Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

 POLG_CX16G              Reviewed;        2193 AA.
Q65900;
01-NOV-1997, integrated into UniProtKB/Swiss-Prot.
23-JAN-2007, sequence version 3.
10-MAY-2017, entry version 144.
RecName: Full=Genome polyprotein;
Contains:
RecName: Full=P3;
Contains:
RecName: Full=Protein 3AB;
Contains:
RecName: Full=P2;
Contains:
RecName: Full=P1;
Contains:
RecName: Full=Capsid protein VP0;
AltName: Full=VP4-VP2;
Contains:
RecName: Full=Capsid protein VP4;
AltName: Full=P1A;
AltName: Full=Virion protein 4;
Contains:
RecName: Full=Capsid protein VP2;
AltName: Full=P1B;
AltName: Full=Virion protein 2;
Contains:
RecName: Full=Capsid protein VP3;
AltName: Full=P1C;
AltName: Full=Virion protein 3;
Contains:
RecName: Full=Capsid protein VP1;
AltName: Full=P1D;
AltName: Full=Virion protein 1;
Contains:
RecName: Full=Protease 2A;
Short=P2A;
EC=3.4.22.29;
AltName: Full=Picornain 2A;
AltName: Full=Protein 2A;
Contains:
RecName: Full=Protein 2B;
Short=P2B;
Contains:
RecName: Full=Protein 2C;
Short=P2C;
EC=3.6.1.15;
Contains:
RecName: Full=Protein 3A;
Short=P3A;
Contains:
RecName: Full=Viral protein genome-linked;
Short=VPg;
AltName: Full=Protein 3B;
Short=P3B;
Contains:
RecName: Full=Protein 3CD;
EC=3.4.22.28;
Contains:
RecName: Full=Protease 3C;
Short=P3C;
EC=3.4.22.28;
Contains:
RecName: Full=RNA-directed RNA polymerase;
Short=RdRp;
EC=2.7.7.48;
AltName: Full=3D polymerase;
Short=3Dpol;
AltName: Full=Protein 3D;
Short=3D;
Coxsackievirus A16 (strain G-10).
Viruses; ssRNA viruses; ssRNA positive-strand viruses, no DNA stage;
Picornavirales; Picornaviridae; Enterovirus; Enterovirus A.
NCBI_TaxID=69159;
NCBI_TaxID=9606; Homo sapiens (Human).
[1]
NUCLEOTIDE SEQUENCE [GENOMIC RNA].
PubMed=8030260; DOI=10.1006/viro.1994.1423;
Poyry T., Hyypiae T., Horsnell C., Kinnunen L., Hovi T., Stanway G.;
"Molecular analysis of coxsackievirus A16 reveals a new genetic group
of enteroviruses.";
Virology 202:982-987(1994).
-!- FUNCTION: Capsid protein VP1: Forms an icosahedral capsid of
pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid
is 300 Angstroms in diameter, composed of 60 copies of each capsid
protein and enclosing the viral positive strand RNA genome. Capsid
protein VP1 mainly forms the vertices of the capsid. Capsid
protein VP1 interacts with host cell receptor to provide virion
attachment to target host cells. This attachment induces virion
internalization. Tyrosine kinases are probably involved in the
entry process. After binding to its receptor, the capsid undergoes
conformational changes. Capsid protein VP1 N-terminus (that
contains an amphipathic alpha-helix) and capsid protein VP4 are
externalized. Together, they shape a pore in the host membrane
through which viral genome is translocated to host cell cytoplasm.
After genome has been released, the channel shrinks (By
similarity). {ECO:0000250}.
-!- FUNCTION: Capsid protein VP2: Forms an icosahedral capsid of
pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid
is 300 Angstroms in diameter, composed of 60 copies of each capsid
protein and enclosing the viral positive strand RNA genome (By
similarity). {ECO:0000250}.
-!- FUNCTION: Capsid protein VP3: Forms an icosahedral capsid of
pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid
is 300 Angstroms in diameter, composed of 60 copies of each capsid
protein and enclosing the viral positive strand RNA genome (By
similarity). {ECO:0000250}.
-!- FUNCTION: Capsid protein VP4: Lies on the inner surface of the
capsid shell. After binding to the host receptor, the capsid
undergoes conformational changes. Capsid protein VP4 is released,
Capsid protein VP1 N-terminus is externalized, and together, they
shape a pore in the host membrane through which the viral genome
is translocated into the host cell cytoplasm. After genome has
been released, the channel shrinks (By similarity). {ECO:0000250}.
-!- FUNCTION: Capsid protein VP0: Component of immature procapsids,
which is cleaved into capsid proteins VP4 and VP2 after
maturation. Allows the capsid to remain inactive before the
maturation step (By similarity). {ECO:0000250}.
-!- FUNCTION: Protein 2A: Cysteine protease that cleaves viral
polyprotein and specific host proteins. It is responsible for the
cleavage between the P1 and P2 regions, first cleavage occurring
in the polyprotein. Cleaves also the host translation initiation
factor EIF4G1, in order to shut down the capped cellular mRNA
translation. Inhibits the host nucleus-cytoplasm protein and RNA
trafficking by cleaving host members of the nuclear pores (By
similarity). {ECO:0000250}.
-!- FUNCTION: Protein 2B: Plays an essential role in the virus
replication cycle by acting as a viroporin. Creates a pore in the
host reticulum endoplasmic and as a consequence releases Ca2+ in
the cytoplasm of infected cell. In turn, high levels of
cyctoplasmic calcium may trigger membrane trafficking and
transport of viral ER-associated proteins to viroplasms, sites of
viral genome replication (By similarity). {ECO:0000250}.
-!- FUNCTION: Protein 2C: Induces and associates with structural
rearrangements of intracellular membranes. Displays RNA-binding,
nucleotide binding and NTPase activities. May play a role in
virion morphogenesis and viral RNA encapsidation by interacting
with the capsid protein VP3 (By similarity). {ECO:0000250}.
-!- FUNCTION: Protein 3AB: Localizes the viral replication complex to
the surface of membranous vesicles. Together with protein 3CD
binds the Cis-Active RNA Element (CRE) which is involved in RNA
synthesis initiation. Acts as a cofactor to stimulate the activity
of 3D polymerase, maybe through a nucleid acid chaperone activity
(By similarity). {ECO:0000250}.
-!- FUNCTION: Protein 3A: Localizes the viral replication complex to
the surface of membranous vesicles. It inhibits host cell
endoplasmic reticulum-to-Golgi apparatus transport and causes the
dissassembly of the Golgi complex, possibly through GBF1
interaction. This would result in depletion of MHC, trail
receptors and IFN receptors at the host cell surface (By
similarity). {ECO:0000250}.
-!- FUNCTION: Viral protein genome-linked: acts as a primer for viral
RNA replication and remains covalently bound to viral genomic RNA.
VPg is uridylylated prior to priming replication into VPg-pUpU.
The oriI viral genomic sequence may act as a template for this.
The VPg-pUpU is then used as primer on the genomic RNA poly(A) by
the RNA-dependent RNA polymerase to replicate the viral genome.
VPg may be removed in the cytoplasm by an unknown enzyme termed
"unlinkase". VPg is not cleaved off virion genomes because
replicated genomic RNA are encapsidated at the site of replication
(By similarity). {ECO:0000250}.
-!- FUNCTION: Protein 3CD: Is involved in the viral replication
complex and viral polypeptide maturation. It exhibits protease
activity with a specificity and catalytic efficiency that is
different from protease 3C. Protein 3CD lacks polymerase activity.
The 3C domain in the context of protein 3CD may have an RNA
binding activity (By similarity). {ECO:0000250}.
-!- FUNCTION: Protease 3C: cleaves host DDX58/RIG-I and thus
contributes to the inhibition of type I interferon production.
Cleaves also host PABPC1 (By similarity). {ECO:0000250}.
-!- FUNCTION: RNA-directed RNA polymerase: Replicates the viral
genomic RNA on the surface of intracellular membranes. May form
linear arrays of subunits that propagate along a strong head-to-
tail interaction called interface-I. Covalently attaches UMP to a
tyrosine of VPg, which is used to prime RNA synthesis. The
positive stranded RNA genome is first replicated at virus induced
membranous vesicles, creating a dsRNA genomic replication form.
This dsRNA is then used as template to synthesize positive
stranded RNA genomes. ss(+)RNA genomes are either translated,
replicated or encapsidated (By similarity). {ECO:0000255|PROSITE-
ProRule:PRU00539}.
-!- CATALYTIC ACTIVITY: Nucleoside triphosphate + RNA(n) = diphosphate
+ RNA(n+1). {ECO:0000255|PROSITE-ProRule:PRU00539}.
-!- CATALYTIC ACTIVITY: Selective cleavage of Tyr-|-Gly bond in the
picornavirus polyprotein.
-!- CATALYTIC ACTIVITY: Selective cleavage of Gln-|-Gly bond in the
poliovirus polyprotein. In other picornavirus reactions Glu may be
substituted for Gln, and Ser or Thr for Gly.
-!- CATALYTIC ACTIVITY: NTP + H(2)O = NDP + phosphate.
-!- COFACTOR: RNA-directed RNA polymerase:
Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
Evidence={ECO:0000250|UniProtKB:P03313};
Note=Requires the presence of 3CDpro or 3CPro.
{ECO:0000250|UniProtKB:P03313};
-!- ENZYME REGULATION: RNA-directed RNA polymerase: replication or
transcription is subject to high level of random mutations by the
nucleotide analog ribavirin.
-!- SUBUNIT: Capsid protein VP1: Interacts with capsid protein VP0,
and capsid protein VP3 to form heterotrimeric protomers. Five
protomers subsequently associate to form pentamers which serve as
building blocks for the capsid. Interacts with capsid protein VP4
in the mature capsid (By similarity). Capsid protein VP0:
interacts with capsid protein VP1 and capsid protein VP3 to form
heterotrimeric protomers. Five protomers subsequently associate to
form pentamers which serve as building blocks for the capsid.
Capsid protein VP2: Interacts with capsid protein VP1 and capsid
protein VP3 in the mature capsid (By similarity). Capsid protein
VP3: interacts with capsid protein VP0 and capsid protein VP1 to
form heterotrimeric protomers. Five protomers subsequently
associate to form pentamers which serve as building blocks for the
capsid. Interacts with capsid protein VP4 in the mature capsid (By
similarity). Capsid protein VP4: Interacts with capsid protein VP1
and capsid protein VP3 (By similarity). Protein 2C: interacts with
capsid protein VP3; this interaction may be important for virion
morphogenesis (By similarity). Protein 3AB: interacts with protein
3CD (By similarity). Viral protein genome-linked: interacts with
RNA-directed RNA polymerase (By similarity). Protein 3CD:
interacts with protein 3AB and with RNA-directed RNA polymerase.
RNA-directed RNA polymerase: interacts with viral protein genome-
linked and with protein 3CD (By similarity). {ECO:0000250}.
-!- SUBCELLULAR LOCATION: Capsid protein VP0: Virion {ECO:0000250}.
Host cytoplasm {ECO:0000250}.
-!- SUBCELLULAR LOCATION: Capsid protein VP4: Virion {ECO:0000250}.
-!- SUBCELLULAR LOCATION: Capsid protein VP2: Virion {ECO:0000250}.
Host cytoplasm {ECO:0000250}.
-!- SUBCELLULAR LOCATION: Capsid protein VP3: Virion {ECO:0000250}.
Host cytoplasm {ECO:0000250}.
-!- SUBCELLULAR LOCATION: Capsid protein VP1: Virion {ECO:0000250}.
Host cytoplasm {ECO:0000250}.
-!- SUBCELLULAR LOCATION: Protein 2B: Host cytoplasmic vesicle
membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305};
Cytoplasmic side {ECO:0000305}. Note=Probably localizes to the
surface of intracellular membrane vesicles that are induced after
virus infection as the site for viral RNA replication. These
vesicles are derived from the endoplasmic reticulum.
-!- SUBCELLULAR LOCATION: Protein 2C: Host cytoplasmic vesicle
membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305};
Cytoplasmic side {ECO:0000305}. Note=Probably localizes to the
surface of intracellular membrane vesicles that are induced after
virus infection as the site for viral RNA replication. These
vesicles are derived from the endoplasmic reticulum.
-!- SUBCELLULAR LOCATION: Protein 3A: Host cytoplasmic vesicle
membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305};
Cytoplasmic side {ECO:0000305}. Note=Probably localizes to the
surface of intracellular membrane vesicles that are induced after
virus infection as the site for viral RNA replication. These
vesicles are derived from the endoplasmic reticulum.
-!- SUBCELLULAR LOCATION: Protein 3AB: Host cytoplasmic vesicle
membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305};
Cytoplasmic side {ECO:0000305}. Note=Probably localizes to the
surface of intracellular membrane vesicles that are induced after
virus infection as the site for viral RNA replication. These
vesicles are derived from the endoplasmic reticulum.
-!- SUBCELLULAR LOCATION: Viral protein genome-linked: Virion
{ECO:0000250}. Host cytoplasm {ECO:0000250}.
-!- SUBCELLULAR LOCATION: Protease 3C: Host cytoplasm {ECO:0000250}.
-!- SUBCELLULAR LOCATION: Protein 3CD: Host cytoplasmic vesicle
membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305};
Cytoplasmic side {ECO:0000305}. Note=Probably localizes to the
surface of intracellular membrane vesicles that are induced after
virus infection as the site for viral RNA replication. These
vesicles are derived from the endoplasmic reticulum.
-!- SUBCELLULAR LOCATION: RNA-directed RNA polymerase: Host
cytoplasmic vesicle membrane {ECO:0000305}; Peripheral membrane
protein {ECO:0000305}; Cytoplasmic side {ECO:0000305}.
Note=Probably localizes to the surface of intracellular membrane
vesicles that are induced after virus infection as the site for
viral RNA replication. These vesicles are derived from the
endoplasmic reticulum.
-!- INDUCTION: Translated cap independently from an internal ribosome
entry site (IRES). {ECO:0000305}.
-!- PTM: Specific enzymatic cleavages in vivo by the viral proteases
yield a variety of precursors and mature proteins. Polyprotein
processing intermediates such as VP0 which is a VP4-VP2 precursor
are produced. During virion maturation, non-infectious particles
are rendered infectious following cleavage of VP0. This maturation
cleavage is followed by a conformational change of the particle
(By similarity). {ECO:0000250}.
-!- PTM: VPg is uridylylated by the polymerase and is covalently
linked to the 5'-end of genomic RNA. This uridylylated form acts
as a nucleotide-peptide primer for the polymerase (By similarity).
{ECO:0000250}.
-!- PTM: Myristoylation of VP4 is required during RNA encapsidation
and formation of the mature virus particle. {ECO:0000250}.
-!- PTM: Capsid protein VP0: Myristoylation is required for the
formation of pentamers during virus assembly. Further assembly of
12 pentamers and a molecule of genomic RNA generates the provirion
(By similarity). {ECO:0000250}.
-!- PTM: Genome polyprotein: Specific enzymatic cleavages in vivo by
the viral proteases yield processing intermediates and the mature
proteins. {ECO:0000250}.
-!- PTM: Capsid protein VP0: During virion maturation, immature
virions are rendered infectious following cleavage of VP0 into VP4
and VP2. This maturation seems to be an autocatalytic event
triggered by the presence of RNA in the capsid and it is followed
by a conformational change infectious virion (By similarity).
{ECO:0000250}.
-!- PTM: Viral protein genome-linked: VPg is uridylylated by the
polymerase into VPg-pUpU. This acts as a nucleotide-peptide primer
for the genomic RNA replication (By similarity). {ECO:0000250}.
-!- SIMILARITY: Belongs to the picornaviruses polyprotein family.
{ECO:0000305}.
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; U05876; AAA50478.1; -; Genomic_RNA.
RefSeq; NP_042242.1; NC_001612.1.
ProteinModelPortal; Q65900; -.
SMR; Q65900; -.
MEROPS; C03.014; -.
GeneID; 1461111; -.
KEGG; vg:1461111; -.
OrthoDB; VOG0900001E; -.
Proteomes; UP000007757; Genome.
GO; GO:0044162; C:host cell cytoplasmic vesicle membrane; IEA:UniProtKB-SubCell.
GO; GO:0044385; C:integral to membrane of host cell; IEA:UniProtKB-KW.
GO; GO:0016020; C:membrane; IEA:UniProtKB-KW.
GO; GO:0039618; C:T=pseudo3 icosahedral viral capsid; IEA:UniProtKB-KW.
GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
GO; GO:0004197; F:cysteine-type endopeptidase activity; IEA:InterPro.
GO; GO:0005216; F:ion channel activity; IEA:UniProtKB-KW.
GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
GO; GO:0003724; F:RNA helicase activity; IEA:InterPro.
GO; GO:0003968; F:RNA-directed 5'-3' RNA polymerase activity; IEA:UniProtKB-KW.
GO; GO:0005198; F:structural molecule activity; IEA:InterPro.
GO; GO:0006260; P:DNA replication; IEA:UniProtKB-KW.
GO; GO:0075509; P:endocytosis involved in viral entry into host cell; IEA:UniProtKB-KW.
GO; GO:0039520; P:induction by virus of host autophagy; ISS:UniProtKB.
GO; GO:0039707; P:pore formation by virus in membrane of host cell; IEA:UniProtKB-KW.
GO; GO:0044694; P:pore-mediated entry of viral genome into host cell; IEA:UniProtKB-KW.
GO; GO:0039690; P:positive stranded viral RNA replication; ISS:UniProtKB.
GO; GO:0051259; P:protein oligomerization; IEA:UniProtKB-KW.
GO; GO:0018144; P:RNA-protein covalent cross-linking; IEA:UniProtKB-KW.
GO; GO:0039657; P:suppression by virus of host gene expression; IEA:UniProtKB-KW.
GO; GO:0039522; P:suppression by virus of host mRNA export from nucleus; ISS:UniProtKB.
GO; GO:0039544; P:suppression by virus of host RIG-I activity by RIG-I proteolysis; ISS:UniProtKB.
GO; GO:0039611; P:suppression by virus of host translation initiation factor activity; ISS:UniProtKB.
GO; GO:0006351; P:transcription, DNA-templated; IEA:InterPro.
GO; GO:0039694; P:viral RNA genome replication; IEA:InterPro.
GO; GO:0019062; P:virion attachment to host cell; IEA:UniProtKB-KW.
CDD; cd00205; rhv_like; 3.
Gene3D; 4.10.80.10; -; 1.
InterPro; IPR003593; AAA+_ATPase.
InterPro; IPR000605; Helicase_SF3_ssDNA/RNA_vir.
InterPro; IPR014759; Helicase_SF3_ssRNA_vir.
InterPro; IPR027417; P-loop_NTPase.
InterPro; IPR014838; P3A.
InterPro; IPR000081; Peptidase_C3.
InterPro; IPR000199; Peptidase_C3A/C3B_picornavir.
InterPro; IPR009003; Peptidase_S1_PA.
InterPro; IPR003138; Pico_P1A.
InterPro; IPR002527; Pico_P2B.
InterPro; IPR001676; Picornavirus_capsid.
InterPro; IPR033703; Rhv-like.
InterPro; IPR001205; RNA-dir_pol_C.
InterPro; IPR007094; RNA-dir_pol_PSvirus.
Pfam; PF08727; P3A; 1.
Pfam; PF00548; Peptidase_C3; 1.
Pfam; PF02226; Pico_P1A; 1.
Pfam; PF00947; Pico_P2A; 1.
Pfam; PF01552; Pico_P2B; 1.
Pfam; PF00680; RdRP_1; 1.
Pfam; PF00073; Rhv; 3.
Pfam; PF00910; RNA_helicase; 1.
ProDom; PD001306; Peptidase_C3; 1.
ProDom; PD649346; Pico_P2B; 1.
SMART; SM00382; AAA; 1.
SUPFAM; SSF50494; SSF50494; 2.
SUPFAM; SSF52540; SSF52540; 1.
SUPFAM; SSF89043; SSF89043; 1.
PROSITE; PS50507; RDRP_SSRNA_POS; 1.
PROSITE; PS51218; SF3_HELICASE_2; 1.
3: Inferred from homology;
Activation of host autophagy by virus; ATP-binding; Capsid protein;
Complete proteome; Covalent protein-RNA linkage; DNA replication;
Eukaryotic host gene expression shutoff by virus;
Eukaryotic host translation shutoff by virus; Helicase;
Host cytoplasm; Host cytoplasmic vesicle;
Host gene expression shutoff by virus; Host membrane;
Host mRNA suppression by virus; Host-virus interaction; Hydrolase;
Inhibition of host innate immune response by virus;
Inhibition of host mRNA nuclear export by virus;
Inhibition of host RIG-I by virus;
Inhibition of host RLR pathway by virus; Ion channel; Ion transport;
Lipoprotein; Magnesium; Membrane; Metal-binding; Myristate;
Nucleotide-binding; Nucleotidyltransferase; Phosphoprotein;
Pore-mediated penetration of viral genome into host cell; Protease;
Repeat; RNA-binding; RNA-directed RNA polymerase;
T=pseudo3 icosahedral capsid protein; Thiol protease; Transferase;
Transport; Viral attachment to host cell; Viral immunoevasion;
Viral ion channel; Viral penetration into host cytoplasm;
Viral RNA replication; Virion; Virus endocytosis by host;
Virus entry into host cell.
INIT_MET 1 1 Removed; by host. {ECO:0000250}.
CHAIN 2 2193 Genome polyprotein. {ECO:0000250}.
/FTId=PRO_0000426179.
CHAIN 2 862 P1. {ECO:0000250}.
/FTId=PRO_0000426180.
CHAIN 2 323 Capsid protein VP0. {ECO:0000255}.
/FTId=PRO_0000426181.
CHAIN 2 69 Capsid protein VP4. {ECO:0000255}.
/FTId=PRO_0000426182.
CHAIN 70 323 Capsid protein VP2. {ECO:0000255}.
/FTId=PRO_0000426183.
CHAIN 324 567 Capsid protein VP3. {ECO:0000255}.
/FTId=PRO_0000426184.
CHAIN 568 862 Capsid protein VP1. {ECO:0000255}.
/FTId=PRO_0000426185.
CHAIN 863 1440 P2. {ECO:0000250}.
/FTId=PRO_0000426186.
CHAIN 863 1012 Protease 2A. {ECO:0000255}.
/FTId=PRO_0000039518.
CHAIN 1013 1111 Protein 2B. {ECO:0000255}.
/FTId=PRO_0000039519.
CHAIN 1112 1440 Protein 2C. {ECO:0000255}.
/FTId=PRO_0000039520.
CHAIN 1441 2193 P3. {ECO:0000250}.
/FTId=PRO_0000426187.
CHAIN 1441 1548 Protein 3AB. {ECO:0000255}.
/FTId=PRO_0000426188.
CHAIN 1441 1526 Protein 3A. {ECO:0000255}.
/FTId=PRO_0000039521.
CHAIN 1527 1548 Viral protein genome-linked.
{ECO:0000255}.
/FTId=PRO_0000426189.
CHAIN 1549 2193 Protein 3CD. {ECO:0000255}.
/FTId=PRO_0000426190.
CHAIN 1549 1730 Protease 3C. {ECO:0000255}.
/FTId=PRO_0000426191.
CHAIN 1731 2193 RNA-directed RNA polymerase.
{ECO:0000250}.
/FTId=PRO_0000426192.
TOPO_DOM 2 1503 Cytoplasmic. {ECO:0000255}.
INTRAMEM 1504 1519 {ECO:0000255}.
TOPO_DOM 1520 2193 Cytoplasmic. {ECO:0000255}.
DOMAIN 1216 1374 SF3 helicase. {ECO:0000255|PROSITE-
ProRule:PRU00551}.
DOMAIN 1549 1714 Peptidase C3.
DOMAIN 1958 2073 RdRp catalytic. {ECO:0000255|PROSITE-
ProRule:PRU00539}.
NP_BIND 1240 1247 ATP. {ECO:0000255|PROSITE-
ProRule:PRU00551}.
REGION 568 588 Amphipatic alpha-helix. {ECO:0000255}.
REGION 1441 1463 Disordered. {ECO:0000250}.
ACT_SITE 883 883 For Protease 2A activity. {ECO:0000250}.
ACT_SITE 901 901 For Protease 2A activity. {ECO:0000250}.
ACT_SITE 972 972 For Protease 2A activity. {ECO:0000250}.
ACT_SITE 1588 1588 For Protease 3C activity. {ECO:0000255}.
ACT_SITE 1619 1619 For Protease 3C activity. {ECO:0000255}.
ACT_SITE 1695 1695 For Protease 3C activity. {ECO:0000250}.
ACT_SITE 2060 2060 For RdRp activity. {ECO:0000250}.
METAL 1964 1964 Magnesium.
{ECO:0000250|UniProtKB:P03313}.
METAL 2061 2061 Magnesium.
{ECO:0000250|UniProtKB:P03313}.
SITE 323 324 Cleavage; by Protease 3C. {ECO:0000255}.
SITE 862 863 Cleavage; by Protease 2A. {ECO:0000255}.
SITE 1012 1013 Cleavage; by Protease 3C. {ECO:0000255}.
SITE 1440 1441 Cleavage; by Protease 3C. {ECO:0000255}.
SITE 1526 1527 Cleavage; by Protease 3C. {ECO:0000255}.
SITE 1548 1549 Cleavage; by Protease 3C. {ECO:0000255}.
SITE 1731 1732 Cleavage; by Protease 3C. {ECO:0000255}.
MOD_RES 1529 1529 O-(5'-phospho-RNA)-tyrosine.
{ECO:0000250}.
LIPID 2 2 N-myristoyl glycine; by host.
{ECO:0000250}.
SEQUENCE 2193 AA; 243211 MW; 04B3BCE572A76E38 CRC64;
MGSQVSTQRS GSHENSNSAS EGSTINYTTI NYYKDAYAAS AGRQDMSQDP KKFTDPVMDV
IHEMAPPLKS PSAEACGYSD RVAQLTIGNS TITTQEAANI IIAYGEWPEY CKDADATAVD
KPTRPDVSVN RFFTLDTKSW AKDSKGWYWK FPDVLTEVGV FGQNAQFHYL YRSGFCVHVQ
CNASKFHQGA LLVAILPEYV LGTIAGGDGN ENSHPPYVTT QPGQVGAVLT NPYVLDAGVP
LSQLTVCPHQ WINLRTNNCA TIIVPYMNTV PFDSALNHCN FGLIVVPVVP LDFNAGATSE
IPITVTIAPM CAEFAGLRQA IKQGIPTELK PGTNQFLTTD DGVSAPILPG FHPTPAIHIP
GEVRNLLEIC RVETILEVNN LQSNETTPMQ RLCFPVSVQS KTGELCAVFR ADPGRNGPWQ
STILGQLCRY YTQWSGSLEV TFMFAGSFMA TGKMLIAYTP PGGGVPADRL TAMLGTHVIW
DFGLQSSVTL VIPWISNTHY RAHAKDGYFD YYTTGTITIW YQTNYVVPIG APTTAYIVAL
AAAQDNFTMK LCKDTEDIEQ SANIQGDGIA DMIDQAVTSR VGRALTSLQV EPTAANTNAS
EHRLGTGLVP ALQAAETGAS SNAQDENLIE TRCVLNHHST QETTIGNFFS RAGLVSIITM
PTTGTQNTDG YVNWDIDLMG YAQMRRKCEL FTYMRFDAEF TFVAAKPNGE LVPQLLQYMY
VPPGAPKPTS RDSFAWQTAT NPSIFVKLTD PPAQVSVPFM SPASAYQWFY DGYPTFGAHP
QSNDADYGQC PNNMMGTFSI RTVGTEKSPH SITLRVYMRI KHVRAWIPRP LRNQPYLFKT
NPNYKGNDIK CTSTSRDKIT TLGKFGQQSG AIYVGNYRVV NRHLATHNDW ANLVWEDSSR
DLLVSSTTAQ GCDTIARCDC QTGVYYCSSR RKHYPVSFSK PSLIFVEASE YYPARYQSHL
MLAVGHSEPG DCGGILRCQH GVVGIVSTGG NGLVGFADVR DLLWLDEEAM EQGVSDYIKG
LGDAFGTGFT DAVSREVEAL KNHLIGSEGA VEKILKNLIK LISALVIVIR SDYDMVTLTA
TLALIGCHGS PWAWIKAKTA SILGIPIAQK QSASWLKKFN DMANAAKGLE WISNKISKFI
DWLKEKIIPA AKEKVEFLNN LKQLPLLENQ ISNLEQSAAS QEDLEAMFGN VSYLAHFCRK
FQPLYATEAK RVYALEKRMN NYMQFKSKHR IEPVCLIIRG SPGTGKSLAT GIIARAIADK
YHSSVYSLPP DPDHFDGYKQ QVVTVMDDLC QNPDGKDMSL FCQMVSTVDF IPPMASLEEK
GVSFTSKFVI ASTNASNIIV PTVSDSDAIR RRFYMDCDIE VTDSYKTDLG RLDAGRAARL
CSENNTANFK RCSPLVCGKA IQLRDRKSKV RYSVDTVVSE LIREYNNRYA IGNTIEALFQ
GPPKFRPIRI SLEEKPAPDA ISDLLASVDS EEVRQYCRDQ GWIIPETPTN VERHLNRAVL
IMQSIATVVA VVSLVYVIYK LFAGFQGAYS GAPKQTLKKP ILRTATVQGP SLDFALSLLR
RNIRQVQTDQ GHFTMLGVRD RLAVLPRHSQ PGKTIWVEHK LINILDAVEL VDEQGVNLEL
TLVTLDTNEK FRDITKFIPE NISAASDATL VINTEHMPSM FVPVGDVVQY GFLNLSGKPT
HRTMMYNFPT KAGQCGGVVT SVGKVIGIHI GGNGRQGFCA GLKRSYFASE QGEIQWVKPN
KETGRLNING PTRTKLEPSV FHDVFEGNKE PAVLHSRDPR LEVDFEQALF SKYVGNTLHE
PDEYIKEAAL HYANQLKQLD INTSQMSMEE ACYGTENLEA IDLHTSAGYP YSALGIKKRD
ILDPTTRDVS KMKFYMDKYG LDLPYSTYVK DELRSIDKIK KGKSRLIEAS SLNDSVYLRM
AFGHLYETFH ANPGTITGSA VGCNPDTFWS KLPILLPGSL FAFDYSGYDA SLSPVWFRAL
ELVLREVGYS EEAVSLIEGI NHTHHVYRNK TYCVLGGMPS GCSGTSIFNS MINNIIIRTL
LIKTFKGIDL DELNMVAYGD DVLASYPFPI DCLELARTGK EYGLTMTPAD KSPCFNEVNW
GNATFLKRGF LPDEQFPFLI HPTMPMKEIH ESIRWTKDAR NTQDHVRSLC LLAWHNGKQE
YEKFVSTIRS VPVGKALAIP NYENLRRNWL ELF


Related products :

Catalog number Product name Quantity


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur