBsum; 3H4E; -.
PDBsum; 3L3U; -.
PDBsum; 3L3V; -.
PDBsum; 3LPT; -.
PDBsum; 3LPU; -.
PDBsum; 3LRY; -.
PDBsum; 3MGE; -.
PDBsum; 3NF6; -.
PDBsum; 3NF7; -.
PDBsum; 3NF8; -.
PDBsum; 3NF9; -.
PDBsum; 3NFA; -.
PDBsum; 3P05; -.
PDBsum; 3P0A; -.
PDBsum; 3S85; -.
PDBsum; 3WNE; -.
PDBsum; 3WNF; -.
PDBsum; 3WNG; -.
PDBsum; 3WNH; -.
PDBsum; 4AH9; -.
PDBsum; 4AHR; -.
PDBsum; 4AHS; -.
PDBsum; 4AHT; -.
PDBsum; 4AHU; -.
PDBsum; 4AHV; -.
PDBsum; 4COC; -.
PDBsum; 4COP; -.
PDBsum; 4DGA; -.
PDBsum; 4DGE; -.
PDBsum; 4DMN; -.
PDBsum; 4E1M; -.
PDBsum; 4E1N; -.
PDBsum; 4E91; -.
PDBsum; 4E92; -.
PDBsum; 4GVM; -.
PDBsum; 4GW6; -.
PDBsum; 4ID1; -.
PDBsum; 4IPY; -.
PDBsum; 4JLH; -.
PDBsum; 4JMU; -.
PDBsum; 4LQW; -.
PDBsum; 4NX4; -.
PDBsum; 4O0J; -.
PDBsum; 4O55; -.
PDBsum; 4O5B; -.
PDBsum; 4PHV; -.
PDBsum; 4QNB; -.
PDBsum; 4WYM; -.
PDBsum; 4ZHR; -.
PDBsum; 5HVP; -.
PDBsum; 9HVP; -.
DisProt; DP00410; -.
SMR; P12497; -.
IntAct; P12497; 5.
BindingDB; P12497; -.
DrugBank; DB08027; 1-(3-chloro-4-methylphenyl)-3-{2-[({5-[(dimethylamino)methyl]-2-furyl}methyl)thio]ethyl}urea.
DrugBank; DB03118; 1-(5-Chloroindol-3-Yl)-3-Hydroxy-3-(2h-Tetrazol-5-Yl)-Propenone.
DrugBank; DB03676; Cystein-S-Yl Cacodylate.
DrugBank; DB02994; Hydroxydimethylarsine Oxide.
DrugBank; DB08231; MYRISTIC ACID.
DrugBank; DB03963; S-(Dimethylarsenic)Cysteine.
iPTMnet; P12497; -.
EvolutionaryTrace; P12497; -.
PRO; PR:P12497; -.
GO; GO:0042025; C:host cell nucleus; IEA:UniProtKB-SubCell.
GO; GO:0020002; C:host cell plasma membrane; IEA:UniProtKB-SubCell.
GO; GO:0072494; C:host multivesicular body; IEA:UniProtKB-SubCell.
GO; GO:0019013; C:viral nucleocapsid; IEA:UniProtKB-KW.
GO; GO:0055036; C:virion membrane; IEA:UniProtKB-SubCell.
GO; GO:0004190; F:aspartic-type endopeptidase activity; IEA:UniProtKB-KW.
GO; GO:0003677; F:DNA binding; IEA:UniProtKB-KW.
GO; GO:0003887; F:DNA-directed DNA polymerase activity; IEA:UniProtKB-KW.
GO; GO:0004533; F:exoribonuclease H activity; IEA:UniProtKB-EC.
GO; GO:0042802; F:identical protein binding; IPI:IntAct.
GO; GO:0008289; F:lipid binding; IEA:UniProtKB-KW.
GO; GO:0000287; F:magnesium ion binding; IMP:CAFA.
GO; GO:0005546; F:phosphatidylinositol-4,5-bisphosphate binding; IDA:UniProtKB.
GO; GO:0042803; F:protein homodimerization activity; IMP:CAFA.
GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
GO; GO:0003964; F:RNA-directed DNA polymerase activity; IEA:UniProtKB-KW.
GO; GO:0004523; F:RNA-DNA hybrid ribonuclease activity; IEA:InterPro.
GO; GO:0005198; F:structural molecule activity; IEA:InterPro.
GO; GO:0008270; F:zinc ion binding; IEA:InterPro.
GO; GO:0015074; P:DNA integration; IEA:UniProtKB-KW.
GO; GO:0006310; P:DNA recombination; IEA:UniProtKB-KW.
GO; GO:0075713; P:establishment of integrated proviral latency; IEA:UniProtKB-KW.
GO; GO:0039651; P:induction by virus of host cysteine-type endopeptidase activity involved in apoptotic process; IEA:UniProtKB-KW.
GO; GO:0039657; P:suppression by virus of host gene expression; IEA:UniProtKB-KW.
GO; GO:0046718; P:viral entry into host cell; IEA:UniProtKB-KW.
GO; GO:0044826; P:viral genome integration into host DNA; IEA:UniProtKB-KW.
GO; GO:0075732; P:viral penetration into host nucleus; IEA:UniProtKB-KW.
GO; GO:0019076; P:viral release from host cell; IEA:UniProtKB-KW.
CDD; cd05482; HIV_retropepsin_like; 1.
Gene3D; 1.10.10.200; -; 1.
Gene3D; 1.10.1200.30; -; 1.
Gene3D; 1.10.375.10; -; 1.
Gene3D; 2.30.30.10; -; 1.
Gene3D; 2.40.70.10; -; 1.
Gene3D; 3.30.420.10; -; 2.
Gene3D; 4.10.60.10; -; 3.
InterPro; IPR001969; Aspartic_peptidase_AS.
InterPro; IPR000721; Gag_p24.
InterPro; IPR001037; Integrase_C_retrovir.
InterPro; IPR001584; Integrase_cat-core.
InterPro; IPR017856; Integrase_Zn-bd_dom-like_N.
InterPro; IPR003308; Integrase_Zn-bd_dom_N.
InterPro; IPR000071; Lentvrl_matrix_N.
InterPro; IPR001995; Peptidase_A2_cat.
InterPro; IPR021109; Peptidase_aspartic_dom.
InterPro; IPR034170; Retropepsin-like_cat_dom.
InterPro; IPR018061; Retropepsins.
InterPro; IPR008916; Retrov_capsid_C.
InterPro; IPR008919; Retrov_capsid_N.
InterPro; IPR010999; Retrovr_matrix.
InterPro; IPR012337; RNaseH-like_dom.
InterPro; IPR002156; RNaseH_domain.
InterPro; IPR000477; RT_dom.
InterPro; IPR010659; RVT_connect.
InterPro; IPR010661; RVT_thumb.
InterPro; IPR001878; Znf_CCHC.
Pfam; PF00540; Gag_p17; 1.
Pfam; PF00607; Gag_p24; 1.
Pfam; PF00552; IN_DBD_C; 1.
Pfam; PF02022; Integrase_Zn; 1.
Pfam; PF00075; RNase_H; 1.
Pfam; PF00665; rve; 1.
Pfam; PF00077; RVP; 1.
Pfam; PF00078; RVT_1; 1.
Pfam; PF06815; RVT_connect; 1.
Pfam; PF06817; RVT_thumb; 1.
Pfam; PF00098; zf-CCHC; 2.
PRINTS; PR00234; HIV1MATRIX.
SMART; SM00343; ZnF_C2HC; 2.
SUPFAM; SSF46919; SSF46919; 1.
SUPFAM; SSF47353; SSF47353; 1.
SUPFAM; SSF47836; SSF47836; 1.
SUPFAM; SSF47943; SSF47943; 1.
SUPFAM; SSF50122; SSF50122; 1.
SUPFAM; SSF50630; SSF50630; 1.
SUPFAM; SSF53098; SSF53098; 2.
SUPFAM; SSF57756; SSF57756; 1.
PROSITE; PS50175; ASP_PROT_RETROV; 1.
PROSITE; PS00141; ASP_PROTEASE; 1.
PROSITE; PS50994; INTEGRASE; 1.
PROSITE; PS51027; INTEGRASE_DBD; 1.
PROSITE; PS50879; RNASE_H; 1.
PROSITE; PS50878; RT_POL; 1.
PROSITE; PS50158; ZF_CCHC; 2.
PROSITE; PS50876; ZF_INTEGRASE; 1.
1: Evidence at protein level;
3D-structure; Activation of host caspases by virus; AIDS;
Aspartyl protease; Capsid protein; DNA integration; DNA recombination;
DNA-binding; DNA-directed DNA polymerase; Endonuclease;
Eukaryotic host gene expression shutoff by virus;
Eukaryotic host translation shutoff by virus; Host cell membrane;
Host cytoplasm; Host endosome; Host gene expression shutoff by virus;
Host membrane; Host nucleus; Host-virus interaction; Hydrolase;
Lipid-binding; Lipoprotein; Magnesium; Membrane; Metal-binding;
Modulation of host cell apoptosis by virus; Multifunctional enzyme;
Myristate; Nuclease; Nucleotidyltransferase; Phosphoprotein; Protease;
Repeat; Ribosomal frameshifting; RNA-binding;
RNA-directed DNA polymerase; Transferase; Viral genome integration;
Viral nucleoprotein; Viral penetration into host nucleus; Virion;
Virion maturation; Virus entry into host cell;
Virus exit from host cell; Zinc; Zinc-finger.
INIT_MET 1 1 Removed; by host. {ECO:0000250}.
CHAIN 2 1435 Gag-Pol polyprotein.
/FTId=PRO_0000261276.
CHAIN 2 132 Matrix protein p17. {ECO:0000250}.
/FTId=PRO_0000042394.
CHAIN 133 363 Capsid protein p24. {ECO:0000250}.
/FTId=PRO_0000042395.
PEPTIDE 364 377 Spacer peptide 1. {ECO:0000250}.
/FTId=PRO_0000042396.
CHAIN 378 432 Nucleocapsid protein p7. {ECO:0000250}.
/FTId=PRO_0000042397.
PEPTIDE 433 440 Transframe peptide. {ECO:0000255}.
/FTId=PRO_0000246725.
CHAIN 441 488 p6-pol. {ECO:0000255}.
/FTId=PRO_0000042398.
CHAIN 489 587 Protease. {ECO:0000250}.
/FTId=PRO_0000038660.
CHAIN 588 1147 Reverse transcriptase/ribonuclease H.
{ECO:0000250}.
/FTId=PRO_0000042399.
CHAIN 588 1027 p51 RT. {ECO:0000250}.
/FTId=PRO_0000042400.
CHAIN 1028 1147 p15. {ECO:0000250}.
/FTId=PRO_0000042401.
CHAIN 1148 1435 Integrase. {ECO:0000250}.
/FTId=PRO_0000042402.
DOMAIN 508 577 Peptidase A2. {ECO:0000255|PROSITE-
ProRule:PRU00275}.
DOMAIN 631 821 Reverse transcriptase.
{ECO:0000255|PROSITE-ProRule:PRU00405}.
DOMAIN 1021 1144 RNase H. {ECO:0000255|PROSITE-
ProRule:PRU00408}.
DOMAIN 1201 1351 Integrase catalytic.
{ECO:0000255|PROSITE-ProRule:PRU00457}.
ZN_FING 390 407 CCHC-type 1. {ECO:0000255|PROSITE-
ProRule:PRU00047}.
ZN_FING 411 428 CCHC-type 2. {ECO:0000255|PROSITE-
ProRule:PRU00047}.
ZN_FING 1150 1191 Integrase-type. {ECO:0000255|PROSITE-
ProRule:PRU00450}.
DNA_BIND 1370 1417 Integrase-type. {ECO:0000255|PROSITE-
ProRule:PRU00506}.
REGION 7 31 Interaction with Gp41.
{ECO:0000269|PubMed:8918455}.
REGION 8 43 Interaction with host CALM1.
{ECO:0000250|UniProtKB:P04585}.
REGION 12 19 Interaction with host AP3D1.
{ECO:0000269|PubMed:15766529}.
REGION 14 33 Interaction with membrane
phosphatidylinositol 4,5-bisphosphate and
RNA. {ECO:0000269|PubMed:16840558}.
REGION 73 77 Interaction with membrane
phosphatidylinositol 4,5-bisphosphate.
{ECO:0000269|PubMed:16840558}.
REGION 189 227 Interaction with human PPIA/CYPA and
NUP153. {ECO:0000269|PubMed:19369352,
ECO:0000269|PubMed:24130490,
ECO:0000269|PubMed:8980234}.
REGION 277 363 Dimerization/Multimerization of capsid
protein p24.
{ECO:0000250|UniProtKB:P04585}.
REGION 489 493 Dimerization of protease.
{ECO:0000250|UniProtKB:P04585}.
REGION 537 543 Dimerization of protease.
{ECO:0000250|UniProtKB:P04585}.
REGION 576 588 Dimerization of protease.
{ECO:0000250|UniProtKB:P04585}.
REGION 814 822 RT 'primer grip'. {ECO:0000250}.
MOTIF 16 22 Nuclear export signal. {ECO:0000250}.
MOTIF 26 32 Nuclear localization signal.
{ECO:0000250}.
MOTIF 985 1001 Tryptophan repeat motif. {ECO:0000250}.
ACT_SITE 513 513 For protease activity; shared with
dimeric partner. {ECO:0000255|PROSITE-
ProRule:PRU10094}.
METAL 697 697 Magnesium; catalytic; for reverse
transcriptase activity. {ECO:0000250}.
METAL 772 772 Magnesium; catalytic; for reverse
transcriptase activity. {ECO:0000250}.
METAL 773 773 Magnesium; catalytic; for reverse
transcriptase activity. {ECO:0000250}.
METAL 1030 1030 Magnesium; catalytic; for RNase H
activity. {ECO:0000250}.
METAL 1065 1065 Magnesium; catalytic; for RNase H
activity. {ECO:0000250}.
METAL 1085 1085 Magnesium; catalytic; for RNase H
activity. {ECO:0000250}.
METAL 1136 1136 Magnesium; catalytic; for RNase H
activity. {ECO:0000250}.
METAL 1211 1211 Magnesium; catalytic; for integrase
activity.
METAL 1263 1263 Magnesium; catalytic; for integrase
activity.
METAL 1299 1299 Magnesium; catalytic; for integrase
activity. {ECO:0000250|UniProtKB:P04585}.
SITE 132 133 Cleavage; by viral protease.
{ECO:0000250}.
SITE 221 222 Cis/trans isomerization of proline
peptide bond; by human PPIA/CYPA.
{ECO:0000250}.
SITE 363 364 Cleavage; by viral protease.
{ECO:0000250}.
SITE 377 378 Cleavage; by viral protease.
{ECO:0000250}.
SITE 432 433 Cleavage; by viral protease.
{ECO:0000255}.
SITE 440 441 Cleavage; by viral protease.
{ECO:0000250}.
SITE 488 489 Cleavage; by viral protease.
{ECO:0000250}.
SITE 587 588 Cleavage; by viral protease.
{ECO:0000250}.
SITE 988 988 Essential for RT p66/p51
heterodimerization. {ECO:0000250}.
SITE 1001 1001 Essential for RT p66/p51
heterodimerization. {ECO:0000250}.
SITE 1027 1028 Cleavage; by viral protease; partial.
{ECO:0000250}.
SITE 1147 1148 Cleavage; by viral protease.
{ECO:0000250}.
MOD_RES 132 132 Phosphotyrosine; by host. {ECO:0000250}.
MOD_RES 148 148 Phosphoserine; by host MAPK1.
{ECO:0000269|PubMed:24509437}.
LIPID 2 2 N-myristoyl glycine; by host.
{ECO:0000250}.
MUTAGEN 9 9 S->A: Loss of ability to fuse with target
cell membranes and infect host cell.
{ECO:0000269|PubMed:19059618}.
MUTAGEN 67 67 S->A: Loss of ability to fuse with target
cell membranes and infect host cell.
{ECO:0000269|PubMed:19059618}.
MUTAGEN 72 72 S->A: Loss of ability to fuse with target
cell membranes and infect host cell.
{ECO:0000269|PubMed:19059618}.
MUTAGEN 77 77 S->A: Loss of ability to fuse with target
cell membranes and infect host cell.
{ECO:0000269|PubMed:19059618}.
STRAND 6 8 {ECO:0000244|PDB:1UPH}.
HELIX 10 18 {ECO:0000244|PDB:4JMU}.
STRAND 20 22 {ECO:0000244|PDB:4JMU}.
STRAND 23 25 {ECO:0000244|PDB:1UPH}.
HELIX 31 43 {ECO:0000244|PDB:4JMU}.
HELIX 48 52 {ECO:0000244|PDB:4JMU}.
HELIX 54 64 {ECO:0000244|PDB:4JMU}.
HELIX 65 67 {ECO:0000244|PDB:4JMU}.
TURN 68 70 {ECO:0000244|PDB:4JMU}.
HELIX 73 90 {ECO:0000244|PDB:4JMU}.
HELIX 97 108 {ECO:0000244|PDB:4JMU}.
HELIX 109 112 {ECO:0000244|PDB:2H3Q}.
HELIX 113 115 {ECO:0000244|PDB:2H3F}.
TURN 117 119 {ECO:0000244|PDB:2H3F}.
STRAND 134 136 {ECO:0000244|PDB:2XDE}.
STRAND 138 140 {ECO:0000244|PDB:4E92}.
STRAND 142 144 {ECO:0000244|PDB:2XDE}.
HELIX 149 162 {ECO:0000244|PDB:2XDE}.
HELIX 168 175 {ECO:0000244|PDB:2XDE}.
TURN 176 178 {ECO:0000244|PDB:2XDE}.
HELIX 181 189 {ECO:0000244|PDB:2XDE}.
TURN 191 193 {ECO:0000244|PDB:4E92}.
HELIX 195 215 {ECO:0000244|PDB:2XDE}.
STRAND 217 219 {ECO:0000244|PDB:2XDE}.
HELIX 233 236 {ECO:0000244|PDB:2XDE}.
STRAND 239 241 {ECO:0000244|PDB:4NX4}.
HELIX 243 251 {ECO:0000244|PDB:2XDE}.
STRAND 252 254 {ECO:0000244|PDB:2XDE}.
HELIX 258 277 {ECO:0000244|PDB:2XDE}.
HELIX 282 284 {ECO:0000244|PDB:3DS4}.
STRAND 289 291 {ECO:0000244|PDB:3DS5}.
HELIX 293 306 {ECO:0000244|PDB:3DS4}.
TURN 308 310 {ECO:0000244|PDB:4QNB}.
HELIX 311 324 {ECO:0000244|PDB:3DS4}.
HELIX 328 337 {ECO:0000244|PDB:3DS4}.
HELIX 343 350 {ECO:0000244|PDB:3DS4}.
TURN 351 354 {ECO:0000244|PDB:3DS0}.
HELIX 356 361 {ECO:0000244|PDB:4IPY}.
STRAND 380 383 {ECO:0000244|PDB:2M3Z}.
STRAND 385 389 {ECO:0000244|PDB:2M3Z}.
STRAND 393 395 {ECO:0000244|PDB:2M3Z}.
TURN 402 404 {ECO:0000244|PDB:2M3Z}.
STRAND 414 416 {ECO:0000244|PDB:2M3Z}.
STRAND 419 421 {ECO:0000244|PDB:2M3Z}.
TURN 423 425 {ECO:0000244|PDB:2M3Z}.
STRAND 490 495 {ECO:0000244|PDB:5HVP}.
STRAND 498 503 {ECO:0000244|PDB:5HVP}.
STRAND 506 512 {ECO:0000244|PDB:5HVP}.
STRAND 517 523 {ECO:0000244|PDB:5HVP}.
STRAND 531 537 {ECO:0000244|PDB:5HVP}.
STRAND 540 554 {ECO:0000244|PDB:5HVP}.
STRAND 557 567 {ECO:0000244|PDB:5HVP}.
HELIX 575 578 {ECO:0000244|PDB:5HVP}.
HELIX 579 581 {ECO:0000244|PDB:5HVP}.
STRAND 584 586 {ECO:0000244|PDB:5HVP}.
HELIX 615 630 {ECO:0000244|PDB:4ZHR}.
STRAND 633 636 {ECO:0000244|PDB:4ZHR}.
STRAND 647 651 {ECO:0000244|PDB:4ZHR}.
STRAND 658 662 {ECO:0000244|PDB:4ZHR}.
HELIX 665 670 {ECO:0000244|PDB:4ZHR}.
HELIX 684 686 {ECO:0000244|PDB:4ZHR}.
STRAND 691 697 {ECO:0000244|PDB:4ZHR}.
HELIX 702 704 {ECO:0000244|PDB:4ZHR}.
TURN 709 711 {ECO:0000244|PDB:4ZHR}.
HELIX 712 715 {ECO:0000244|PDB:4ZHR}.
STRAND 717 719 {ECO:0000244|PDB:4ZHR}.
STRAND 724 726 {ECO:0000244|PDB:4ZHR}.
STRAND 729 735 {ECO:0000244|PDB:4ZHR}.
HELIX 743 761 {ECO:0000244|PDB:4ZHR}.
STRAND 765 770 {ECO:0000244|PDB:4ZHR}.
STRAND 773 780 {ECO:0000244|PDB:4ZHR}.
HELIX 782 798 {ECO:0000244|PDB:4ZHR}.
STRAND 805 807 {ECO:0000244|PDB:4ZHR}.
STRAND 811 816 {ECO:0000244|PDB:4ZHR}.
STRAND 819 821 {ECO:0000244|PDB:4ZHR}.
HELIX 823 825 {ECO:0000244|PDB:4ZHR}.
STRAND 826 828 {ECO:0000244|PDB:4ZHR}.
STRAND 837 840 {ECO:0000244|PDB:4ZHR}.
HELIX 841 854 {ECO:0000244|PDB:4ZHR}.
TURN 855 857 {ECO:0000244|PDB:4ZHR}.
STRAND 858 860 {ECO:0000244|PDB:4ZHR}.
HELIX 864 870 {ECO:0000244|PDB:4ZHR}.
HELIX 884 896 {ECO:0000244|PDB:4ZHR}.
STRAND 908 910 {ECO:0000244|PDB:4ZHR}.
STRAND 913 918 {ECO:0000244|PDB:4ZHR}.
HELIX 920 922 {ECO:0000244|PDB:4ZHR}.
STRAND 923 931 {ECO:0000244|PDB:4ZHR}.
STRAND 935 942 {ECO:0000244|PDB:4ZHR}.
STRAND 947 949 {ECO:0000244|PDB:4ZHR}.
HELIX 951 970 {ECO:0000244|PDB:4ZHR}.
STRAND 975 980 {ECO:0000244|PDB:4ZHR}.
HELIX 982 989 {ECO:0000244|PDB:4ZHR}.
STRAND 993 995 {ECO:0000244|PDB:4ZHR}.
STRAND 1000 1003 {ECO:0000244|PDB:4ZHR}.
STRAND 1009 1011 {ECO:0000244|PDB:4ZHR}.
STRAND 1024 1034 {ECO:0000244|PDB:4ZHR}.
TURN 1035 1038 {ECO:0000244|PDB:4ZHR}.
STRAND 1039 1046 {ECO:0000244|PDB:4ZHR}.
STRAND 1051 1058 {ECO:0000244|PDB:4ZHR}.
HELIX 1061 1074 {ECO:0000244|PDB:4ZHR}.
STRAND 1078 1084 {ECO:0000244|PDB:4ZHR}.
HELIX 1087 1094 {ECO:0000244|PDB:4ZHR}.
STRAND 1098 1101 {ECO:0000244|PDB:4ZHR}.
HELIX 1103 1114 {ECO:0000244|PDB:4ZHR}.
STRAND 1116 1122 {ECO:0000244|PDB:4ZHR}.
STRAND 1125 1127 {ECO:0000244|PDB:4ZHR}.
HELIX 1130 1139 {ECO:0000244|PDB:4ZHR}.
HELIX 1151 1162 {ECO:0000244|PDB:1K6Y}.
HELIX 1166 1173 {ECO:0000244|PDB:1K6Y}.
HELIX 1177 1186 {ECO:0000244|PDB:1K6Y}.
HELIX 1188 1191 {ECO:0000244|PDB:1WJB}.
HELIX 1204 1206 {ECO:0000244|PDB:3WNE}.
STRAND 1207 1215 {ECO:0000244|PDB:3WNF}.
STRAND 1218 1225 {ECO:0000244|PDB:3WNF}.
TURN 1226 1228 {ECO:0000244|PDB:3WNF}.
STRAND 1231 1238 {ECO:0000244|PDB:3WNF}.
HELIX 1241 1254 {ECO:0000244|PDB:3WNF}.
STRAND 1259 1261 {ECO:0000244|PDB:3WNF}.
HELIX 1266 1268 {ECO:0000244|PDB:3WNF}.
HELIX 1271 1280 {ECO:0000244|PDB:3WNF}.
STRAND 1283 1285 {ECO:0000244|PDB:3AV9}.
HELIX 1292 1295 {ECO:0000244|PDB:1B9F}.
HELIX 1300 1312 {ECO:0000244|PDB:3WNF}.
HELIX 1313 1315 {ECO:0000244|PDB:3WNF}.
STRAND 1316 1318 {ECO:0000244|PDB:1B9D}.
HELIX 1319 1332 {ECO:0000244|PDB:3WNF}.
HELIX 1335 1337 {ECO:0000244|PDB:1BIS}.
STRAND 1338 1340 {ECO:0000244|PDB:1BIS}.
HELIX 1343 1355 {ECO:0000244|PDB:3WNF}.
SEQUENCE 1435 AA; 161789 MW; 798E74FD27C21244 CRC64;
MGARASVLSG GELDKWEKIR LRPGGKKQYK LKHIVWASRE LERFAVNPGL LETSEGCRQI
LGQLQPSLQT GSEELRSLYN TIAVLYCVHQ RIDVKDTKEA LDKIEEEQNK SKKKAQQAAA
DTGNNSQVSQ NYPIVQNLQG QMVHQAISPR TLNAWVKVVE EKAFSPEVIP MFSALSEGAT
PQDLNTMLNT VGGHQAAMQM LKETINEEAA EWDRLHPVHA GPIAPGQMRE PRGSDIAGTT
STLQEQIGWM THNPPIPVGE IYKRWIILGL NKIVRMYSPT SILDIRQGPK EPFRDYVDRF
YKTLRAEQAS QEVKNWMTET LLVQNANPDC KTILKALGPG ATLEEMMTAC QGVGGPGHKA
RVLAEAMSQV TNPATIMIQK GNFRNQRKTV KCFNCGKEGH IAKNCRAPRK KGCWKCGKEG
HQMKDCTERQ ANFLREDLAF PQGKAREFSS EQTRANSPTR RELQVWGRDN NSLSEAGADR
QGTVSFSFPQ ITLWQRPLVT IKIGGQLKEA LLDTGADDTV LEEMNLPGRW KPKMIGGIGG
FIKVRQYDQI LIEICGHKAI GTVLVGPTPV NIIGRNLLTQ IGCTLNFPIS PIETVPVKLK
PGMDGPKVKQ WPLTEEKIKA LVEICTEMEK EGKISKIGPE NPYNTPVFAI KKKDSTKWRK
LVDFRELNKR TQDFWEVQLG IPHPAGLKQK KSVTVLDVGD AYFSVPLDKD FRKYTAFTIP
SINNETPGIR YQYNVLPQGW KGSPAIFQCS MTKILEPFRK QNPDIVIYQY MDDLYVGSDL
EIGQHRTKIE ELRQHLLRWG FTTPDKKHQK EPPFLWMGYE LHPDKWTVQP IVLPEKDSWT
VNDIQKLVGK LNWASQIYAG IKVRQLCKLL RGTKALTEVV PLTEEAELEL AENREILKEP
VHGVYYDPSK DLIAEIQKQG QGQWTYQIYQ EPFKNLKTGK YARMKGAHTN DVKQLTEAVQ
KIATESIVIW GKTPKFKLPI QKETWEAWWT EYWQATWIPE WEFVNTPPLV KLWYQLEKEP
IIGAETFYVD GAANRETKLG KAGYVTDRGR QKVVPLTDTT NQKTELQAIH LALQDSGLEV
NIVTDSQYAL GIIQAQPDKS ESELVSQIIE QLIKKEKVYL AWVPAHKGIG GNEQVDGLVS
AGIRKVLFLD GIDKAQEEHE KYHSNWRAMA SDFNLPPVVA KEIVASCDKC QLKGEAMHGQ
VDCSPGIWQL DCTHLEGKVI LVAVHVASGY IEAEVIPAET GQETAYFLLK LAGRWPVKTV
HTDNGSNFTS TTVKAACWWA GIKQEFGIPY NPQSQGVIES MNKELKKIIG QVRDQAEHLK
TAVQMAVFIH NFKRKGGIGG YSAGERIVDI IATDIQTKEL QKQITKIQNF RVYYRDSRDP
VWKGPAKLLW KGEGAVVIQD NSDIKVVPRR KAKIIRDYGK QMAGDDCVAS RQDED


Related products :

Catalog number Product name Quantity
orb71687 HIV Integrase Protein Inhibitor (1) peptide This is HIV Integrase Protein Inhibitor (1) peptide. For research use only. 1 mg
10-663-45456 HIV-I pol Integrase - Pr160Gag-Pol N_A 0.002 mg
10-663-45456 HIV-I pol Integrase - Pr160Gag-Pol N_A 0.01 mg
10-663-45456 HIV-I pol Integrase - Pr160Gag-Pol N_A 0.1 mg
PCR-505L Polymerase chain reaction PCR and reverse transcriptase polymerase chain reaction RT PCR products: SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50units
PCR-505S Polymerase chain reaction PCR and reverse transcriptase polymerase chain reaction RT PCR products: SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10units
5-42649 HIV Integrase Protein Inhibitor(1), peptide reagents 2 mg
5-42648 HIV Integrase Protein Inhibitor(1), peptide reagents 1 mg
5-42650 HIV Integrase Protein Inhibitor(1), peptide reagents 5 mg
PCR-505S SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10000units
PCR-505L SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50kunits
PCR-505L SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50000 units
PCR-505L SCRIPT Reverse Transcriptase, L pack Reverse Transcriptase with increased thermal stability 50000units
PCR-505S SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10kunits
PCR-505S SCRIPT Reverse Transcriptase, S pack Reverse Transcriptase with increased thermal stability 10000 units
SCH-OBT1906 RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 0.1 mg
OBT1904X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa340_390), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Appli 1 mg
SCH-OBT1906X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 1 mg
SCH-OBT1904X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa340_390), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Appli 1 mg
OBT1905X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Applicat 1 mg
OBT1906 RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 0.1 mg
OBT1906X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49 192_220), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , 1 mg
SCH-OBT1905X RECOMBINANT SARS NUCLEOCAPSID PROTEIN (aa1_49), Product Type Recombinant Protein, Specificity SARS NUCLEOCAPSID PROTEIN , Target Species Viral, Host N_A, Format Rec. Protein, Isotypes , Applicat 1 mg
PCR-501L M_MLV Reverse Transcriptase (RNase H_), L pack Reverse Transcriptase 50000units
PCR-501S M_MLV Reverse Transcriptase (RNase H_), S pack Reverse Transcriptase 10000units


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur