Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 1) (HSP70-1) (HSP70.1)

 HS71A_HUMAN             Reviewed;         641 AA.
P0DMV8; B4E3B6; P08107; P19790; Q5JQI4; Q5SP17; Q9UQL9; Q9UQM0;
27-MAY-2015, integrated into UniProtKB/Swiss-Prot.
27-MAY-2015, sequence version 1.
22-NOV-2017, entry version 29.
RecName: Full=Heat shock 70 kDa protein 1A {ECO:0000312|HGNC:HGNC:5232};
AltName: Full=Heat shock 70 kDa protein 1;
Short=HSP70-1 {ECO:0000303|PubMed:14656967, ECO:0000303|PubMed:2538825};
Short=HSP70.1;
Name=HSPA1A;
Synonyms=HSP72 {ECO:0000303|PubMed:24318877}, HSPA1, HSX70;
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND ALTERNATIVE SPLICING (ISOFORM
1).
PubMed=3931075; DOI=10.1073/pnas.82.19.6455;
Hunt C., Morimoto R.I.;
"Conserved features of eukaryotic hsp70 genes revealed by comparison
with the nucleotide sequence of human hsp70.";
Proc. Natl. Acad. Sci. U.S.A. 82:6455-6459(1985).
[2]
NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND ALTERNATIVE SPLICING (ISOFORM
1).
PubMed=1700760; DOI=10.1007/BF00187095;
Milner C.M., Campbell R.D.;
"Structure and expression of the three MHC-linked HSP70 genes.";
Immunogenetics 32:242-251(1990).
[3]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA], AND ALTERNATIVE
SPLICING (ISOFORM 1).
Shiina S., Tamiya G., Oka A., Inoko H.;
"Homo sapiens 2,229,817bp genomic DNA of 6p21.3 HLA class I region.";
Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
[4]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA], VARIANT ASP-110, AND
ALTERNATIVE SPLICING (ISOFORM 1).
PubMed=14656967; DOI=10.1101/gr.1736803;
Xie T., Rowen L., Aguado B., Ahearn M.E., Madan A., Qin S.,
Campbell R.D., Hood L.;
"Analysis of the gene-dense major histocompatibility complex class III
region and its comparison to mouse.";
Genome Res. 13:2621-2636(2003).
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
TISSUE=Uterus;
PubMed=14702039; DOI=10.1038/ng1285;
Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
"Complete sequencing and characterization of 21,243 full-length human
cDNAs.";
Nat. Genet. 36:40-45(2004).
[6]
NUCLEOTIDE SEQUENCE [GENOMIC DNA], ALTERNATIVE SPLICING (ISOFORM 1),
AND VARIANT ASP-110.
NIEHS SNPs program;
Submitted (FEB-2006) to the EMBL/GenBank/DDBJ databases.
[7]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=14574404; DOI=10.1038/nature02055;
Mungall A.J., Palmer S.A., Sims S.K., Edwards C.A., Ashurst J.L.,
Wilming L., Jones M.C., Horton R., Hunt S.E., Scott C.E.,
Gilbert J.G.R., Clamp M.E., Bethel G., Milne S., Ainscough R.,
Almeida J.P., Ambrose K.D., Andrews T.D., Ashwell R.I.S.,
Babbage A.K., Bagguley C.L., Bailey J., Banerjee R., Barker D.J.,
Barlow K.F., Bates K., Beare D.M., Beasley H., Beasley O., Bird C.P.,
Blakey S.E., Bray-Allen S., Brook J., Brown A.J., Brown J.Y.,
Burford D.C., Burrill W., Burton J., Carder C., Carter N.P.,
Chapman J.C., Clark S.Y., Clark G., Clee C.M., Clegg S., Cobley V.,
Collier R.E., Collins J.E., Colman L.K., Corby N.R., Coville G.J.,
Culley K.M., Dhami P., Davies J., Dunn M., Earthrowl M.E.,
Ellington A.E., Evans K.A., Faulkner L., Francis M.D., Frankish A.,
Frankland J., French L., Garner P., Garnett J., Ghori M.J.,
Gilby L.M., Gillson C.J., Glithero R.J., Grafham D.V., Grant M.,
Gribble S., Griffiths C., Griffiths M.N.D., Hall R., Halls K.S.,
Hammond S., Harley J.L., Hart E.A., Heath P.D., Heathcott R.,
Holmes S.J., Howden P.J., Howe K.L., Howell G.R., Huckle E.,
Humphray S.J., Humphries M.D., Hunt A.R., Johnson C.M., Joy A.A.,
Kay M., Keenan S.J., Kimberley A.M., King A., Laird G.K., Langford C.,
Lawlor S., Leongamornlert D.A., Leversha M., Lloyd C.R., Lloyd D.M.,
Loveland J.E., Lovell J., Martin S., Mashreghi-Mohammadi M.,
Maslen G.L., Matthews L., McCann O.T., McLaren S.J., McLay K.,
McMurray A., Moore M.J.F., Mullikin J.C., Niblett D., Nickerson T.,
Novik K.L., Oliver K., Overton-Larty E.K., Parker A., Patel R.,
Pearce A.V., Peck A.I., Phillimore B.J.C.T., Phillips S., Plumb R.W.,
Porter K.M., Ramsey Y., Ranby S.A., Rice C.M., Ross M.T., Searle S.M.,
Sehra H.K., Sheridan E., Skuce C.D., Smith S., Smith M., Spraggon L.,
Squares S.L., Steward C.A., Sycamore N., Tamlyn-Hall G., Tester J.,
Theaker A.J., Thomas D.W., Thorpe A., Tracey A., Tromans A., Tubby B.,
Wall M., Wallis J.M., West A.P., White S.S., Whitehead S.L.,
Whittaker H., Wild A., Willey D.J., Wilmer T.E., Wood J.M., Wray P.W.,
Wyatt J.C., Young L., Younger R.M., Bentley D.R., Coulson A.,
Durbin R.M., Hubbard T., Sulston J.E., Dunham I., Rogers J., Beck S.;
"The DNA sequence and analysis of human chromosome 6.";
Nature 425:805-811(2003).
[8]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
TISSUE=Brain, Muscle, Pancreas, PNS, and Skin;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[9]
NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-36.
PubMed=2538825; DOI=10.1073/pnas.86.6.1968;
Sargent C.A., Dunham I., Trowsdale J., Campbell R.D.;
"Human major histocompatibility complex contains genes for the major
heat shock protein HSP70.";
Proc. Natl. Acad. Sci. U.S.A. 86:1968-1972(1989).
[10]
NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-22 AND 617-641.
PubMed=3786141; DOI=10.1093/nar/14.22.8933;
Drabent B., Genthe A., Benecke B.-J.;
"In vitro transcription of a human hsp 70 heat shock gene by extracts
prepared from heat-shocked and non-heat-shocked human cells.";
Nucleic Acids Res. 14:8933-8948(1986).
[11]
PROTEIN SEQUENCE OF 4-49; 57-71; 77-155; 160-187; 221-247; 273-311;
326-342; 349-357; 362-416; 424-447; 459-469; 510-517; 540-550; 574-595
AND 598-641, AND IDENTIFICATION BY MASS SPECTROMETRY.
TISSUE=Embryonic kidney;
Bienvenut W.V., Waridel P., Quadroni M.;
Submitted (MAR-2009) to UniProtKB.
[12]
PROTEIN SEQUENCE OF 37-49; 57-71; 78-88; 113-126; 160-187; 221-247;
302-311; 329-342; 349-357; 362-384; 540-550 AND 574-589, AND
IDENTIFICATION BY MASS SPECTROMETRY.
TISSUE=Brain, Cajal-Retzius cell, and Fetal brain cortex;
Lubec G., Afjehi-Sadat L., Chen W.-Q., Sun Y.;
Submitted (DEC-2008) to UniProtKB.
[13]
PROTEIN SEQUENCE OF 551-567, METHYLATION AT LYS-561, MUTAGENESIS OF
LYS-561, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=23349634; DOI=10.1371/journal.pgen.1003210;
Cloutier P., Lavallee-Adam M., Faubert D., Blanchette M., Coulombe B.;
"A newly uncovered group of distantly related lysine
methyltransferases preferentially interact with molecular chaperones
to regulate their activity.";
PLoS Genet. 9:E1003210-E1003210(2013).
[14]
INTERACTION WITH HSF1.
PubMed=7935376; DOI=10.1128/MCB.14.10.6552;
Rabindran S.K., Wisniewski J., Li L., Li G.C., Wu C.;
"Interaction between heat shock factor and hsp70 is insufficient to
suppress induction of DNA-binding activity in vivo.";
Mol. Cell. Biol. 14:6552-6560(1994).
[15]
FUNCTION, AND INTERACTION WITH HSF1.
PubMed=9499401; DOI=10.1101/gad.12.5.654;
Shi Y., Mosser D.D., Morimoto R.I.;
"Molecular chaperones as HSF1-specific transcriptional repressors.";
Genes Dev. 12:654-666(1998).
[16]
INTERACTION WITH TERT.
PubMed=11274138; DOI=10.1074/jbc.C100055200;
Forsythe H.L., Jarvis J.L., Turner J.W., Elmore L.W., Holt S.E.;
"Stable association of hsp90 and p23, but Not hsp70, with active human
telomerase.";
J. Biol. Chem. 276:15571-15574(2001).
[17]
INTERACTION WITH DNAJC7.
PubMed=12853476; DOI=10.1093/emboj/cdg362;
Brychzy A., Rein T., Winklhofer K.F., Hartl F.U., Young J.C.,
Obermann W.M.;
"Cofactor Tpr2 combines two TPR domains and a J domain to regulate the
Hsp70/Hsp90 chaperone system.";
EMBO J. 22:3613-3623(2003).
[18]
INTERACTION WITH TSC2, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=15963462; DOI=10.1016/j.bbrc.2005.05.175;
Nellist M., Burgers P.C., van den Ouweland A.M.W., Halley D.J.J.,
Luider T.M.;
"Phosphorylation and binding partner analysis of the TSC1-TSC2
complex.";
Biochem. Biophys. Res. Commun. 333:818-826(2005).
[19]
INTERACTION WITH PPP5C, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=15383005; DOI=10.1042/BJ20040690;
Zeke T., Morrice N., Vazquez-Martin C., Cohen P.T.;
"Human protein phosphatase 5 dissociates from heat-shock proteins and
is proteolytically activated in response to arachidonic acid and the
microtubule-depolymerizing drug nocodazole.";
Biochem. J. 385:45-56(2005).
[20]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
Mann M.;
"Global, in vivo, and site-specific phosphorylation dynamics in
signaling networks.";
Cell 127:635-648(2006).
[21]
INTERACTION WITH IRAK1BP1, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=17233114; DOI=10.1089/dna.2006.25.704;
Haag Breese E., Uversky V.N., Georgiadis M.M., Harrington M.A.;
"The disordered amino-terminus of SIMPL interacts with members of the
70-kDa heat-shock protein family.";
DNA Cell Biol. 25:704-714(2006).
[22]
FUNCTION AS A RECEPTOR FOR ROTAVIRUS A.
PubMed=16537599; DOI=10.1128/JVI.80.7.3322-3331.2006;
Perez-Vargas J., Romero P., Lopez S., Arias C.F.;
"The peptide-binding and ATPase domains of recombinant hsc70 are
required to interact with rotavirus and reduce its infectivity.";
J. Virol. 80:3322-3331(2006).
[23]
INTERACTION WITH DNAJC9.
PubMed=17182002; DOI=10.1016/j.bbrc.2006.12.013;
Han C., Chen T., Li N., Yang M., Wan T., Cao X.;
"HDJC9, a novel human type C DnaJ/HSP40 member interacts with and
cochaperones HSP70 through the J domain.";
Biochem. Biophys. Res. Commun. 353:280-285(2007).
[24]
IDENTIFICATION IN A MRNP GRANULE COMPLEX, IDENTIFICATION BY MASS
SPECTROMETRY, AND SUBCELLULAR LOCATION.
PubMed=17289661; DOI=10.1074/mcp.M600346-MCP200;
Joeson L., Vikesaa J., Krogh A., Nielsen L.K., Hansen T., Borup R.,
Johnsen A.H., Christiansen J., Nielsen F.C.;
"Molecular composition of IMP1 ribonucleoprotein granules.";
Mol. Cell. Proteomics 6:798-811(2007).
[25]
INTERACTION WITH DNAJC7.
PubMed=18620420; DOI=10.1021/bi800770g;
Moffatt N.S., Bruinsma E., Uhl C., Obermann W.M., Toft D.;
"Role of the cochaperone Tpr2 in Hsp90 chaperoning.";
Biochemistry 47:8203-8213(2008).
[26]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18691976; DOI=10.1016/j.molcel.2008.07.007;
Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,
Greff Z., Keri G., Stemmann O., Mann M.;
"Kinase-selective enrichment enables quantitative phosphoproteomics of
the kinome across the cell cycle.";
Mol. Cell 31:438-448(2008).
[27]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS
SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19413330; DOI=10.1021/ac9004309;
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
Mohammed S.;
"Lys-N and trypsin cover complementary parts of the phosphoproteome in
a refined SCX-based approach.";
Anal. Chem. 81:4493-4501(2009).
[28]
ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-108; LYS-246 AND LYS-348,
AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19608861; DOI=10.1126/science.1175371;
Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
Walther T.C., Olsen J.V., Mann M.;
"Lysine acetylation targets protein complexes and co-regulates major
cellular functions.";
Science 325:834-840(2009).
[29]
INTERACTION WITH TRIM5.
PubMed=20053985; DOI=10.1074/jbc.M109.040618;
Hwang C.Y., Holl J., Rajan D., Lee Y., Kim S., Um M., Kwon K.S.,
Song B.;
"Hsp70 interacts with the retroviral restriction factor TRIM5alpha and
assists the folding of TRIM5alpha.";
J. Biol. Chem. 285:7827-7837(2010).
[30]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-631; SER-633 AND
THR-636, AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE
ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=20068231; DOI=10.1126/scisignal.2000475;
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
Mann M.;
"Quantitative phosphoproteomics reveals widespread full
phosphorylation site occupancy during mitosis.";
Sci. Signal. 3:RA3-RA3(2010).
[31]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21269460; DOI=10.1186/1752-0509-5-17;
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
"Initial characterization of the human central proteome.";
BMC Syst. Biol. 5:17-17(2011).
[32]
INTERACTION WITH CHCHD3.
PubMed=21081504; DOI=10.1074/jbc.M110.171975;
Darshi M., Mendiola V.L., Mackey M.R., Murphy A.N., Koller A.,
Perkins G.A., Ellisman M.H., Taylor S.S.;
"ChChd3, an inner mitochondrial membrane protein, is essential for
maintaining crista integrity and mitochondrial function.";
J. Biol. Chem. 286:2918-2932(2011).
[33]
FUNCTION, AND INTERACTION WITH ATF5.
PubMed=22528486; DOI=10.1074/jbc.M112.363622;
Liu X., Liu D., Qian D., Dai J., An Y., Jiang S., Stanley B., Yang J.,
Wang B., Liu X., Liu D.X.;
"Nucleophosmin (NPM1/B23) interacts with activating transcription
factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent
ATF5 degradation in hepatocellular carcinoma cells.";
J. Biol. Chem. 287:19599-19609(2012).
[34]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=22905912; DOI=10.1021/pr300539b;
Rosenow A., Noben J.P., Jocken J., Kallendrusch S.,
Fischer-Posovszky P., Mariman E.C., Renes J.;
"Resveratrol-induced changes of the human adipocyte secretion
profile.";
J. Proteome Res. 11:4733-4743(2012).
[35]
IDENTIFICATION BY MASS SPECTROMETRY, FUNCTION, AND INTERACTION WITH
FOXP3.
PubMed=23973223; DOI=10.1016/j.immuni.2013.08.006;
Chen Z., Barbi J., Bu S., Yang H.Y., Li Z., Gao Y., Jinasena D.,
Fu J., Lin F., Chen C., Zhang J., Yu N., Li X., Shan Z., Nie J.,
Gao Z., Tian H., Li Y., Yao Z., Zheng Y., Park B.V., Pan Z., Zhang J.,
Dang E., Li Z., Wang H., Luo W., Li L., Semenza G.L., Zheng S.G.,
Loser K., Tsun A., Greene M.I., Pardoll D.M., Pan F., Li B.;
"The ubiquitin ligase Stub1 negatively modulates regulatory T cell
suppressive activity by promoting degradation of the transcription
factor Foxp3.";
Immunity 39:272-285(2013).
[36]
METHYLATION AT LYS-561, MUTAGENESIS OF LYS-561, AND INTERACTION WITH
METTL21A.
PubMed=23921388; DOI=10.1074/jbc.M113.483248;
Jakobsson M.E., Moen A., Bousset L., Egge-Jacobsen W., Kernstock S.,
Melki R., Falnes P.O.;
"Identification and characterization of a novel human
methyltransferase modulating Hsp70 function through lysine
methylation.";
J. Biol. Chem. 288:27752-27763(2013).
[37]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma, and Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[38]
INTERACTION WITH PRKN.
PubMed=24270810; DOI=10.1038/nature12748;
Hasson S.A., Kane L.A., Yamano K., Huang C.H., Sliter D.A.,
Buehler E., Wang C., Heman-Ackah S.M., Hessa T., Guha R., Martin S.E.,
Youle R.J.;
"High-content genome-wide RNAi screens identify regulators of parkin
upstream of mitophagy.";
Nature 504:291-295(2013).
[39]
REVIEW.
PubMed=24012426; DOI=10.1016/j.tibs.2013.08.001;
Mayer M.P.;
"Hsp70 chaperone dynamics and molecular mechanism.";
Trends Biochem. Sci. 38:507-514(2013).
[40]
FUNCTION, AND INTERACTION WITH STUB1 AND SMAD3.
PubMed=24613385; DOI=10.1016/j.bbrc.2014.02.124;
Shang Y., Xu X., Duan X., Guo J., Wang Y., Ren F., He D., Chang Z.;
"Hsp70 and Hsp90 oppositely regulate TGF-beta signaling through
CHIP/Stub1.";
Biochem. Biophys. Res. Commun. 446:387-392(2014).
[41]
FUNCTION, AND INTERACTION WITH BAG1; BAG2; BAG3 AND HSPH1.
PubMed=24318877; DOI=10.1074/jbc.M113.521997;
Rauch J.N., Gestwicki J.E.;
"Binding of human nucleotide exchange factors to heat shock protein 70
(Hsp70) generates functionally distinct complexes in vitro.";
J. Biol. Chem. 289:1402-1414(2014).
[42]
INTERACTION WITH NOD2.
PubMed=24790089; DOI=10.1074/jbc.M114.557686;
Mohanan V., Grimes C.L.;
"The molecular chaperone HSP70 binds to and stabilizes NOD2, an
important protein involved in Crohn disease.";
J. Biol. Chem. 289:18987-18998(2014).
[43]
INTERACTION WITH RNF207.
PubMed=25281747; DOI=10.1074/jbc.M114.592295;
Roder K., Werdich A.A., Li W., Liu M., Kim T.Y., Organ-Darling L.E.,
Moshal K.S., Hwang J.M., Lu Y., Choi B.R., MacRae C.A., Koren G.;
"RING finger protein RNF207, a novel regulator of cardiac
excitation.";
J. Biol. Chem. 289:33730-33740(2014).
[44]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Liver;
PubMed=24275569; DOI=10.1016/j.jprot.2013.11.014;
Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D.,
Wang L., Ye M., Zou H.;
"An enzyme assisted RP-RPLC approach for in-depth analysis of human
liver phosphoproteome.";
J. Proteomics 96:253-262(2014).
[45]
METHYLATION [LARGE SCALE ANALYSIS] AT ARG-469 AND LYS-561, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Colon carcinoma;
PubMed=24129315; DOI=10.1074/mcp.O113.027870;
Guo A., Gu H., Zhou J., Mulhern D., Wang Y., Lee K.A., Yang V.,
Aguiar M., Kornhauser J., Jia X., Ren J., Beausoleil S.A., Silva J.C.,
Vemulapalli V., Bedford M.T., Comb M.J.;
"Immunoaffinity enrichment and mass spectrometry analysis of protein
methylation.";
Mol. Cell. Proteomics 13:372-387(2014).
[46]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=25944712; DOI=10.1002/pmic.201400617;
Vaca Jacome A.S., Rabilloud T., Schaeffer-Reiss C., Rompais M.,
Ayoub D., Lane L., Bairoch A., Van Dorsselaer A., Carapito C.;
"N-terminome analysis of the human mitochondrial proteome.";
Proteomics 15:2519-2524(2015).
[47]
INTERACTION WITH DNAJC8.
PubMed=27133716; DOI=10.1016/j.bbrc.2016.03.152;
Ito N., Kamiguchi K., Nakanishi K., Sokolovskya A., Hirohashi Y.,
Tamura Y., Murai A., Yamamoto E., Kanaseki T., Tsukahara T.,
Kochin V., Chiba S., Shimohama S., Sato N., Torigoe T.;
"A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of
spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain
independent manner.";
Biochem. Biophys. Res. Commun. 474:626-633(2016).
[48]
REVIEW.
PubMed=26865365; DOI=10.1007/s12192-016-0676-6;
Radons J.;
"The human HSP70 family of chaperones: where do we stand?";
Cell Stress Chaperones 21:379-404(2016).
[49]
FUNCTION, INTERACTION WITH NEDD1, AND SUBCELLULAR LOCATION.
PubMed=27137183; DOI=10.1007/s00018-016-2236-8;
Fang C.T., Kuo H.H., Pan T.S., Yu F.C., Yih L.H.;
"HSP70 regulates the function of mitotic centrosomes.";
Cell. Mol. Life Sci. 73:3949-3960(2016).
[50]
FUNCTION, ACETYLATION AT LYS-77, MUTAGENESIS OF LYS-77, AND
INTERACTION WITH NAA10; HSP40; HOPX; STUB1; HSP90 AND HDAC4.
PubMed=27708256; DOI=10.1038/ncomms12882;
Seo J.H., Park J.H., Lee E.J., Vo T.T., Choi H., Kim J.Y., Jang J.K.,
Wee H.J., Lee H.S., Jang S.H., Park Z.Y., Jeong J., Lee K.J.,
Seok S.H., Park J.Y., Lee B.J., Lee M.N., Oh G.T., Kim K.W.;
"ARD1-mediated Hsp70 acetylation balances stress-induced protein
refolding and degradation.";
Nat. Commun. 7:12882-12882(2016).
[51]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 1-382 IN COMPLEX WITH ADP,
AND ATP-BINDING.
PubMed=10216320; DOI=10.1107/S0907444999002103;
Osipiuk J., Walsh M.A., Freeman B.C., Morimoto R.I., Joachimiak A.;
"Structure of a new crystal form of human hsp70 ATPase domain.";
Acta Crystallogr. D 55:1105-1107(1999).
[52]
X-RAY CRYSTALLOGRAPHY (1.77 ANGSTROMS) OF 389-641 IN COMPLEX WITH ATP
ANALOG, AND ATP-BINDING.
PubMed=20179333; DOI=10.1107/S0907444909053979;
Shida M., Arakawa A., Ishii R., Kishishita S., Takagi T.,
Kukimoto-Niino M., Sugano S., Tanaka A., Shirouzu M., Yokoyama S.;
"Direct inter-subdomain interactions switch between the closed and
open forms of the Hsp70 nucleotide-binding domain in the nucleotide-
free state.";
Acta Crystallogr. D 66:223-232(2010).
[53]
X-RAY CRYSTALLOGRAPHY (2.14 ANGSTROMS) OF 1-387 IN COMPLEX WITH ADP,
AND ATP-BINDING.
PubMed=20072699; DOI=10.1371/journal.pone.0008625;
Wisniewska M., Karlberg T., Lehtio L., Johansson I., Kotenyova T.,
Moche M., Schuler H.;
"Crystal structures of the ATPase domains of four human Hsp70
isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and
HSPA5/BiP/GRP78.";
PLoS ONE 5:E8625-E8625(2010).
[54]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 1-388 IN COMPLEX WITH BAG5.
PubMed=20223214; DOI=10.1016/j.str.2010.01.004;
Arakawa A., Handa N., Ohsawa N., Shida M., Kigawa T., Hayashi F.,
Shirouzu M., Yokoyama S.;
"The C-terminal BAG domain of BAG5 induces conformational changes of
the Hsp70 nucleotide-binding domain for ADP-ATP exchange.";
Structure 18:309-319(2010).
[55]
X-RAY CRYSTALLOGRAPHY (1.58 ANGSTROMS) OF 1-388, ATP-BINDING, AND
MUTAGENESIS OF ASP-10 AND ASP-199.
PubMed=21608060; DOI=10.1002/pro.663;
Arakawa A., Handa N., Shirouzu M., Yokoyama S.;
"Biochemical and structural studies on the high affinity of Hsp70 for
ADP.";
Protein Sci. 20:1367-1379(2011).
-!- FUNCTION: Molecular chaperone implicated in a wide variety of
cellular processes, including protection of the proteome from
stress, folding and transport of newly synthesized polypeptides,
activation of proteolysis of misfolded proteins and the formation
and dissociation of protein complexes. Plays a pivotal role in the
protein quality control system, ensuring the correct folding of
proteins, the re-folding of misfolded proteins and controlling the
targeting of proteins for subsequent degradation. This is achieved
through cycles of ATP binding, ATP hydrolysis and ADP release,
mediated by co-chaperones. The co-chaperones have been shown to
not only regulate different steps of the ATPase cycle, but they
also have an individual specificity such that one co-chaperone may
promote folding of a substrate while another may promote
degradation. The affinity for polypeptides is regulated by its
nucleotide bound state. In the ATP-bound form, it has a low
affinity for substrate proteins. However, upon hydrolysis of the
ATP to ADP, it undergoes a conformational change that increases
its affinity for substrate proteins. It goes through repeated
cycles of ATP hydrolysis and nucleotide exchange, which permits
cycles of substrate binding and release. The co-chaperones are of
three types: J-domain co-chaperones such as HSP40s (stimulate
ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF)
such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-
bound to the ATP-bound state thereby promoting substrate release),
and the TPR domain chaperones such as HOPX and STUB1
(PubMed:24012426, PubMed:26865365, PubMed:24318877). Maintains
protein homeostasis during cellular stress through two opposing
mechanisms: protein refolding and degradation. Its
acetylation/deacetylation state determines whether it functions in
protein refolding or protein degradation by controlling the
competitive binding of co-chaperones HOPX and STUB1. During the
early stress response, the acetylated form binds to HOPX which
assists in chaperone-mediated protein refolding, thereafter, it is
deacetylated and binds to ubiquitin ligase STUB1 that promotes
ubiquitin-mediated protein degradation (PubMed:27708256).
Regulates centrosome integrity during mitosis, and is required for
the maintenance of a functional mitotic centrosome that supports
the assembly of a bipolar mitotic spindle (PubMed:27137183).
Enhances STUB1-mediated SMAD3 ubiquitination and degradation and
facilitates STUB1-mediated inhibition of TGF-beta signaling
(PubMed:24613385). Essential for STUB1-mediated ubiquitination and
degradation of FOXP3 in regulatory T-cells (Treg) during
inflammation (PubMed:23973223). Negatively regulates heat shock-
induced HSF1 transcriptional activity during the attenuation and
recovery phase period of the heat shock response (PubMed:9499401).
{ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223,
ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385,
ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256,
ECO:0000269|PubMed:9499401, ECO:0000303|PubMed:24012426,
ECO:0000303|PubMed:26865365}.
-!- FUNCTION: (Microbial infection) In case of rotavirus A infection,
serves as a post-attachment receptor for the virus to facilitate
entry into the cell. {ECO:0000269|PubMed:16537599}.
-!- SUBUNIT: Component of the CatSper complex. Identified in a
IGF2BP1-dependent mRNP granule complex containing untranslated
mRNAs (PubMed:17289661). Interacts with CHCHD3, DNAJC7, IRAK1BP1,
PPP5C and TSC2 (PubMed:21081504, PubMed:12853476, PubMed:18620420,
PubMed:17233114, PubMed:15383005, PubMed:15963462). Interacts with
TERT; the interaction occurs in the absence of the RNA component,
TERC, and dissociates once the TERT complex has formed
(PubMed:11274138). Interacts with TRIM5 (via B30.2/SPRY domain)
(PubMed:20053985). Interacts with METTL21A (PubMed:23921388).
Interacts with DNAAF2 (By similarity). Interacts with PRKN
(PubMed:24270810). Interacts with FOXP3 (PubMed:23973223).
Interacts with NOD2; the interaction enhances NOD2 stability
(PubMed:24790089). Interacts with DNAJC9 (via J domain)
(PubMed:17182002). Interacts with ATF5; the interaction protects
ATF5 from degradation via proteasome-dependent and caspase-
dependent processes (PubMed:22528486). Interacts with RNF207 (via
the C-terminus); this interaction additively increases KCNH2
expression (PubMed:25281747). Interacts with HSF1 (via
transactivation domain); this interaction results in the
inhibition of heat shock- and HSF1-induced transcriptional
activity during the attenuation and recovery phase period of the
heat shock response (PubMed:7935376, PubMed:9499401). Interacts
with NAA10, HSP40, HSP90 and HDAC4. The acetylated form and the
non-acetylated form interact with HOPX and STUB1 respectively
(PubMed:27708256). Interacts with NEDD1 (PubMed:27137183).
Interacts (via NBD) with BAG1, BAG2, BAG3 and HSPH1/HSP105
(PubMed:24318877). Interacts with SMAD3 (PubMed:24613385).
Interacts with DNAJC8 (PubMed:27133716).
{ECO:0000250|UniProtKB:Q61696, ECO:0000269|PubMed:10216320,
ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:12853476,
ECO:0000269|PubMed:15383005, ECO:0000269|PubMed:15963462,
ECO:0000269|PubMed:17182002, ECO:0000269|PubMed:17233114,
ECO:0000269|PubMed:17289661, ECO:0000269|PubMed:18620420,
ECO:0000269|PubMed:20053985, ECO:0000269|PubMed:20072699,
ECO:0000269|PubMed:20179333, ECO:0000269|PubMed:20223214,
ECO:0000269|PubMed:21081504, ECO:0000269|PubMed:22528486,
ECO:0000269|PubMed:23921388, ECO:0000269|PubMed:23973223,
ECO:0000269|PubMed:24270810, ECO:0000269|PubMed:24318877,
ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:24790089,
ECO:0000269|PubMed:25281747, ECO:0000269|PubMed:27133716,
ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256,
ECO:0000269|PubMed:7935376, ECO:0000269|PubMed:9499401}.
-!- INTERACTION:
P04663:HA (xeno); NbExp=4; IntAct=EBI-11052499, EBI-13951712;
P13760:HLA-DRB1; NbExp=2; IntAct=EBI-11052499, EBI-1033104;
Q9NUX5:POT1; NbExp=2; IntAct=EBI-11052499, EBI-752420;
P04958:tetX (xeno); NbExp=3; IntAct=EBI-11052499, EBI-13951617;
-!- SUBCELLULAR LOCATION: Cytoplasm {ECO:0000269|PubMed:17289661}.
Nucleus {ECO:0000269|PubMed:27137183}. Cytoplasm, cytoskeleton,
microtubule organizing center, centrosome
{ECO:0000269|PubMed:27137183}. Note=Localized in cytoplasmic mRNP
granules containing untranslated mRNAs.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing; Named isoforms=2;
Name=1;
IsoId=P0DMV8-1; Sequence=Displayed;
Name=2;
IsoId=P0DMV8-2; Sequence=VSP_044427;
-!- INDUCTION: By heat shock.
-!- DOMAIN: The N-terminal nucleotide binding domain (NBD) (also known
as the ATPase domain) is responsible for binding and hydrolyzing
ATP. The C-terminal substrate-binding domain (SBD) (also known as
peptide-binding domain) binds to the client/substrate proteins.
The two domains are allosterically coupled so that, when ATP is
bound to the NBD, the SBD binds relatively weakly to clients. When
ADP is bound in the NBD, a conformational change enhances the
affinity of the SBD for client proteins.
{ECO:0000305|PubMed:24012426, ECO:0000305|PubMed:26865365}.
-!- PTM: In response to cellular stress, acetylated at Lys-77 by NA110
and then gradually deacetylated by HDAC4 at later stages.
Acetylation enhances its chaperone activity and also determines
whether it will function as a chaperone for protein refolding or
degradation by controlling its binding to co-chaperones HOPX and
STUB1. The acetylated form and the non-acetylated form bind to
HOPX and STUB1 respectively. Acetylation also protects cells
against various types of cellular stress.
{ECO:0000269|PubMed:27708256}.
-!- SIMILARITY: Belongs to the heat shock protein 70 family.
{ECO:0000305}.
-!- WEB RESOURCE: Name=NIEHS-SNPs;
URL="http://egp.gs.washington.edu/data/hspa1a/";
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; M11717; AAA52697.1; -; Genomic_DNA.
EMBL; M59828; AAA63226.1; -; Genomic_DNA.
EMBL; BA000025; BAB63300.1; -; Genomic_DNA.
EMBL; AF134726; AAD21816.1; -; Genomic_DNA.
EMBL; AK304652; BAG65428.1; -; mRNA.
EMBL; DQ451402; ABD96830.1; -; Genomic_DNA.
EMBL; AL671762; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; BC002453; AAH02453.1; -; mRNA.
EMBL; M24743; AAA59844.1; -; Genomic_DNA.
EMBL; X04676; CAA28381.1; -; Genomic_DNA.
EMBL; X04677; CAA28382.1; -; Genomic_DNA.
CCDS; CCDS34414.1; -. [P0DMV8-1]
PIR; A29160; A29160.
PIR; A45871; A45871.
PIR; I59139; I59139.
PIR; I79540; I79540.
RefSeq; NP_005336.3; NM_005345.5. [P0DMV8-1]
RefSeq; NP_005337.2; NM_005346.4. [P0DMV8-1]
UniGene; Hs.274402; -.
UniGene; Hs.702139; -.
UniGene; Hs.719966; -.
UniGene; Hs.743411; -.
PDB; 1HJO; X-ray; 2.30 A; A=3-382.
PDB; 1S3X; X-ray; 1.84 A; A=1-382.
PDB; 1XQS; X-ray; 2.90 A; C/D=184-371.
PDB; 2E88; X-ray; 1.80 A; A=1-388.
PDB; 2E8A; X-ray; 1.77 A; A=1-388.
PDB; 2LMG; NMR; -; A=537-610.
PDB; 3A8Y; X-ray; 2.30 A; A/B=1-388.
PDB; 3ATU; X-ray; 1.65 A; A=1-388.
PDB; 3ATV; X-ray; 1.58 A; A=1-388.
PDB; 3AY9; X-ray; 1.75 A; A=1-388.
PDB; 3D2E; X-ray; 2.35 A; B/D=1-382.
PDB; 3D2F; X-ray; 2.30 A; B/D=1-382.
PDB; 3JXU; X-ray; 2.14 A; A=1-387.
PDB; 3LOF; X-ray; 2.40 A; A/B/C/D/E/F=534-641.
PDB; 3Q49; X-ray; 1.54 A; C=634-641.
PDB; 4IO8; X-ray; 2.58 A; A=1-382.
PDB; 4J8F; X-ray; 2.70 A; A=1-382.
PDB; 4PO2; X-ray; 2.00 A; A/B=386-613.
PDB; 4WV5; X-ray; 2.04 A; A/B=395-543.
PDB; 4WV7; X-ray; 2.42 A; A/B=395-543.
PDB; 5AQW; X-ray; 1.53 A; A=1-380.
PDB; 5AQX; X-ray; 2.12 A; A=1-380.
PDB; 5AQY; X-ray; 1.56 A; A=1-380.
PDB; 5AQZ; X-ray; 1.65 A; A=1-380.
PDB; 5AR0; X-ray; 1.90 A; A=1-380.
PDB; 5BN8; X-ray; 1.34 A; A=1-388.
PDB; 5BN9; X-ray; 1.69 A; A=1-388.
PDB; 5BPL; X-ray; 1.93 A; A=1-388.
PDB; 5BPM; X-ray; 1.83 A; A=1-388.
PDB; 5BPN; X-ray; 2.10 A; A=1-388.
PDB; 5GJJ; NMR; -; A=385-641.
PDB; 5MKR; X-ray; 1.87 A; A=1-380.
PDB; 5MKS; X-ray; 1.99 A; A=1-380.
PDBsum; 1HJO; -.
PDBsum; 1S3X; -.
PDBsum; 1XQS; -.
PDBsum; 2E88; -.
PDBsum; 2E8A; -.
PDBsum; 2LMG; -.
PDBsum; 3A8Y; -.
PDBsum; 3ATU; -.
PDBsum; 3ATV; -.
PDBsum; 3AY9; -.
PDBsum; 3D2E; -.
PDBsum; 3D2F; -.
PDBsum; 3JXU; -.
PDBsum; 3LOF; -.
PDBsum; 3Q49; -.
PDBsum; 4IO8; -.
PDBsum; 4J8F; -.
PDBsum; 4PO2; -.
PDBsum; 4WV5; -.
PDBsum; 4WV7; -.
PDBsum; 5AQW; -.
PDBsum; 5AQX; -.
PDBsum; 5AQY; -.
PDBsum; 5AQZ; -.
PDBsum; 5AR0; -.
PDBsum; 5BN8; -.
PDBsum; 5BN9; -.
PDBsum; 5BPL; -.
PDBsum; 5BPM; -.
PDBsum; 5BPN; -.
PDBsum; 5GJJ; -.
PDBsum; 5MKR; -.
PDBsum; 5MKS; -.
ProteinModelPortal; P0DMV8; -.
SMR; P0DMV8; -.
CORUM; P0DMV8; -.
IntAct; P0DMV8; 19.
MINT; MINT-96699; -.
STRING; 9606.ENSP00000364802; -.
BindingDB; P0DMV8; -.
ChEMBL; CHEMBL5460; -.
iPTMnet; P0DMV8; -.
PhosphoSitePlus; P0DMV8; -.
SwissPalm; P0DMV8; -.
DMDM; 147744565; -.
REPRODUCTION-2DPAGE; IPI00304925; -.
PeptideAtlas; P0DMV8; -.
PRIDE; P0DMV8; -.
DNASU; 3303; -.
Ensembl; ENST00000375651; ENSP00000364802; ENSG00000204389. [P0DMV8-1]
Ensembl; ENST00000400040; ENSP00000382915; ENSG00000215328.
Ensembl; ENST00000430065; ENSP00000404524; ENSG00000235941. [P0DMV8-1]
Ensembl; ENST00000433487; ENSP00000408907; ENSG00000234475. [P0DMV8-1]
Ensembl; ENST00000441618; ENSP00000406359; ENSG00000237724. [P0DMV8-1]
GeneID; 3303; -.
GeneID; 3304; -.
KEGG; hsa:3303; -.
KEGG; hsa:3304; -.
CTD; 3303; -.
CTD; 3304; -.
DisGeNET; 3303; -.
DisGeNET; 3304; -.
EuPathDB; HostDB:ENSG00000204389.9; -.
GeneCards; HSPA1A; -.
H-InvDB; HIX0058169; -.
H-InvDB; HIX0058187; -.
H-InvDB; HIX0166160; -.
HGNC; HGNC:5232; HSPA1A.
HPA; CAB017451; -.
HPA; CAB032815; -.
HPA; HPA052504; -.
MIM; 140550; gene.
MIM; 603012; gene.
neXtProt; NX_P0DMV8; -.
OpenTargets; ENSG00000204388; -.
OpenTargets; ENSG00000204389; -.
HOGENOM; HOG000228135; -.
HOVERGEN; HBG051845; -.
KO; K03283; -.
OMA; VDWLDHN; -.
OrthoDB; EOG093705LK; -.
PhylomeDB; P0DMV8; -.
TreeFam; TF105042; -.
Reactome; R-HSA-168330; Viral RNP Complexes in the Host Cell Nucleus.
Reactome; R-HSA-3371453; Regulation of HSF1-mediated heat shock response.
Reactome; R-HSA-3371497; HSP90 chaperone cycle for steroid hormone receptors (SHR).
Reactome; R-HSA-3371568; Attenuation phase.
Reactome; R-HSA-3371571; HSF1-dependent transactivation.
Reactome; R-HSA-450408; AUF1 (hnRNP D0) binds and destabilizes mRNA.
Reactome; R-HSA-6798695; Neutrophil degranulation.
SIGNOR; P0DMV8; -.
ChiTaRS; HSPA1A; human.
ChiTaRS; HSPA1B; human.
GeneWiki; HSPA1A; -.
PRO; PR:P0DMV8; -.
Proteomes; UP000005640; Chromosome 6.
Bgee; ENSG00000204389; -.
CleanEx; HS_HSPA1A; -.
ExpressionAtlas; P0DMV8; baseline and differential.
GO; GO:0016235; C:aggresome; IDA:UniProtKB.
GO; GO:0072562; C:blood microparticle; IDA:UniProtKB.
GO; GO:0005814; C:centriole; IDA:UniProtKB.
GO; GO:0005813; C:centrosome; IDA:UniProtKB.
GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
GO; GO:0005829; C:cytosol; IDA:UniProtKB.
GO; GO:0005783; C:endoplasmic reticulum; TAS:UniProtKB.
GO; GO:0070062; C:extracellular exosome; IDA:UniProtKB.
GO; GO:0005576; C:extracellular region; TAS:Reactome.
GO; GO:1904813; C:ficolin-1-rich granule lumen; TAS:Reactome.
GO; GO:0005925; C:focal adhesion; IDA:UniProtKB.
GO; GO:0016234; C:inclusion body; IDA:BHF-UCL.
GO; GO:0030529; C:intracellular ribonucleoprotein complex; IDA:UniProtKB.
GO; GO:0005739; C:mitochondrion; TAS:UniProtKB.
GO; GO:0016607; C:nuclear speck; IDA:UniProtKB.
GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0048471; C:perinuclear region of cytoplasm; IDA:UniProtKB.
GO; GO:0043234; C:protein complex; IDA:UniProtKB.
GO; GO:0031982; C:vesicle; IDA:UniProtKB.
GO; GO:0005524; F:ATP binding; IDA:BHF-UCL.
GO; GO:0016887; F:ATPase activity; IDA:BHF-UCL.
GO; GO:0042623; F:ATPase activity, coupled; IDA:UniProtKB.
GO; GO:0055131; F:C3HC4-type RING finger domain binding; IPI:BHF-UCL.
GO; GO:0045296; F:cadherin binding; IDA:BHF-UCL.
GO; GO:0031249; F:denatured protein binding; IPI:CAFA.
GO; GO:0097718; F:disordered domain specific binding; IPI:CAFA.
GO; GO:0019899; F:enzyme binding; IPI:BHF-UCL.
GO; GO:0001664; F:G-protein coupled receptor binding; IDA:ParkinsonsUK-UCL.
GO; GO:0031072; F:heat shock protein binding; IPI:UniProtKB.
GO; GO:0042826; F:histone deacetylase binding; IPI:BHF-UCL.
GO; GO:0044183; F:protein binding involved in protein folding; IDA:BHF-UCL.
GO; GO:0047485; F:protein N-terminus binding; IPI:UniProtKB.
GO; GO:0005102; F:receptor binding; IPI:UniProtKB.
GO; GO:0003723; F:RNA binding; IDA:UniProtKB.
GO; GO:0001106; F:RNA polymerase II transcription corepressor activity; IDA:UniProtKB.
GO; GO:0031625; F:ubiquitin protein ligase binding; IPI:ParkinsonsUK-UCL.
GO; GO:0051082; F:unfolded protein binding; IDA:UniProtKB.
GO; GO:0001618; F:virus receptor activity; IEA:UniProtKB-KW.
GO; GO:0046034; P:ATP metabolic process; IDA:BHF-UCL.
GO; GO:0070370; P:cellular heat acclimation; IMP:UniProtKB.
GO; GO:0034605; P:cellular response to heat; IDA:UniProtKB.
GO; GO:0034599; P:cellular response to oxidative stress; TAS:ParkinsonsUK-UCL.
GO; GO:0051131; P:chaperone-mediated protein complex assembly; IDA:CAFA.
GO; GO:0006402; P:mRNA catabolic process; IDA:UniProtKB.
GO; GO:0043066; P:negative regulation of apoptotic process; TAS:UniProtKB.
GO; GO:0060548; P:negative regulation of cell death; IMP:UniProtKB.
GO; GO:0030308; P:negative regulation of cell growth; IMP:UniProtKB.
GO; GO:0008285; P:negative regulation of cell proliferation; IMP:UniProtKB.
GO; GO:1902236; P:negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway; IDA:ParkinsonsUK-UCL.
GO; GO:2001240; P:negative regulation of extrinsic apoptotic signaling pathway in absence of ligand; IMP:BHF-UCL.
GO; GO:0090084; P:negative regulation of inclusion body assembly; IDA:UniProtKB.
GO; GO:1901029; P:negative regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway; IDA:ParkinsonsUK-UCL.
GO; GO:0031397; P:negative regulation of protein ubiquitination; IDA:ParkinsonsUK-UCL.
GO; GO:0097201; P:negative regulation of transcription from RNA polymerase II promoter in response to stress; IDA:UniProtKB.
GO; GO:0030512; P:negative regulation of transforming growth factor beta receptor signaling pathway; IMP:UniProtKB.
GO; GO:0043312; P:neutrophil degranulation; TAS:Reactome.
GO; GO:1902380; P:positive regulation of endoribonuclease activity; IDA:ParkinsonsUK-UCL.
GO; GO:0010628; P:positive regulation of gene expression; IMP:BHF-UCL.
GO; GO:0032757; P:positive regulation of interleukin-8 production; IMP:UniProtKB.
GO; GO:0090063; P:positive regulation of microtubule nucleation; IMP:UniProtKB.
GO; GO:1904722; P:positive regulation of mRNA endonucleolytic cleavage involved in unfolded protein response; IDA:ParkinsonsUK-UCL.
GO; GO:0051092; P:positive regulation of NF-kappaB transcription factor activity; IMP:UniProtKB.
GO; GO:0070434; P:positive regulation of nucleotide-binding oligomerization domain containing 2 signaling pathway; IMP:UniProtKB.
GO; GO:0032436; P:positive regulation of proteasomal ubiquitin-dependent protein catabolic process; IDA:UniProtKB.
GO; GO:1903265; P:positive regulation of tumor necrosis factor-mediated signaling pathway; IMP:UniProtKB.
GO; GO:0042026; P:protein refolding; IDA:UniProtKB.
GO; GO:0050821; P:protein stabilization; IDA:CAFA.
GO; GO:1900034; P:regulation of cellular response to heat; TAS:Reactome.
GO; GO:1901673; P:regulation of mitotic spindle assembly; IMP:UniProtKB.
GO; GO:0043488; P:regulation of mRNA stability; TAS:Reactome.
GO; GO:0031396; P:regulation of protein ubiquitination; IDA:BHF-UCL.
GO; GO:0006986; P:response to unfolded protein; IDA:UniProtKB.
Gene3D; 1.20.1270.10; -; 1.
Gene3D; 2.60.34.10; -; 1.
InterPro; IPR018181; Heat_shock_70_CS.
InterPro; IPR029048; HSP70_C_sf.
InterPro; IPR029047; HSP70_peptide-bd_sf.
InterPro; IPR013126; Hsp_70_fam.
Pfam; PF00012; HSP70; 1.
PRINTS; PR00301; HEATSHOCK70.
SUPFAM; SSF100920; SSF100920; 1.
SUPFAM; SSF100934; SSF100934; 1.
PROSITE; PS00297; HSP70_1; 1.
PROSITE; PS00329; HSP70_2; 1.
PROSITE; PS01036; HSP70_3; 1.
1: Evidence at protein level;
3D-structure; Acetylation; Alternative splicing; ATP-binding;
Chaperone; Complete proteome; Cytoplasm; Cytoskeleton;
Direct protein sequencing; Host cell receptor for virus entry;
Methylation; Nucleotide-binding; Nucleus; Phosphoprotein;
Polymorphism; Receptor; Reference proteome; Stress response.
INIT_MET 1 1 Removed. {ECO:0000244|PubMed:19413330}.
CHAIN 2 641 Heat shock 70 kDa protein 1A.
/FTId=PRO_0000078249.
NP_BIND 12 15 ATP.
NP_BIND 202 204 ATP.
NP_BIND 268 275 ATP.
NP_BIND 339 342 ATP.
REGION 2 386 Nucleotide-binding domain (NBD).
{ECO:0000250|UniProtKB:P11142}.
REGION 394 509 Substrate-binding domain (SBD).
{ECO:0000250|UniProtKB:P11142}.
BINDING 71 71 ATP.
MOD_RES 2 2 N-acetylalanine.
{ECO:0000244|PubMed:19413330}.
MOD_RES 77 77 N6-acetyllysine.
{ECO:0000269|PubMed:27708256}.
MOD_RES 108 108 N6-acetyllysine.
{ECO:0000244|PubMed:19608861}.
MOD_RES 246 246 N6-acetyllysine.
{ECO:0000244|PubMed:19608861}.
MOD_RES 348 348 N6-acetyllysine.
{ECO:0000244|PubMed:19608861}.
MOD_RES 469 469 Omega-N-methylarginine.
{ECO:0000244|PubMed:24129315}.
MOD_RES 561 561 N6,N6,N6-trimethyllysine; by METTL21A;
alternate. {ECO:0000244|PubMed:24129315,
ECO:0000269|PubMed:23349634,
ECO:0000269|PubMed:23921388}.
MOD_RES 561 561 N6,N6-dimethyllysine; alternate.
{ECO:0000244|PubMed:24129315}.
MOD_RES 631 631 Phosphoserine.
{ECO:0000244|PubMed:20068231}.
MOD_RES 633 633 Phosphoserine.
{ECO:0000244|PubMed:20068231}.
MOD_RES 636 636 Phosphothreonine.
{ECO:0000244|PubMed:20068231}.
VAR_SEQ 96 150 Missing (in isoform 2).
{ECO:0000303|PubMed:14702039}.
/FTId=VSP_044427.
VARIANT 110 110 E -> D (in dbSNP:rs562047).
{ECO:0000269|PubMed:14656967,
ECO:0000269|Ref.6}.
/FTId=VAR_029053.
MUTAGEN 10 10 D->A: Reduces affinity for ADP.
{ECO:0000269|PubMed:21608060}.
MUTAGEN 77 77 K->Q: No loss of acetylation and ATPase
activity. Exhibits normal protein
refolding activity during the early phase
but exhibits defects in ubiquitin-
mediated protein degradation during the
later phase.
{ECO:0000269|PubMed:27708256}.
MUTAGEN 77 77 K->R: Significant loss of acetylation and
ATPase activity. Decreased binding to
HOPX and HSP90 and increased binding to
STUB1 and NAA10. Impaired capacity for
protein refolding during the early phase
after stress but shows normal protein
degradation activity in the late phase.
{ECO:0000269|PubMed:27708256}.
MUTAGEN 199 199 D->A: Reduces affinity for ADP.
{ECO:0000269|PubMed:21608060}.
MUTAGEN 561 561 K->R: Complete loss of in vitro
methylation by METTL21A.
{ECO:0000269|PubMed:23349634,
ECO:0000269|PubMed:23921388}.
CONFLICT 7 7 I -> V (in Ref. 1; AAA52697 and 10;
CAA28381). {ECO:0000305}.
CONFLICT 355 355 N -> D (in Ref. 5; BAG65428).
{ECO:0000305}.
CONFLICT 370 370 A -> G (in Ref. 1; AAA52697).
{ECO:0000305}.
CONFLICT 469 469 Missing (in Ref. 1; AAA52697).
{ECO:0000305}.
CONFLICT 497 497 K -> N (in Ref. 5; BAG65428).
{ECO:0000305}.
STRAND 7 10 {ECO:0000244|PDB:5BN8}.
STRAND 13 22 {ECO:0000244|PDB:5BN8}.
STRAND 25 28 {ECO:0000244|PDB:5BN8}.
STRAND 36 39 {ECO:0000244|PDB:5BN8}.
STRAND 42 44 {ECO:0000244|PDB:5BN8}.
STRAND 49 51 {ECO:0000244|PDB:5BN8}.
HELIX 53 56 {ECO:0000244|PDB:5BN8}.
TURN 57 61 {ECO:0000244|PDB:5BN8}.
HELIX 63 65 {ECO:0000244|PDB:5BN8}.
HELIX 70 72 {ECO:0000244|PDB:5BN8}.
TURN 73 75 {ECO:0000244|PDB:5BN8}.
HELIX 81 86 {ECO:0000244|PDB:5BN8}.
HELIX 87 89 {ECO:0000244|PDB:5BN8}.
STRAND 91 97 {ECO:0000244|PDB:5BN8}.
STRAND 100 107 {ECO:0000244|PDB:5BN8}.
STRAND 110 114 {ECO:0000244|PDB:5BN8}.
HELIX 116 135 {ECO:0000244|PDB:5BN8}.
STRAND 141 146 {ECO:0000244|PDB:5BN8}.
HELIX 152 164 {ECO:0000244|PDB:5BN8}.
STRAND 168 174 {ECO:0000244|PDB:5BN8}.
HELIX 175 182 {ECO:0000244|PDB:5BN8}.
HELIX 185 187 {ECO:0000244|PDB:5BN8}.
STRAND 189 191 {ECO:0000244|PDB:2E8A}.
STRAND 193 200 {ECO:0000244|PDB:5BN8}.
STRAND 205 213 {ECO:0000244|PDB:5BN8}.
STRAND 216 225 {ECO:0000244|PDB:5BN8}.
HELIX 226 228 {ECO:0000244|PDB:2E88}.
HELIX 230 249 {ECO:0000244|PDB:5BN8}.
HELIX 253 255 {ECO:0000244|PDB:2E88}.
HELIX 257 274 {ECO:0000244|PDB:5BN8}.
STRAND 277 288 {ECO:0000244|PDB:5BN8}.
STRAND 291 298 {ECO:0000244|PDB:5BN8}.
HELIX 299 305 {ECO:0000244|PDB:5BN8}.
HELIX 307 312 {ECO:0000244|PDB:5BN8}.
HELIX 314 324 {ECO:0000244|PDB:5BN8}.
HELIX 328 330 {ECO:0000244|PDB:5BN8}.
STRAND 333 338 {ECO:0000244|PDB:5BN8}.
HELIX 339 342 {ECO:0000244|PDB:5BN8}.
HELIX 344 353 {ECO:0000244|PDB:5BN8}.
TURN 354 356 {ECO:0000244|PDB:5BN8}.
TURN 365 367 {ECO:0000244|PDB:5BN8}.
HELIX 368 380 {ECO:0000244|PDB:5BN8}.
HELIX 390 393 {ECO:0000244|PDB:4PO2}.
STRAND 394 396 {ECO:0000244|PDB:4PO2}.
STRAND 401 405 {ECO:0000244|PDB:4PO2}.
TURN 406 408 {ECO:0000244|PDB:4PO2}.
STRAND 409 414 {ECO:0000244|PDB:4PO2}.
STRAND 419 432 {ECO:0000244|PDB:4PO2}.
STRAND 438 449 {ECO:0000244|PDB:4PO2}.
HELIX 450 452 {ECO:0000244|PDB:4PO2}.
STRAND 453 461 {ECO:0000244|PDB:4PO2}.
STRAND 474 480 {ECO:0000244|PDB:4PO2}.
STRAND 486 492 {ECO:0000244|PDB:4PO2}.
TURN 493 495 {ECO:0000244|PDB:4PO2}.
STRAND 498 503 {ECO:0000244|PDB:4PO2}.
HELIX 506 508 {ECO:0000244|PDB:4PO2}.
HELIX 512 524 {ECO:0000244|PDB:4PO2}.
HELIX 526 554 {ECO:0000244|PDB:4PO2}.
HELIX 556 558 {ECO:0000244|PDB:4PO2}.
HELIX 564 583 {ECO:0000244|PDB:4PO2}.
HELIX 589 608 {ECO:0000244|PDB:4PO2}.
HELIX 609 611 {ECO:0000244|PDB:4PO2}.
STRAND 637 639 {ECO:0000244|PDB:3Q49}.
SEQUENCE 641 AA; 70052 MW; 78F513118C96DE66 CRC64;
MAKAAAIGID LGTTYSCVGV FQHGKVEIIA NDQGNRTTPS YVAFTDTERL IGDAAKNQVA
LNPQNTVFDA KRLIGRKFGD PVVQSDMKHW PFQVINDGDK PKVQVSYKGE TKAFYPEEIS
SMVLTKMKEI AEAYLGYPVT NAVITVPAYF NDSQRQATKD AGVIAGLNVL RIINEPTAAA
IAYGLDRTGK GERNVLIFDL GGGTFDVSIL TIDDGIFEVK ATAGDTHLGG EDFDNRLVNH
FVEEFKRKHK KDISQNKRAV RRLRTACERA KRTLSSSTQA SLEIDSLFEG IDFYTSITRA
RFEELCSDLF RSTLEPVEKA LRDAKLDKAQ IHDLVLVGGS TRIPKVQKLL QDFFNGRDLN
KSINPDEAVA YGAAVQAAIL MGDKSENVQD LLLLDVAPLS LGLETAGGVM TALIKRNSTI
PTKQTQIFTT YSDNQPGVLI QVYEGERAMT KDNNLLGRFE LSGIPPAPRG VPQIEVTFDI
DANGILNVTA TDKSTGKANK ITITNDKGRL SKEEIERMVQ EAEKYKAEDE VQRERVSAKN
ALESYAFNMK SAVEDEGLKG KISEADKKKV LDKCQEVISW LDANTLAEKD EFEHKRKELE
QVCNPIISGL YQGAGGPGPG GFGAQGPKGG SGSGPTIEEV D


Related products :

Catalog number Product name Quantity
U0873r CLIA Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,HSP70.1_HSP70.2,Hsp70-1,HSP70-1_HSP70-2,Hspa1,Hspa1a,Rat,Rattus norvegicus 96T
E0873r ELISA kit Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,HSP70.1_HSP70.2,Hsp70-1,HSP70-1_HSP70-2,Hspa1,Hspa1a,Rat,Rattus norvegicus 96T
E0873r ELISA Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,HSP70.1_HSP70.2,Hsp70-1,HSP70-1_HSP70-2,Hspa1,Hspa1a,Rat,Rattus norvegicus 96T
E0873m ELISA kit Heat shock 70 kDa protein 1A,Heat shock 70 kDa protein 3,Hsp68,HSP70.3,Hsp70-3,Hsp70A1,Hspa1a,Mouse,Mus musculus 96T
U0873m CLIA Heat shock 70 kDa protein 1A,Heat shock 70 kDa protein 3,Hsp68,HSP70.3,Hsp70-3,Hsp70A1,Hspa1a,Mouse,Mus musculus 96T
E0873m ELISA Heat shock 70 kDa protein 1A,Heat shock 70 kDa protein 3,Hsp68,HSP70.3,Hsp70-3,Hsp70A1,Hspa1a,Mouse,Mus musculus 96T
E0873b ELISA Bos taurus,Bovine,Heat shock 70 kDa protein 1,Heat shock 70 kDa protein 1A,HSP70.1,HSP70-1,HSPA1A 96T
U0873b CLIA Bos taurus,Bovine,Heat shock 70 kDa protein 1,Heat shock 70 kDa protein 1A,HSP70.1,HSP70-1,HSPA1A 96T
E0873b ELISA kit Bos taurus,Bovine,Heat shock 70 kDa protein 1,Heat shock 70 kDa protein 1A,HSP70.1,HSP70-1,HSPA1A 96T
E0873h ELISA Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,Homo sapiens,HSP70.1_HSP70.2,HSP70-1_HSP70-2,HSPA1,HSPA1A,Human 96T
U0873h CLIA Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,Homo sapiens,HSP70.1_HSP70.2,HSP70-1_HSP70-2,HSPA1,HSPA1A,Human 96T
E0873h ELISA kit Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,Homo sapiens,HSP70.1_HSP70.2,HSP70-1_HSP70-2,HSPA1,HSPA1A,Human 96T
10-663-45058 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 1 mg
10-663-45057 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 0.1 mg
10-663-45057 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 0.5 mg
10-663-45058 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 0.5 mg
10-663-45058 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 0.1 mg
10-663-45057 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 1 mg
20-372-60095 heat shock 70kDa protein 1-like - Mouse monoclonal anti-human HSPA1L antibody; Heat shock 70 kDa protein 1-like; Heat shock 70 kDa protein 1-Hom; HSP70-Hom Monoclonal 0.1 mg
MEDCLA337-1 Heat Shock Protein 70 (HSP70), Heat Shock Cognate Protein 70 (HSC70), Clone 8B11, Mab anti_Hu,Ms,Rt; prfn_NO frzn, IH_WB 1 ml.
MEDCLA337-01 Heat Shock Protein 70 (HSP70), Heat Shock Cognate Protein 70 (HSC70), Clone 8B11, Mab anti_Hu,Ms,Rt; prfn_NO frzn, IH_WB 0.1 ml.
AS05 083A rabbit polyclonal HSP70 per HSC70 Heat shock protein 70 per Heat shock cognate protein 70, Affinity purified 50
YSGSPA758E Heat Shock Protein 70 (Hsp70), Heat Shock Cognate 70 (Hsc70), ~72&73kD, Rabbit anti_Fish; WB 100 µl.
YSGSPA758C Heat Shock Protein 70 (Hsp70), Heat Shock Cognate 70 (Hsc70), ~72&73kD, Rabbit anti_Fish; WB 25 µl.
10-663-45490 Dnak ATPase binding domain (DnakATPaseBD) - Heat shock protein 70; Heat shock 70 kDa protein; HSP70 N_A 0.02 mg


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur