Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Heat shock factor protein 1 (HSF 1) (Heat shock transcription factor 1) (HSTF 1)

 HSF1_HUMAN              Reviewed;         529 AA.
Q00613; A8K4L0; A8MW26; Q53XT4;
01-FEB-1994, integrated into UniProtKB/Swiss-Prot.
01-FEB-1994, sequence version 1.
27-SEP-2017, entry version 176.
RecName: Full=Heat shock factor protein 1 {ECO:0000305};
Short=HSF 1;
AltName: Full=Heat shock transcription factor 1 {ECO:0000312|HGNC:HGNC:5224};
Short=HSTF 1;
Name=HSF1 {ECO:0000312|HGNC:HGNC:5224}; Synonyms=HSTF1;
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, AND DNA-BINDING.
PubMed=1871105; DOI=10.1073/pnas.88.16.6906;
Rabindran S.K., Giorgi G., Clos J., Wu C.;
"Molecular cloning and expression of a human heat shock factor,
HSF1.";
Proc. Natl. Acad. Sci. U.S.A. 88:6906-6910(1991).
[2]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM LONG).
PubMed=14702039; DOI=10.1038/ng1285;
Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
"Complete sequencing and characterization of 21,243 full-length human
cDNAs.";
Nat. Genet. 36:40-45(2004).
[3]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM LONG).
Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S.,
Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y.,
Phelan M., Farmer A.;
"Cloning of human full-length CDSs in BD Creator(TM) system donor
vector.";
Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases.
[4]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=16421571; DOI=10.1038/nature04406;
Nusbaum C., Mikkelsen T.S., Zody M.C., Asakawa S., Taudien S.,
Garber M., Kodira C.D., Schueler M.G., Shimizu A., Whittaker C.A.,
Chang J.L., Cuomo C.A., Dewar K., FitzGerald M.G., Yang X.,
Allen N.R., Anderson S., Asakawa T., Blechschmidt K., Bloom T.,
Borowsky M.L., Butler J., Cook A., Corum B., DeArellano K.,
DeCaprio D., Dooley K.T., Dorris L. III, Engels R., Gloeckner G.,
Hafez N., Hagopian D.S., Hall J.L., Ishikawa S.K., Jaffe D.B.,
Kamat A., Kudoh J., Lehmann R., Lokitsang T., Macdonald P.,
Major J.E., Matthews C.D., Mauceli E., Menzel U., Mihalev A.H.,
Minoshima S., Murayama Y., Naylor J.W., Nicol R., Nguyen C.,
O'Leary S.B., O'Neill K., Parker S.C.J., Polley A., Raymond C.K.,
Reichwald K., Rodriguez J., Sasaki T., Schilhabel M., Siddiqui R.,
Smith C.L., Sneddon T.P., Talamas J.A., Tenzin P., Topham K.,
Venkataraman V., Wen G., Yamazaki S., Young S.K., Zeng Q.,
Zimmer A.R., Rosenthal A., Birren B.W., Platzer M., Shimizu N.,
Lander E.S.;
"DNA sequence and analysis of human chromosome 8.";
Nature 439:331-335(2006).
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM LONG).
TISSUE=Muscle;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[6]
PROTEIN SEQUENCE OF 73-79; 81-93; 97-106; 163-170 AND 337-352.
PubMed=1871106; DOI=10.1073/pnas.88.16.6911;
Schuetz T.J., Gallo G.J., Sheldon L., Tempst P., Kingston R.E.;
"Isolation of a cDNA for HSF2: evidence for two heat shock factor
genes in humans.";
Proc. Natl. Acad. Sci. U.S.A. 88:6911-6915(1991).
[7]
PROTEIN SEQUENCE OF 228-241 AND 297-310, PHOSPHORYLATION AT SER-230 BY
CAMK2, PHOSPHORYLATION AT SER-303 AND SER-307, FUNCTION, SUBCELLULAR
LOCATION, MUTAGENESIS OF SER-230, DOMAIN, AND IDENTIFICATION BY MASS
SPECTROMETRY.
PubMed=11447121; DOI=10.1093/emboj/20.14.3800;
Holmberg C.I., Hietakangas V., Mikhailov A., Rantanen J.O., Kallio M.,
Meinander A., Hellman J., Morrice N., MacKintosh C., Morimoto R.I.,
Eriksson J.E., Sistonen L.;
"Phosphorylation of serine 230 promotes inducible transcriptional
activity of heat shock factor 1.";
EMBO J. 20:3800-3810(2001).
[8]
FUNCTION, AND DNA-BINDING.
PubMed=1986252; DOI=10.1128/MCB.11.1.586;
Abravaya K., Phillips B., Morimoto R.I.;
"Heat shock-induced interactions of heat shock transcription factor
and the human hsp70 promoter examined by in vivo footprinting.";
Mol. Cell. Biol. 11:586-592(1991).
[9]
FUNCTION, DNA-BINDING, SUBUNIT, AND SUBCELLULAR LOCATION.
PubMed=8455624; DOI=10.1128/MCB.13.4.2486;
Baler R., Dahl G., Voellmy R.;
"Activation of human heat shock genes is accompanied by
oligomerization, modification, and rapid translocation of heat shock
transcription factor HSF1.";
Mol. Cell. Biol. 13:2486-2496(1993).
[10]
SUBUNIT, AND INTERACTION WITH HSPA1A.
PubMed=7935376; DOI=10.1128/MCB.14.10.6552;
Rabindran S.K., Wisniewski J., Li L., Li G.C., Wu C.;
"Interaction between heat shock factor and hsp70 is insufficient to
suppress induction of DNA-binding activity in vivo.";
Mol. Cell. Biol. 14:6552-6560(1994).
[11]
FUNCTION, DNA-BINDING, SUBUNIT, DOMAIN, AND MUTAGENESIS OF LEU-140;
MET-147; LEU-189; LEU-193; MET-391 AND LEU-395.
PubMed=7935471; DOI=10.1128/MCB.14.11.7557;
Zuo J., Baler R., Dahl G., Voellmy R.;
"Activation of the DNA-binding ability of human heat shock
transcription factor 1 may involve the transition from an
intramolecular to an intermolecular triple-stranded coiled-coil
structure.";
Mol. Cell. Biol. 14:7557-7568(1994).
[12]
FUNCTION, AND DOMAIN.
PubMed=7760831; DOI=10.1128/MCB.15.6.3354;
Green M., Schuetz T.J., Sullivan E.K., Kingston R.E.;
"A heat shock-responsive domain of human HSF1 that regulates
transcription activation domain function.";
Mol. Cell. Biol. 15:3354-3362(1995).
[13]
FUNCTION, SUBUNIT, DNA-BINDING, SUBCELLULAR LOCATION, DOMAIN, AND
MUTAGENESIS OF LEU-140; MET-147; LEU-189 AND MET-391.
PubMed=7623826; DOI=10.1128/MCB.15.8.4319;
Zuo J., Rungger D., Voellmy R.;
"Multiple layers of regulation of human heat shock transcription
factor 1.";
Mol. Cell. Biol. 15:4319-4330(1995).
[14]
SUBUNIT, AND INTERACTION WITH HSPA1A.
PubMed=9222587; DOI=10.1379/1466-1268(1996)001<0033:EFAROH>2.3.CO;2;
Baler R., Zou J., Voellmy R.;
"Evidence for a role of Hsp70 in the regulation of the heat shock
response in mammalian cells.";
Cell Stress Chaperones 1:33-39(1996).
[15]
PHOSPHORYLATION AT SER-303 AND SER-307, FUNCTION, DOMAIN, MUTAGENESIS
OF ARG-296; VAL-297; LYS-298; GLU-299; GLU-300; SER-303; SER-307;
ARG-309 AND GLU-311, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=8946918; DOI=10.1101/gad.10.21.2782;
Knauf U., Newton E.M., Kyriakis J., Kingston R.E.;
"Repression of human heat shock factor 1 activity at control
temperature by phosphorylation.";
Genes Dev. 10:2782-2793(1996).
[16]
PHOSPHORYLATION AT SER-275; SER-303 BY GSK3B AND SER-307 BY MAPK3,
FUNCTION, DNA-BINDING, IDENTIFICATION BY MASS SPECTROMETRY, AND
MUTAGENESIS OF SER-275; SER-303 AND SER-307.
PubMed=8940068; DOI=10.1074/jbc.271.48.30847;
Chu B., Soncin F., Price B.D., Stevenson M.A., Calderwood S.K.;
"Sequential phosphorylation by mitogen-activated protein kinase and
glycogen synthase kinase 3 represses transcriptional activation by
heat shock factor-1.";
J. Biol. Chem. 271:30847-30857(1996).
[17]
FUNCTION, AND MUTAGENESIS OF LEU-22.
PubMed=9341107; DOI=10.1074/jbc.272.43.26803;
Chen C., Xie Y., Stevenson M.A., Auron P.E., Calderwood S.K.;
"Heat shock factor 1 represses Ras-induced transcriptional activation
of the c-fos gene.";
J. Biol. Chem. 272:26803-26806(1997).
[18]
PHOSPHORYLATION AT SER-303 AND SER-307, FUNCTION, DOMAIN, MUTAGENESIS
OF SER-303 AND SER-307, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=9121459; DOI=10.1128/MCB.17.4.2107;
Kline M.P., Morimoto R.I.;
"Repression of the heat shock factor 1 transcriptional activation
domain is modulated by constitutive phosphorylation.";
Mol. Cell. Biol. 17:2107-2115(1997).
[19]
FUNCTION, SUBUNIT, AND INTERACTION WITH HSP90 PROTEINS.
PubMed=9727490; DOI=10.1016/S0092-8674(00)81588-3;
Zou J., Guo Y., Guettouche T., Smith D.F., Voellmy R.;
"Repression of heat shock transcription factor HSF1 activation by
HSP90 (HSP90 complex) that forms a stress-sensitive complex with
HSF1.";
Cell 94:471-480(1998).
[20]
INTERACTION WITH DNAJB1; HSPA1A AND HSPA8, FUNCTION, DNA-BINDING, AND
PHOSPHORYLATION.
PubMed=9499401; DOI=10.1101/gad.12.5.654;
Shi Y., Mosser D.D., Morimoto R.I.;
"Molecular chaperones as HSF1-specific transcriptional repressors.";
Genes Dev. 12:654-666(1998).
[21]
PHOSPHORYLATION AT SER-307, FUNCTION, MUTAGENESIS OF SER-275; SER-303
AND SER-307, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=9535852; DOI=10.1074/jbc.273.15.8749;
Xia W., Guo Y., Vilaboa N., Zuo J., Voellmy R.;
"Transcriptional activation of heat shock factor HSF1 probed by
phosphopeptide analysis of factor 32P-labeled in vivo.";
J. Biol. Chem. 273:8749-8755(1998).
[22]
SUBCELLULAR LOCATION.
PubMed=10413683;
Mercier P.A., Winegarden N.A., Westwood J.T.;
"Human heat shock factor 1 is predominantly a nuclear protein before
and after heat stress.";
J. Cell Sci. 112:2765-2774(1999).
[23]
FUNCTION, SUBCELLULAR LOCATION, PHOSPHORYLATION, AND DNA-BINDING.
PubMed=10359787; DOI=10.1073/pnas.96.12.6769;
Jolly C., Usson Y., Morimoto R.I.;
"Rapid and reversible relocalization of heat shock factor 1 within
seconds to nuclear stress granules.";
Proc. Natl. Acad. Sci. U.S.A. 96:6769-6774(1999).
[24]
INTERACTION WITH GTF2A2; GTF2B AND TBP.
PubMed=11005381; DOI=10.1379/1466-1268(2000)005<0229:PTFHWT>2.0.CO;2;
Yuan C.X., Gurley W.B.;
"Potential targets for HSF1 within the preinitiation complex.";
Cell Stress Chaperones 5:229-242(2000).
[25]
INTERACTION WITH MAPK3 AND MAPK8, PHOSPHORYLATION AT SER-363 BY MAPK8,
SUBCELLULAR LOCATION, DOMAIN, MUTAGENESIS OF SER-363, AND
IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=10747973; DOI=10.1074/jbc.M000958200;
Dai R., Frejtag W., He B., Zhang Y., Mivechi N.F.;
"c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock
factor-1 suppress its transcriptional activity.";
J. Biol. Chem. 275:18210-18218(2000).
[26]
SUMOYLATION AT LYS-298, MUTAGENESIS OF LYS-298, AND SUBCELLULAR
LOCATION.
PubMed=11514557; DOI=10.1074/jbc.M104714200;
Hong Y., Rogers R., Matunis M.J., Mayhew C.N., Goodson M.L.,
Park-Sarge O.K., Sarge K.D.;
"Regulation of heat shock transcription factor 1 by stress-induced
SUMO-1 modification.";
J. Biol. Chem. 276:40263-40267(2001).
[27]
COMPONENT OF A CHAPERONE COMPLEX, INTERACTION WITH FKBP4 AND HSP90
PROTEINS, SUBUNIT, PHOSPHORYLATION, FUNCTION, AND DNA-BINDING.
PubMed=11583998; DOI=10.1074/jbc.M105931200;
Guo Y., Guettouche T., Fenna M., Boellmann F., Pratt W.B., Toft D.O.,
Smith D.F., Voellmy R.;
"Evidence for a mechanism of repression of heat shock factor 1
transcriptional activity by a multichaperone complex.";
J. Biol. Chem. 276:45791-45799(2001).
[28]
PHOSPHORYLATION AT SER-307, SUMOYLATION, AND MUTAGENESIS OF LYS-298;
SER-303 AND SER-307.
PubMed=12646186; DOI=10.1016/S0006-291X(03)00312-7;
Hilgarth R.S., Hong Y., Park-Sarge O.K., Sarge K.D.;
"Insights into the regulation of heat shock transcription factor 1
SUMO-1 modification.";
Biochem. Biophys. Res. Commun. 303:196-200(2003).
[29]
PHOSPHORYLATION AT THR-142 BY CK2, FUNCTION, MUTAGENESIS OF THR-142,
AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=12659875; DOI=10.1016/S0006-291X(03)00398-X;
Soncin F., Zhang X., Chu B., Wang X., Asea A., Ann Stevenson M.,
Sacks D.B., Calderwood S.K.;
"Transcriptional activity and DNA binding of heat shock factor-1
involve phosphorylation on threonine 142 by CK2.";
Biochem. Biophys. Res. Commun. 303:700-706(2003).
[30]
SUMOYLATION AT LYS-298, PHOSPHORYLATION AT SER-303, SUBCELLULAR
LOCATION, MUTAGENESIS OF LYS-91; LYS-126; LYS-150; LYS-162; SER-230;
LYS-298; SER-303; SER-307; SER-363 AND LYS-381, AND IDENTIFICATION BY
MASS SPECTROMETRY.
PubMed=12665592; DOI=10.1128/MCB.23.8.2953-2968.2003;
Hietakangas V., Ahlskog J.K., Jakobsson A.M., Hellesuo M.,
Sahlberg N.M., Holmberg C.I., Mikhailov A., Palvimo J.J., Pirkkala L.,
Sistonen L.;
"Phosphorylation of serine 303 is a prerequisite for the stress-
inducible SUMO modification of heat shock factor 1.";
Mol. Cell. Biol. 23:2953-2968(2003).
[31]
FUNCTION, DNA-BINDING, INTERACTION WITH YWHAE, PHOSPHORYLATION,
SUBCELLULAR LOCATION, AND MUTAGENESIS OF SER-303 AND SER-307.
PubMed=12917326; DOI=10.1128/MCB.23.17.6013-6026.2003;
Wang X., Grammatikakis N., Siganou A., Calderwood S.K.;
"Regulation of molecular chaperone gene transcription involves the
serine phosphorylation, 14-3-3 epsilon binding, and cytoplasmic
sequestration of heat shock factor 1.";
Mol. Cell. Biol. 23:6013-6026(2003).
[32]
FUNCTION, INTERACTION WITH SYMPK AND CSTF2, SUBCELLULAR LOCATION, AND
MUTAGENESIS OF LEU-22.
PubMed=14707147; DOI=10.1074/jbc.M311719200;
Xing H., Mayhew C.N., Cullen K.E., Park-Sarge O.-K., Sarge K.D.;
"HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with
symplekin.";
J. Biol. Chem. 279:10551-10555(2004).
[33]
FUNCTION, INTERACTION WITH DAXX, IDENTIFICATION IN A RIBONUCLEOPROTEIN
COMPLEX, AND MUTAGENESIS OF LYS-298 AND SER-326.
PubMed=15016915; DOI=10.1073/pnas.0304768101;
Boellmann F., Guettouche T., Guo Y., Fenna M., Mnayer L., Voellmy R.;
"DAXX interacts with heat shock factor 1 during stress activation and
enhances its transcriptional activity.";
Proc. Natl. Acad. Sci. U.S.A. 101:4100-4105(2004).
[34]
PHOSPHORYLATION AT SER-121; SER-230; SER-292; SER-303; SER-307;
SER-314; SER-319; SER-326; SER-344; SER-363; SER-419 AND SER-444,
MUTAGENESIS OF SER-326, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=15760475; DOI=10.1186/1471-2091-6-4;
Guettouche T., Boellmann F., Lane W.S., Voellmy R.;
"Analysis of phosphorylation of human heat shock factor 1 in cells
experiencing a stress.";
BMC Biochem. 6:4-4(2005).
[35]
INTERACTION WITH PLK1 AND HSP90 PROTEINS, PHOSPHORYLATION AT SER-419
BY PLK1, SUBCELLULAR LOCATION, AND MUTAGENESIS OF SER-292; SER-314;
SER-319; SER-326 AND SER-419.
PubMed=15661742; DOI=10.1074/jbc.M411908200;
Kim S.A., Yoon J.H., Lee S.H., Ahn S.G.;
"Polo-like kinase 1 phosphorylates heat shock transcription factor 1
and mediates its nuclear translocation during heat stress.";
J. Biol. Chem. 280:12653-12657(2005).
[36]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-323, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
Mann M.;
"Global, in vivo, and site-specific phosphorylation dynamics in
signaling networks.";
Cell 127:635-648(2006).
[37]
PHOSPHORYLATION AT SER-121 BY MAPKAPK2, FUNCTION, INTERACTION WITH
HSP90 PROTEINS AND MAPKAPK2, MUTAGENESIS OF THR-120; SER-121; SER-123;
THR-124; THR-527 AND SER-529, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=16278218; DOI=10.1074/jbc.M505822200;
Wang X., Khaleque M.A., Zhao M.J., Zhong R., Gaestel M.,
Calderwood S.K.;
"Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine
121, inhibits transcriptional activity and promotes HSP90 binding.";
J. Biol. Chem. 281:782-791(2006).
[38]
SUMOYLATION AT LYS-298, AND PHOSPHORYLATION AT SER-303.
PubMed=16371476; DOI=10.1073/pnas.0503698102;
Hietakangas V., Anckar J., Blomster H.A., Fujimoto M., Palvimo J.J.,
Nakai A., Sistonen L.;
"PDSM, a motif for phosphorylation-dependent SUMO modification.";
Proc. Natl. Acad. Sci. U.S.A. 103:45-50(2006).
[39]
INTERACTION WITH EEF1A PROTEINS, AND IDENTIFICATION IN A
RIBONUCLEOPROTEIN COMPLEX.
PubMed=16554823; DOI=10.1038/nature04518;
Shamovsky I., Ivannikov M., Kandel E.S., Gershon D., Nudler E.;
"RNA-mediated response to heat shock in mammalian cells.";
Nature 440:556-560(2006).
[40]
DOMAIN.
PubMed=17467953; DOI=10.1016/j.ygeno.2007.02.003;
Piskacek S., Gregor M., Nemethova M., Grabner M., Kovarik P.,
Piskacek M.;
"Nine-amino-acid transactivation domain: establishment and prediction
utilities.";
Genomics 89:756-768(2007).
[41]
FUNCTION IN STRESS-INDUCED NUCLEAR MRNA EXPORT, AND INTERACTION WITH
TPR.
PubMed=17897941; DOI=10.1074/jbc.M704054200;
Skaggs H.S., Xing H., Wilkerson D.C., Murphy L.A., Hong Y.,
Mayhew C.N., Sarge K.D.;
"HSF1-TPR interaction facilitates export of stress-induced HSP70
mRNA.";
J. Biol. Chem. 282:33902-33907(2007).
[42]
FUNCTION IN MITOTIC PROGRESSION REGULATION, INTERACTION WITH BTRC;
CDC20; MAD2L1 AND PLK1, PHOSPHORYLATION AT SER-216 BY PLK1,
SUBCELLULAR LOCATION, UBIQUITINATION, PROTEASOMAL DEGRADATION, AND
MUTAGENESIS OF SER-216; SER-230; SER-303; SER-307 AND SER-419.
PubMed=18794143; DOI=10.1158/0008-5472.CAN-08-0129;
Lee Y.J., Kim E.H., Lee J.S., Jeoung D., Bae S., Kwon S.H., Lee Y.S.;
"HSF1 as a mitotic regulator: phosphorylation of HSF1 by Plk1 is
essential for mitotic progression.";
Cancer Res. 68:7550-7560(2008).
[43]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-314, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18220336; DOI=10.1021/pr0705441;
Cantin G.T., Yi W., Lu B., Park S.K., Xu T., Lee J.-D.,
Yates J.R. III;
"Combining protein-based IMAC, peptide-based IMAC, and MudPIT for
efficient phosphoproteomic analysis.";
J. Proteome Res. 7:1346-1351(2008).
[44]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-363, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18669648; DOI=10.1073/pnas.0805139105;
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
Elledge S.J., Gygi S.P.;
"A quantitative atlas of mitotic phosphorylation.";
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
[45]
ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19413330; DOI=10.1021/ac9004309;
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
Mohammed S.;
"Lys-N and trypsin cover complementary parts of the phosphoproteome in
a refined SCX-based approach.";
Anal. Chem. 81:4493-4501(2009).
[46]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-314; THR-323 AND
SER-326, AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE
ANALYSIS].
TISSUE=Leukemic T-cell;
PubMed=19690332; DOI=10.1126/scisignal.2000007;
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
Rodionov V., Han D.K.;
"Quantitative phosphoproteomic analysis of T cell receptor signaling
reveals system-wide modulation of protein-protein interactions.";
Sci. Signal. 2:RA46-RA46(2009).
[47]
DEACETYLATION AT LYS-80 BY SIRT1, ACETYLATION AT LYS-80, SUBCELLULAR
LOCATION, IDENTIFICATION BY MASS SPECTROMETRY, AND MUTAGENESIS OF
LYS-80.
PubMed=19229036; DOI=10.1126/science.1165946;
Westerheide S.D., Anckar J., Stevens S.M. Jr., Sistonen L.,
Morimoto R.I.;
"Stress-inducible regulation of heat shock factor 1 by the deacetylase
SIRT1.";
Science 323:1063-1066(2009).
[48]
INTERACTION WITH PRKACA, PHOSPHORYLATION AT SER-320 BY PRKACA,
SUBCELLULAR LOCATION, IDENTIFICATION BY MASS SPECTROMETRY, AND
MUTAGENESIS OF SER-320.
PubMed=21085490; DOI=10.1371/journal.pone.0013830;
Murshid A., Chou S.D., Prince T., Zhang Y., Bharti A.,
Calderwood S.K.;
"Protein kinase A binds and activates heat shock factor 1.";
PLoS ONE 5:E13830-E13830(2010).
[49]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-314 AND SER-326, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=20068231; DOI=10.1126/scisignal.2000475;
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
Mann M.;
"Quantitative phosphoproteomics reveals widespread full
phosphorylation site occupancy during mitosis.";
Sci. Signal. 3:RA3-RA3(2010).
[50]
INTERACTION WITH EEF1D.
PubMed=21597468; DOI=10.1038/embor.2011.82;
Kaitsuka T., Tomizawa K., Matsushita M.;
"Transformation of eEF1Bdelta into heat-shock response transcription
factor by alternative splicing.";
EMBO Rep. 12:673-681(2011).
[51]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21406692; DOI=10.1126/scisignal.2001570;
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
Blagoev B.;
"System-wide temporal characterization of the proteome and
phosphoproteome of human embryonic stem cell differentiation.";
Sci. Signal. 4:RS3-RS3(2011).
[52]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-303; SER-307 AND
SER-363, AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE
ANALYSIS].
TISSUE=Cervix carcinoma, and Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[53]
ACETYLATION AT LYS-80; LYS-91; LYS-118; LYS-150; LYS-188; LYS-208;
LYS-298 AND LYS-524, PHOSPHORYLATION, UBIQUITINATION, PROTEASOMAL
DEGRADATION, SUBCELLULAR LOCATION, MUTAGENESIS OF LYS-80; LYS-118;
LYS-208 AND LYS-298, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=24581496; DOI=10.1016/j.cell.2014.01.055;
Raychaudhuri S., Loew C., Koerner R., Pinkert S., Theis M.,
Hayer-Hartl M., Buchholz F., Hartl F.U.;
"Interplay of acetyltransferase EP300 and the proteasome system in
regulating heat shock transcription factor 1.";
Cell 156:975-985(2014).
[54]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-303 AND SER-363, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Liver;
PubMed=24275569; DOI=10.1016/j.jprot.2013.11.014;
Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D.,
Wang L., Ye M., Zou H.;
"An enzyme assisted RP-RPLC approach for in-depth analysis of human
liver phosphoproteome.";
J. Proteomics 96:253-262(2014).
[55]
INTERACTION WITH BAG3, PHOSPHORYLATION, SUBCELLULAR LOCATION, AND
NUCLEOCYTOPLASMIC SHUTTLING.
PubMed=26159920; DOI=10.1016/j.bbrc.2015.07.006;
Jin Y.H., Ahn S.G., Kim S.A.;
"BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat
stress.";
Biochem. Biophys. Res. Commun. 464:561-567(2015).
[56]
INTERACTION WITH IER5.
PubMed=25816751; DOI=10.1016/j.febslet.2015.03.019;
Ishikawa Y., Kawabata S., Sakurai H.;
"HSF1 transcriptional activity is modulated by IER5 and PP2A/B55.";
FEBS Lett. 589:1150-1155(2015).
[57]
INTERACTION WITH IER5.
PubMed=26496226; DOI=10.1016/j.febslet.2015.10.013;
Kawabata S., Ishita Y., Ishikawa Y., Sakurai H.;
"Immediate-early response 5 (IER5) interacts with protein phosphatase
2A and regulates the phosphorylation of ribosomal protein S6 kinase
and heat shock factor 1.";
FEBS Lett. 589:3679-3685(2015).
[58]
FUNCTION, DNA-BINDING, CHROMATIN BINDING, SUBCELLULAR LOCATION, AND
PHOSPHORYLATIONS.
PubMed=25963659; DOI=10.1128/MCB.00816-14;
Budzynski M.A., Puustinen M.C., Joutsen J., Sistonen L.;
"Uncoupling stress-inducible phosphorylation of heat shock factor 1
from its activation.";
Mol. Cell. Biol. 35:2530-2540(2015).
[59]
FUNCTION IN DNA REPAIR, INTERACTION WITH XRCC5 AND XRCC6, SUBCELLULAR
LOCATION, AND MUTAGENESIS OF LYS-80; SER-216; LYS-298; SER-326 AND
SER-419.
PubMed=26359349; DOI=10.18632/oncotarget.5073;
Kang G.Y., Kim E.H., Lee H.J., Gil N.Y., Cha H.J., Lee Y.S.;
"Heat shock factor 1, an inhibitor of non-homologous end joining
repair.";
Oncotarget 6:29712-29724(2015).
[60]
INTERACTION WITH HSP90AA1 AND HSP90AB1.
PubMed=26517842; DOI=10.1371/journal.pone.0141786;
Prince T.L., Kijima T., Tatokoro M., Lee S., Tsutsumi S., Yim K.,
Rivas C., Alarcon S., Schwartz H., Khamit-Kush K., Scroggins B.T.,
Beebe K., Trepel J.B., Neckers L.;
"Client proteins and small molecule inhibitors display distinct
binding preferences for constitutive and stress-induced HSP90 isoforms
and their conformationally restricted mutants.";
PLoS ONE 10:E0141786-E0141786(2015).
[61]
PHOSPHORYLATION AT SER-326 BY MAPK12, SUBCELLULAR LOCATION, AND
MUTAGENESIS OF SER-326.
PubMed=27354066; DOI=10.1128/MCB.00292-16;
Dayalan Naidu S., Sutherland C., Zhang Y., Risco A., de la Vega L.,
Caunt C.J., Hastie C.J., Lamont D.J., Torrente L., Chowdhry S.,
Benjamin I.J., Keyse S.M., Cuenda A., Dinkova-Kostova A.T.;
"Heat shock factor 1 is a substrate for p38 mitogen-activated protein
kinases.";
Mol. Cell. Biol. 36:2403-2417(2016).
[62]
DEPHOSPHORYLATION AT SER-121; SER-307; SER-314; THR-323 AND THR-367 BY
PPP2CA, ACETYLATION AT LYS-118, IDENTIFICATION IN COMPLEX WITH IER5
AND PPP2CA, INTERACTION WITH HSP90AA1 AND IER5, FUNCTION, SUBUNIT,
DNA-BINDING, AND MUTAGENESIS OF SER-121; SER-307; SER-314; THR-323 AND
THR-367.
PubMed=26754925; DOI=10.1038/srep19174;
Asano Y., Kawase T., Okabe A., Tsutsumi S., Ichikawa H., Tatebe S.,
Kitabayashi I., Tashiro F., Namiki H., Kondo T., Semba K.,
Aburatani H., Taya Y., Nakagama H., Ohki R.;
"IER5 generates a novel hypo-phosphorylated active form of HSF1 and
contributes to tumorigenesis.";
Sci. Rep. 6:19174-19174(2016).
[63]
FUNCTION IN LATENT HIV-1 TRANSCRIPTIONAL REACTIVATION (MICROBIAL
INFECTION), INTERACTION WITH CDK9; CCNT1 AND EP300, PHOSPHORYLATION AT
SER-320, ACETYLATION, AND SUBCELLULAR LOCATION.
PubMed=27189267; DOI=10.1038/srep26294;
Pan X.Y., Zhao W., Zeng X.Y., Lin J., Li M.M., Shen X.T., Liu S.W.;
"Heat shock factor 1 mediates latent HIV reactivation.";
Sci. Rep. 6:26294-26294(2016).
[64]
SUMOYLATION [LARGE SCALE ANALYSIS] AT LYS-91; LYS-126; LYS-131;
LYS-208; LYS-224 AND LYS-298, AND IDENTIFICATION BY MASS SPECTROMETRY
[LARGE SCALE ANALYSIS].
PubMed=28112733; DOI=10.1038/nsmb.3366;
Hendriks I.A., Lyon D., Young C., Jensen L.J., Vertegaal A.C.,
Nielsen M.L.;
"Site-specific mapping of the human SUMO proteome reveals co-
modification with phosphorylation.";
Nat. Struct. Mol. Biol. 24:325-336(2017).
[65]
X-RAY CRYSTALLOGRAPHY (2.55 ANGSTROMS) OF 1-120 IN COMPLEX WITH DNA,
DNA-BINDING, SUBUNIT, AND FUNCTION.
PubMed=26727489; DOI=10.1038/nsmb.3149;
Neudegger T., Verghese J., Hayer-Hartl M., Hartl F.U., Bracher A.;
"Structure of human heat-shock transcription factor 1 in complex with
DNA.";
Nat. Struct. Mol. Biol. 23:140-146(2016).
-!- FUNCTION: Function as a stress-inducible and DNA-binding
transcription factor that plays a central role in the
transcriptional activation of the heat shock response (HSR),
leading to the expression of a large class of molecular chaperones
heat shock proteins (HSPs) that protect cells from cellular
insults' damage (PubMed:1871105, PubMed:11447121, PubMed:1986252,
PubMed:7760831, PubMed:7623826, PubMed:8946918, PubMed:8940068,
PubMed:9341107, PubMed:9121459, PubMed:9727490, PubMed:9499401,
PubMed:9535852, PubMed:12659875, PubMed:12917326, PubMed:15016915,
PubMed:25963659, PubMed:26754925). In unstressed cells, is present
in a HSP90-containing multichaperone complex that maintains it in
a non-DNA-binding inactivated monomeric form (PubMed:9727490,
PubMed:11583998, PubMed:16278218). Upon exposure to heat and other
stress stimuli, undergoes homotrimerization and activates HSP gene
transcription through binding to site-specific heat shock elements
(HSEs) present in the promoter regions of HSP genes
(PubMed:1871105, PubMed:1986252, PubMed:8455624, PubMed:7935471,
PubMed:7623826, PubMed:8940068, PubMed:9727490, PubMed:9499401,
PubMed:10359787, PubMed:11583998, PubMed:12659875,
PubMed:16278218, PubMed:25963659, PubMed:26754925). Activation is
reversible, and during the attenuation and recovery phase period
of the HSR, returns to its unactivated form (PubMed:11583998,
PubMed:16278218). Binds to inverted 5'-NGAAN-3' pentamer DNA
sequences (PubMed:1986252, PubMed:26727489). Binds to chromatin at
heat shock gene promoters (PubMed:25963659). Plays also several
other functions independently of its transcriptional activity.
Involved in the repression of Ras-induced transcriptional
activation of the c-fos gene in heat-stressed cells
(PubMed:9341107). Positively regulates pre-mRNA 3'-end processing
and polyadenylation of HSP70 mRNA upon heat-stressed cells in a
symplekin (SYMPK)-dependent manner (PubMed:14707147). Plays a role
in nuclear export of stress-induced HSP70 mRNA (PubMed:17897941).
Plays a role in the regulation of mitotic progression
(PubMed:18794143). Plays also a role as a negative regulator of
non-homologous end joining (NHEJ) repair activity in a DNA damage-
dependent manner (PubMed:26359349). Involved in stress-induced
cancer cell proliferation in a IER5-dependent manner
(PubMed:26754925). {ECO:0000269|PubMed:10359787,
ECO:0000269|PubMed:11447121, ECO:0000269|PubMed:11583998,
ECO:0000269|PubMed:12659875, ECO:0000269|PubMed:12917326,
ECO:0000269|PubMed:14707147, ECO:0000269|PubMed:15016915,
ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:17897941,
ECO:0000269|PubMed:1871105, ECO:0000269|PubMed:18794143,
ECO:0000269|PubMed:1986252, ECO:0000269|PubMed:25963659,
ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:26727489,
ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:7623826,
ECO:0000269|PubMed:7760831, ECO:0000269|PubMed:7935471,
ECO:0000269|PubMed:8455624, ECO:0000269|PubMed:8940068,
ECO:0000269|PubMed:8946918, ECO:0000269|PubMed:9121459,
ECO:0000269|PubMed:9341107, ECO:0000269|PubMed:9499401,
ECO:0000269|PubMed:9535852, ECO:0000269|PubMed:9727490}.
-!- FUNCTION: (Microbial infection) Plays a role in latent human
immunodeficiency virus (HIV-1) transcriptional reactivation. Binds
to the HIV-1 long terminal repeat promoter (LTR) to reactivate
viral transcription by recruiting cellular transcriptional
elongation factors, such as CDK9, CCNT1 and EP300.
{ECO:0000269|PubMed:27189267}.
-!- SUBUNIT: Monomer; cytoplasmic latent and transcriptionally
inactive monomeric form in unstressed cells (PubMed:8455624,
PubMed:7935376, PubMed:7935471, PubMed:7623826, PubMed:9222587,
PubMed:9727490, PubMed:11583998). Homotrimer; in response to
stress, such as heat shock, homotrimerizes and translocates into
the nucleus, binds to heat shock element (HSE) sequences in
promoter of heat shock protein (HSP) genes and acquires
transcriptional ability (PubMed:8455624, PubMed:7935471,
PubMed:7623826, PubMed:9222587, PubMed:9727490, PubMed:11583998,
PubMed:26754925, PubMed:26727489). Interacts (via monomeric form)
with FKBP4; this interaction occurs in unstressed cells
(PubMed:11583998). Associates (via monomeric form) with HSP90
proteins in a multichaperone complex in unnstressed cell; this
association maintains HSF1 in a non-DNA-binding and
transcriptional inactive form by preventing HSF1 homotrimerization
(PubMed:9727490, PubMed:11583998, PubMed:15661742,
PubMed:16278218). Homotrimeric transactivation activity is
modulated by protein-protein interactions and post-translational
modifications (PubMed:11583998, PubMed:15016915, PubMed:16554823,
PubMed:26754925). Interacts with HSP90AA1; this interaction is
decreased in a IER5-dependent manner, promoting HSF1 accumulation
in the nucleus, homotrimerization and DNA-binding activities
(PubMed:26754925). Part (via regulatory domain in the homotrimeric
form) of a large heat shock-induced HSP90-dependent multichaperone
complex at least composed of FKBP4, FKBP5, HSP90 proteins, PPID,
PPP5C and PTGES3; this association maintains the HSF1 homotrimeric
DNA-bound form in a transcriptionally inactive form
(PubMed:9727490, PubMed:11583998, PubMed:16278218). Interacts with
BAG3 (via BAG domain); this interaction occurs in normal and heat-
shocked cells promoting nuclear shuttling of HSF1 in a BAG3-
dependent manner (PubMed:26159920). Interacts (via homotrimeric
and hyperphosphorylated form) with FKBP4; this interaction occurs
upon heat shock in a HSP90-dependent multichaperone complex
(PubMed:11583998). Interacts (via homotrimeric form
preferentially) with EEF1A proteins (PubMed:15016915). In heat
shocked cells, stress-denatured proteins compete with HSF1
homotrimeric DNA-bound form for association of the HSP90-dependent
multichaperone complex, and hence alleviating repression of HSF1-
mediated transcriptional activity (PubMed:11583998). Interacts
(via homotrimeric form preferentially) with DAXX; this interaction
relieves homotrimeric HSF1 from repression of its transcriptional
activity by HSP90-dependent multichaperone complex upon heat shock
(PubMed:15016915). Interacts (via D domain and preferentially with
hyperphosphorylated form) with JNK1; this interaction occurs under
both normal growth conditions and immediately upon heat shock
(PubMed:10747973). Interacts (via D domain and preferentially with
hyperphosphorylated form) with MAPK3; this interaction occurs upon
heat shock (PubMed:10747973). Interacts with IER5 (via central
region); this interaction promotes PPP2CA-induced
dephosphorylation on Ser-121, Ser-307, Ser-314, Thr-323 and Thr-
367 and HSF1 transactivation activity (PubMed:25816751,
PubMed:26496226, PubMed:26754925). Found in a ribonucleoprotein
complex composed of the HSF1 homotrimeric form, translation
elongation factor eEF1A proteins and non-coding RNA heat shock
RNA-1 (HSR1); this complex occurs upon heat shock and stimulates
HSF1 DNA-binding activity (PubMed:16554823). Interacts (via
transactivation domain) with HSPA1A/HSP70 and DNAJB1; these
interactions result in the inhibition of heat shock- and HSF1-
induced transcriptional activity during the attenuation and
recovery phase from heat shock (PubMed:7935376, PubMed:9222587,
PubMed:9499401). Interacts (via Ser-303 and Ser-307 phosphorylated
form) with YWHAE; this interaction promotes HSF1 sequestration in
the cytoplasm in an ERK-dependent manner (PubMed:12917326). Found
in a complex with IER5 and PPP2CA (PubMed:26754925). Interacts
with TPR; this interaction increases upon heat shock and
stimulates export of HSP70 mRNA (PubMed:17897941). Interacts with
SYMPK (via N-terminus) and CSTF2; these interactions occur upon
heat shock (PubMed:14707147). Interacts (via transactivation
domain) with HSPA8 (PubMed:9499401). Interacts with EEF1D; this
interaction occurs at heat shock promoter element (HSE) sequences
(PubMed:21597468). Interacts with MAPKAPK2 (PubMed:16278218).
Interacts with PRKACA/PKA (PubMed:21085490). Interacts (via
transactivation domain) with GTF2A2 (PubMed:11005381). Interacts
(via transactivation domain) with GTF2B (PubMed:11005381).
Interacts (via transactivation domain) with TBP (PubMed:11005381).
Interacts with CDK9, CCNT1 and EP300 (PubMed:27189267). Interacts
(via N-terminus) with XRCC5 (via N-terminus) and XRCC6 (via N-
terminus); these interactions are direct and prevent XRCC5/XRCC6
heterodimeric binding and non-homologous end joining (NHEJ) repair
activities induced by ionizing radiation (IR) (PubMed:26359349).
Interacts with PLK1; this interaction occurs during the early
mitotic period, increases upon heat shock but does not modulate
neither HSF1 homotrimerization and DNA-binding activities
(PubMed:15661742, PubMed:18794143). Interacts (via Ser-216
phosphorylated form) with CDC20; this interaction occurs in
mitosis in a MAD2L1-dependent manner and prevents PLK1-stimulated
degradation of HSF1 by blocking the recruitment of the SCF(BTRC)
ubiquitin ligase complex (PubMed:18794143). Interacts with MAD2L1;
this interaction occurs in mitosis (PubMed:18794143). Interacts
with BTRC; this interaction occurs during mitosis, induces its
ubiquitin-dependent degradation following stimulus-dependent
phosphorylation at Ser-216, a process inhibited by CDC20
(PubMed:18794143). Interacts with HSP90AA1 and HSP90AB1
(PubMed:26517842). {ECO:0000269|PubMed:10747973,
ECO:0000269|PubMed:11005381, ECO:0000269|PubMed:11583998,
ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:14707147,
ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15661742,
ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:16554823,
ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794143,
ECO:0000269|PubMed:21085490, ECO:0000269|PubMed:21597468,
ECO:0000269|PubMed:25816751, ECO:0000269|PubMed:26159920,
ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:26496226,
ECO:0000269|PubMed:26517842, ECO:0000269|PubMed:26727489,
ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:27189267,
ECO:0000269|PubMed:7623826, ECO:0000269|PubMed:7935376,
ECO:0000269|PubMed:7935471, ECO:0000269|PubMed:8455624,
ECO:0000269|PubMed:9222587, ECO:0000269|PubMed:9499401,
ECO:0000269|PubMed:9727490, ECO:0000305|PubMed:15016915}.
-!- INTERACTION:
O95817:BAG3; NbExp=3; IntAct=EBI-719620, EBI-747185;
Q9NZL4:HSPBP1; NbExp=3; IntAct=EBI-719620, EBI-356763;
Q5VY09:IER5; NbExp=3; IntAct=EBI-719620, EBI-1774000;
O00505:KPNA3; NbExp=3; IntAct=EBI-719620, EBI-358297;
O00629:KPNA4; NbExp=3; IntAct=EBI-719620, EBI-396343;
P49137:MAPKAPK2; NbExp=5; IntAct=EBI-719620, EBI-993299;
Q8N4C8:MINK1; NbExp=2; IntAct=EBI-719620, EBI-2133481;
Q04759:PRKCQ; NbExp=2; IntAct=EBI-719620, EBI-374762;
-!- SUBCELLULAR LOCATION: Nucleus {ECO:0000269|PubMed:10413683,
ECO:0000269|PubMed:10747973, ECO:0000269|PubMed:11447121,
ECO:0000269|PubMed:11514557, ECO:0000269|PubMed:12665592,
ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:14707147,
ECO:0000269|PubMed:15661742, ECO:0000269|PubMed:19229036,
ECO:0000269|PubMed:21085490, ECO:0000269|PubMed:25963659,
ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:27189267,
ECO:0000269|PubMed:27354066, ECO:0000269|PubMed:7623826,
ECO:0000269|PubMed:8455624}. Cytoplasm
{ECO:0000269|PubMed:10413683, ECO:0000269|PubMed:10747973,
ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:15661742,
ECO:0000269|PubMed:21085490, ECO:0000269|PubMed:26159920,
ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:27354066,
ECO:0000269|PubMed:7623826, ECO:0000269|PubMed:8455624}. Nucleus,
nucleoplasm {ECO:0000269|PubMed:10359787}. Cytoplasm, perinuclear
region {ECO:0000269|PubMed:21085490}. Cytoplasm, cytoskeleton,
spindle pole {ECO:0000269|PubMed:18794143}. Cytoplasm,
cytoskeleton, microtubule organizing center, centrosome
{ECO:0000269|PubMed:18794143}. Chromosome, centromere, kinetochore
{ECO:0000269|PubMed:18794143}. Note=The monomeric form is
cytoplasmic in unstressed cells (PubMed:8455624, PubMed:26159920).
Predominantly nuclear protein in both unstressed and heat shocked
cells (PubMed:10413683, PubMed:10359787). Translocates in the
nucleus upon heat shock (PubMed:8455624). Nucleocytoplasmic
shuttling protein (PubMed:26159920). Colocalizes with IER5 in the
nucleus (PubMed:27354066). Colocalizes with BAG3 to the nucleus
upon heat stress (PubMed:8455624, PubMed:26159920). Localizes in
subnuclear granules called nuclear stress bodies (nSBs) upon heat
shock (PubMed:11447121, PubMed:11514557, PubMed:10359787,
PubMed:25963659, PubMed:10747973, PubMed:24581496,
PubMed:19229036). Colocalizes with SYMPK and SUMO1 in nSBs upon
heat shock (PubMed:11447121, PubMed:12665592, PubMed:11514557,
PubMed:14707147, PubMed:10359787). Colocalizes with PRKACA/PKA in
the nucleus and nSBs upon heat shock (PubMed:21085490).
Relocalizes from the nucleus to the cytoplasm during the
attenuation and recovery phase period of the heat shock response
(PubMed:26159920). Translocates in the cytoplasm in a YWHAE- and
XPO1/CRM1-dependent manner (PubMed:12917326). Together with
histone H2AX, redistributed in discrete nuclear DNA damage-induced
foci after ionizing radiation (IR) (PubMed:26359349). Colocalizes
with calcium-responsive transactivator SS18L1 at kinetochore
region on the mitotic chromosomes (PubMed:18794143). Colocalizes
with gamma tubulin at centrosome (PubMed:18794143). Localizes at
spindle pole in metaphase (PubMed:18794143). Colocalizes with PLK1
at spindle poles during prometaphase (PubMed:18794143).
{ECO:0000269|PubMed:10359787, ECO:0000269|PubMed:10413683,
ECO:0000269|PubMed:10747973, ECO:0000269|PubMed:11447121,
ECO:0000269|PubMed:11514557, ECO:0000269|PubMed:12665592,
ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:14707147,
ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:21085490,
ECO:0000269|PubMed:24581496, ECO:0000269|PubMed:25963659,
ECO:0000269|PubMed:26159920, ECO:0000269|PubMed:26359349,
ECO:0000269|PubMed:27354066, ECO:0000269|PubMed:8455624}.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing; Named isoforms=2;
Name=Long;
IsoId=Q00613-1; Sequence=Displayed;
Name=Short;
IsoId=Q00613-2; Sequence=VSP_002414, VSP_002415;
Note=No experimental confirmation available.;
-!- DOMAIN: In unstressed cells, spontaneous homotrimerization is
inhibited (PubMed:7935471, PubMed:7760831). Intramolecular
interactions between the hydrophobic repeat HR-A/B and HR-C
regions are necessary to maintain HSF1 in the inactive, monomeric
conformation (PubMed:7935471, PubMed:7623826). Furthermore,
intramolecular interactions between the regulatory domain and the
nonadjacent transactivation domain prevents transcriptional
activation, a process that is relieved upon heat shock
(PubMed:7760831). The regulatory domain is necessary for full
repression of the transcriptional activation domain in unstressed
cells through its phosphorylation on Ser-303 and Ser-307
(PubMed:8946918, PubMed:9121459). In heat stressed cells, HSF1
homotrimerization occurs through formation of a three-stranded
coiled-coil structure generated by intermolecular interactions
between HR-A/B regions allowing DNA-binding activity
(PubMed:7935471). The D domain is necessary for translocation to
the nucleus, interaction with JNK1 and MAPK3 and efficient
JNK1- and MAPK3-dependent phosphorylation (PubMed:10747973). The
regulatory domain confers heat shock inducibility on the
transcriptional transactivation domain (PubMed:7760831). The
regulatory domain is necessary for transcriptional activation
through its phosphorylation on Ser-230 upon heat shock
(PubMed:11447121). 9aaTAD is a transactivation motif present in a
large number of yeast and animal transcription factors
(PubMed:17467953). {ECO:0000269|PubMed:10747973,
ECO:0000269|PubMed:11447121, ECO:0000269|PubMed:17467953,
ECO:0000269|PubMed:7623826, ECO:0000269|PubMed:7760831,
ECO:0000269|PubMed:7935471, ECO:0000269|PubMed:8946918,
ECO:0000269|PubMed:9121459}.
-!- PTM: Phosphorylated (PubMed:9499401, PubMed:10359787,
PubMed:11583998, PubMed:26159920). Phosphorylated in unstressed
cells; this phosphorylation is constitutive and implicated in the
repression of HSF1 transcriptional activity (PubMed:8946918,
PubMed:8940068, PubMed:9121459, PubMed:16278218). Phosphorylated
on Ser-121 by MAPKAPK2; this phosphorylation promotes interaction
with HSP90 proteins and inhibits HSF1 homotrimerization, DNA-
binding and transactivation activities (PubMed:16278218).
Phosphorylation on Ser-303 by GSK3B/GSK3-beta and on Ser-307 by
MAPK3 within the regulatory domain is involved in the repression
of HSF1 transcriptional activity and occurs in a RAF1-dependent
manner (PubMed:8946918, PubMed:8940068, PubMed:9121459,
PubMed:9535852, PubMed:10747973, PubMed:12646186). Phosphorylation
on Ser-303 and Ser-307 increases HSF1 nuclear export in a
YWHAE- and XPO1/CRM1-dependent manner (PubMed:12917326).
Phosphorylation on Ser-307 is a prerequisite for phosphorylation
on Ser-303 (PubMed:8940068). According to PubMed:9535852, Ser-303
is not phosphorylated in unstressed cells. Phosphorylated on Ser-
419 by PLK1; phosphorylation promotes nuclear translocation upon
heat shock (PubMed:15661742). Hyperphosphorylated upon heat shock
and during the attenuation and recovery phase period of the heat
shock response (PubMed:11447121, PubMed:12659875,
PubMed:24581496). Phosphorylated on Thr-142; this phosphorylation
increases HSF1 transactivation activity upon heat shock
(PubMed:12659875). Phosphorylation on Ser-230 by CAMK2A; this
phosphorylation enhances HSF1 transactivation activity upon heat
shock (PubMed:11447121). Phosphorylation on Ser-326 by MAPK12;
this phosphorylation enhances HSF1 nuclear translocation,
homotrimerization and transactivation activities upon heat shock
(PubMed:15760475, PubMed:27354066). Phosphorylated on Ser-320 by
PRKACA/PKA; this phosphorylation promotes nuclear localization and
transcriptional activity upon heat shock (PubMed:21085490).
Phosphorylated on Ser-363 by MAPK8; this phosphorylation occurs
upon heat shock, induces HSF1 translocation into nuclear stress
bodies and negatively regulates transactivation activity
(PubMed:10747973). Neither basal nor stress-inducible
phosphorylation on Ser-230, Ser-292, Ser-303, Ser-307, Ser-314,
Ser-319, Ser-320, Thr-323, Ser-326, Ser-338, Ser-344, Ser-363,
Thr-367, Ser-368 and Thr-369 within the regulatory domain is
involved in the regulation of HSF1 subcellular localization or
DNA-binding activity; however, it negatively regulates HSF1
transactivation activity (PubMed:25963659). Phosphorylated on Ser-
216 by PLK1 in the early mitotic period; this phosphorylation
regulates HSF1 localization to the spindle pole, the recruitment
of the SCF(BTRC) ubiquitin ligase complex inducing HSF1
degradation, and hence mitotic progression (PubMed:18794143).
Dephosphorylated on Ser-121, Ser-307, Ser-314, Thr-323 and Thr-367
by phosphatase PPP2CA in an IER5-dependent manner, leading to
HSF1-mediated transactivation activity (PubMed:26754925).
{ECO:0000269|PubMed:10359787, ECO:0000269|PubMed:10747973,
ECO:0000269|PubMed:11447121, ECO:0000269|PubMed:11583998,
ECO:0000269|PubMed:12646186, ECO:0000269|PubMed:12659875,
ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:15760475,
ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:18794143,
ECO:0000269|PubMed:21085490, ECO:0000269|PubMed:24581496,
ECO:0000269|PubMed:25963659, ECO:0000269|PubMed:26159920,
ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:27354066,
ECO:0000269|PubMed:8940068, ECO:0000269|PubMed:8946918,
ECO:0000269|PubMed:9121459, ECO:0000269|PubMed:9499401,
ECO:0000269|PubMed:9535852}.
-!- PTM: Sumoylated with SUMO1 and SUMO2 upon heat shock in a ERK2-
dependent manner (PubMed:12646186, PubMed:12665592). Sumoylated by
SUMO1 on Lys-298; sumoylation occurs upon heat shock and promotes
its localization to nuclear stress bodies and DNA-binding activity
(PubMed:11514557). Phosphorylation on Ser-303 and Ser-307 is
probably a prerequisite for sumoylation (PubMed:12646186,
PubMed:12665592). {ECO:0000269|PubMed:11514557,
ECO:0000269|PubMed:12646186, ECO:0000269|PubMed:12665592}.
-!- PTM: Acetylated on Lys-118; this acetylation is decreased in a
IER5-dependent manner (PubMed:26754925). Acetylated on Lys-118,
Lys-208 and Lys-298; these acetylations occur in a EP300-dependent
manner (PubMed:24581496, PubMed:27189267). Acetylated on Lys-80;
this acetylation inhibits DNA-binding activity upon heat shock
(PubMed:19229036). Deacetylated on Lys-80 by SIRT1; this
deacetylation increases DNA-binding activity (PubMed:19229036).
{ECO:0000269|PubMed:19229036, ECO:0000269|PubMed:24581496,
ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:27189267}.
-!- PTM: Ubiquitinated by SCF(BTRC) and degraded following stimulus-
dependent phosphorylation at Ser-216 by PLK1 in mitosis
(PubMed:18794143). Polyubiquitinated (PubMed:24581496). Undergoes
proteasomal degradation upon heat shock and during the attenuation
and recovery phase period of the heat shock response
(PubMed:24581496). {ECO:0000269|PubMed:18794143,
ECO:0000269|PubMed:24581496}.
-!- SIMILARITY: Belongs to the HSF family. {ECO:0000305}.
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; M64673; AAA52695.1; -; mRNA.
EMBL; AK290975; BAF83664.1; -; mRNA.
EMBL; BT007351; AAP36015.1; -; mRNA.
EMBL; AC110280; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; AF205589; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; BC014638; AAH14638.1; -; mRNA.
CCDS; CCDS6419.1; -. [Q00613-1]
PIR; A41137; A41137.
RefSeq; NP_005517.1; NM_005526.3. [Q00613-1]
RefSeq; XP_016868866.1; XM_017013377.1. [Q00613-2]
UniGene; Hs.530227; -.
PDB; 2LDU; NMR; -; A=10-123.
PDB; 5D5U; X-ray; 2.91 A; B=1-120.
PDB; 5D5V; X-ray; 2.55 A; B/D=1-120.
PDB; 5HDG; X-ray; 1.70 A; A=15-120.
PDB; 5HDN; X-ray; 1.68 A; A/B/C/D=15-120.
PDBsum; 2LDU; -.
PDBsum; 5D5U; -.
PDBsum; 5D5V; -.
PDBsum; 5HDG; -.
PDBsum; 5HDN; -.
ProteinModelPortal; Q00613; -.
SMR; Q00613; -.
BioGrid; 109530; 91.
CORUM; Q00613; -.
DIP; DIP-35670N; -.
IntAct; Q00613; 50.
MINT; MINT-230849; -.
STRING; 9606.ENSP00000431512; -.
BindingDB; Q00613; -.
ChEMBL; CHEMBL5869; -.
iPTMnet; Q00613; -.
PhosphoSitePlus; Q00613; -.
BioMuta; HSF1; -.
DMDM; 462333; -.
EPD; Q00613; -.
MaxQB; Q00613; -.
PaxDb; Q00613; -.
PeptideAtlas; Q00613; -.
PRIDE; Q00613; -.
DNASU; 3297; -.
Ensembl; ENST00000528838; ENSP00000431512; ENSG00000185122. [Q00613-1]
GeneID; 3297; -.
KEGG; hsa:3297; -.
UCSC; uc003zbt.5; human. [Q00613-1]
CTD; 3297; -.
DisGeNET; 3297; -.
EuPathDB; HostDB:ENSG00000185122.10; -.
GeneCards; HSF1; -.
HGNC; HGNC:5224; HSF1.
HPA; CAB004239; -.
HPA; HPA008888; -.
MIM; 140580; gene.
neXtProt; NX_Q00613; -.
OpenTargets; ENSG00000185122; -.
PharmGKB; PA29493; -.
eggNOG; KOG0627; Eukaryota.
eggNOG; COG5169; LUCA.
GeneTree; ENSGT00390000001182; -.
HOGENOM; HOG000253917; -.
HOVERGEN; HBG005999; -.
InParanoid; Q00613; -.
KO; K09414; -.
OMA; QFSLEHV; -.
OrthoDB; EOG091G087O; -.
PhylomeDB; Q00613; -.
TreeFam; TF330401; -.
Reactome; R-HSA-3371453; Regulation of HSF1-mediated heat shock response.
Reactome; R-HSA-3371511; HSF1 activation.
Reactome; R-HSA-3371568; Attenuation phase.
Reactome; R-HSA-3371571; HSF1-dependent transactivation.
SignaLink; Q00613; -.
SIGNOR; Q00613; -.
ChiTaRS; HSF1; human.
GeneWiki; HSF1; -.
GenomeRNAi; 3297; -.
PRO; PR:Q00613; -.
Proteomes; UP000005640; Chromosome 8.
Bgee; ENSG00000185122; -.
CleanEx; HS_HSF1; -.
ExpressionAtlas; Q00613; baseline and differential.
Genevisible; Q00613; HS.
GO; GO:0005813; C:centrosome; IDA:UniProtKB.
GO; GO:0000777; C:condensed chromosome kinetochore; IEA:UniProtKB-SubCell.
GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
GO; GO:0005829; C:cytosol; IDA:HPA.
GO; GO:0000791; C:euchromatin; IEA:Ensembl.
GO; GO:0000792; C:heterochromatin; IEA:Ensembl.
GO; GO:0000776; C:kinetochore; IDA:UniProtKB.
GO; GO:0097431; C:mitotic spindle pole; IDA:UniProtKB.
GO; GO:0097165; C:nuclear stress granule; IDA:UniProtKB.
GO; GO:0005654; C:nucleoplasm; IDA:UniProtKB.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0048471; C:perinuclear region of cytoplasm; IDA:UniProtKB.
GO; GO:0016605; C:PML body; IDA:UniProtKB.
GO; GO:0045120; C:pronucleus; IEA:Ensembl.
GO; GO:1990904; C:ribonucleoprotein complex; IDA:UniProtKB.
GO; GO:0031490; F:chromatin DNA binding; IDA:UniProtKB.
GO; GO:0003677; F:DNA binding; IDA:UniProtKB.
GO; GO:0031072; F:heat shock protein binding; IDA:UniProtKB.
GO; GO:0051879; F:Hsp90 protein binding; IDA:UniProtKB.
GO; GO:0042802; F:identical protein binding; IDA:UniProtKB.
GO; GO:1990841; F:promoter-specific chromatin binding; IDA:UniProtKB.
GO; GO:0046982; F:protein heterodimerization activity; IDA:UniProtKB.
GO; GO:0019901; F:protein kinase binding; IPI:UniProtKB.
GO; GO:0043621; F:protein self-association; IDA:UniProtKB.
GO; GO:0000978; F:RNA polymerase II core promoter proximal region sequence-specific DNA binding; IDA:NTNU_SB.
GO; GO:0000979; F:RNA polymerase II core promoter sequence-specific DNA binding; IEA:Ensembl.
GO; GO:0001162; F:RNA polymerase II intronic transcription regulatory region sequence-specific DNA binding; IDA:MGI.
GO; GO:0043565; F:sequence-specific DNA binding; IDA:UniProtKB.
GO; GO:0098847; F:sequence-specific single stranded DNA binding; IEA:Ensembl.
GO; GO:0097677; F:STAT family protein binding; IEA:Ensembl.
GO; GO:0003700; F:transcription factor activity, sequence-specific DNA binding; TAS:ProtInc.
GO; GO:0001078; F:transcriptional repressor activity, RNA polymerase II core promoter proximal region sequence-specific binding; IDA:NTNU_SB.
GO; GO:0061770; F:translation elongation factor binding; IDA:UniProtKB.
GO; GO:0043623; P:cellular protein complex assembly; IDA:UniProtKB.
GO; GO:1904385; P:cellular response to angiotensin; IEA:Ensembl.
GO; GO:0071276; P:cellular response to cadmium ion; IDA:UniProtKB.
GO; GO:0071280; P:cellular response to copper ion; IDA:UniProtKB.
GO; GO:0072738; P:cellular response to diamide; IDA:UniProtKB.
GO; GO:0071392; P:cellular response to estradiol stimulus; IEA:Ensembl.
GO; GO:0071480; P:cellular response to gamma radiation; IDA:UniProtKB.
GO; GO:0034605; P:cellular response to heat; IDA:UniProtKB.
GO; GO:0070301; P:cellular response to hydrogen peroxide; IEA:Ensembl.
GO; GO:1904845; P:cellular response to L-glutamine; IEA:Ensembl.
GO; GO:0071222; P:cellular response to lipopolysaccharide; IEA:Ensembl.
GO; GO:1904843; P:cellular response to nitroglycerin; IEA:Ensembl.
GO; GO:0035865; P:cellular response to potassium ion; IEA:Ensembl.
GO; GO:1903936; P:cellular response to sodium arsenite; IDA:UniProtKB.
GO; GO:0034620; P:cellular response to unfolded protein; IDA:UniProtKB.
GO; GO:0006952; P:defense response; IEA:Ensembl.
GO; GO:0006281; P:DNA repair; IEA:UniProtKB-KW.
GO; GO:0001892; P:embryonic placenta development; IEA:Ensembl.
GO; GO:0060136; P:embryonic process involved in female pregnancy; IEA:Ensembl.
GO; GO:0007143; P:female meiotic nuclear division; IEA:Ensembl.
GO; GO:0000165; P:MAPK cascade; IDA:UniProtKB.
GO; GO:0006397; P:mRNA processing; IEA:UniProtKB-KW.
GO; GO:0009299; P:mRNA transcription; IDA:UniProtKB.
GO; GO:0051028; P:mRNA transport; IEA:UniProtKB-KW.
GO; GO:0010667; P:negative regulation of cardiac muscle cell apoptotic process; IEA:Ensembl.
GO; GO:0008285; P:negative regulation of cell proliferation; IEA:Ensembl.
GO; GO:2001033; P:negative regulation of double-strand break repair via nonhomologous end joining; IMP:UniProtKB.
GO; GO:0090084; P:negative regulation of inclusion body assembly; IEA:Ensembl.
GO; GO:1901215; P:negative regulation of neuron death; IEA:Ensembl.
GO; GO:0000122; P:negative regulation of transcription from RNA polymerase II promoter; IDA:UniProtKB.
GO; GO:0032720; P:negative regulation of tumor necrosis factor production; IEA:Ensembl.
GO; GO:1902512; P:positive regulation of apoptotic DNA fragmentation; IEA:Ensembl.
GO; GO:0008284; P:positive regulation of cell proliferation; IMP:UniProtKB.
GO; GO:0043280; P:positive regulation of cysteine-type endopeptidase activity involved in apoptotic process; IEA:Ensembl.
GO; GO:0090261; P:positive regulation of inclusion body assembly; IEA:Ensembl.
GO; GO:1904528; P:positive regulation of microtubule binding; IEA:Ensembl.
GO; GO:0045931; P:positive regulation of mitotic cell cycle; IMP:UniProtKB.
GO; GO:1900365; P:positive regulation of mRNA polyadenylation; IMP:UniProtKB.
GO; GO:0040018; P:positive regulation of multicellular organism growth; IEA:Ensembl.
GO; GO:0045944; P:positive regulation of transcription from RNA polymerase II promoter; IDA:UniProtKB.
GO; GO:0061408; P:positive regulation of transcription from RNA polymerase II promoter in response to heat stress; IDA:UniProtKB.
GO; GO:0042531; P:positive regulation of tyrosine phosphorylation of STAT protein; IEA:Ensembl.
GO; GO:0051260; P:protein homooligomerization; IDA:UniProtKB.
GO; GO:0070207; P:protein homotrimerization; IDA:UniProtKB.
GO; GO:1900034; P:regulation of cellular response to heat; IDA:UniProtKB.
GO; GO:0043497; P:regulation of protein heterodimerization activity; IMP:UniProtKB.
GO; GO:0014823; P:response to activity; IEA:Ensembl.
GO; GO:1990910; P:response to hypobaric hypoxia; IEA:Ensembl.
GO; GO:0007584; P:response to nutrient; IEA:Ensembl.
GO; GO:1990911; P:response to psychosocial stress; IEA:Ensembl.
GO; GO:0033574; P:response to testosterone; IEA:Ensembl.
GO; GO:0007283; P:spermatogenesis; IEA:Ensembl.
Gene3D; 1.10.10.10; -; 1.
InterPro; IPR027072; HSF1.
InterPro; IPR000232; HSF_DNA-bd.
InterPro; IPR027725; HSF_fam.
InterPro; IPR010542; Vert_HSTF_C.
InterPro; IPR011991; WHTH_DNA-bd_dom.
PANTHER; PTHR10015; PTHR10015; 1.
PANTHER; PTHR10015:SF211; PTHR10015:SF211; 1.
Pfam; PF00447; HSF_DNA-bind; 1.
Pfam; PF06546; Vert_HS_TF; 1.
PRINTS; PR00056; HSFDOMAIN.
SMART; SM00415; HSF; 1.
SUPFAM; SSF46785; SSF46785; 1.
PROSITE; PS00434; HSF_DOMAIN; 1.
1: Evidence at protein level;
3D-structure; Acetylation; Activator; Alternative splicing;
Centromere; Chromosome; Complete proteome; Cytoplasm; Cytoskeleton;
Direct protein sequencing; DNA damage; DNA repair; DNA-binding;
Isopeptide bond; Kinetochore; mRNA processing; mRNA transport;
Nucleus; Phosphoprotein; Reference proteome; Stress response;
Transcription; Transcription regulation; Transport; Ubl conjugation.
CHAIN 1 529 Heat shock factor protein 1.
/FTId=PRO_0000124567.
REGION 15 120 DNA-binding domain.
{ECO:0000269|PubMed:26727489,
ECO:0000269|PubMed:7935471}.
REGION 130 203 Hydrophobic repeat HR-A/B.
{ECO:0000269|PubMed:7935471}.
REGION 203 224 D domain. {ECO:0000269|PubMed:10747973}.
REGION 221 310 Regulatory domain.
{ECO:0000269|PubMed:7760831}.
REGION 371 529 Transactivation domain.
{ECO:0000269|PubMed:7623826,
ECO:0000269|PubMed:7760831}.
REGION 384 409 Hydrophobic repeat HR-C.
{ECO:0000269|PubMed:7935471}.
MOTIF 412 420 9aaTAD. {ECO:0000303|PubMed:17467953}.
MOD_RES 1 1 N-acetylmethionine.
{ECO:0000244|PubMed:19413330}.
MOD_RES 80 80 N6-acetyllysine.
{ECO:0000269|PubMed:19229036,
ECO:0000269|PubMed:24581496}.
MOD_RES 91 91 N6-acetyllysine; alternate.
{ECO:0000269|PubMed:24581496}.
MOD_RES 118 118 N6-acetyllysine.
{ECO:0000269|PubMed:24581496,
ECO:0000269|PubMed:26754925}.
MOD_RES 121 121 Phosphoserine; by MAPKAPK2.
{ECO:0000269|PubMed:15760475,
ECO:0000269|PubMed:16278218}.
MOD_RES 142 142 Phosphothreonine; by CK2.
{ECO:0000269|PubMed:12659875}.
MOD_RES 150 150 N6-acetyllysine.
{ECO:0000269|PubMed:24581496}.
MOD_RES 188 188 N6-acetyllysine.
{ECO:0000269|PubMed:24581496}.
MOD_RES 208 208 N6-acetyllysine; alternate.
{ECO:0000269|PubMed:24581496}.
MOD_RES 216 216 Phosphoserine; by PLK1.
{ECO:0000269|PubMed:18794143}.
MOD_RES 230 230 Phosphoserine; by CAMK2A.
{ECO:0000269|PubMed:11447121,
ECO:0000269|PubMed:15760475}.
MOD_RES 275 275 Phosphoserine.
{ECO:0000269|PubMed:8940068}.
MOD_RES 292 292 Phosphoserine.
{ECO:0000269|PubMed:15760475}.
MOD_RES 298 298 N6-acetyllysine; alternate.
{ECO:0000269|PubMed:24581496}.
MOD_RES 303 303 Phosphoserine; by GSK3-beta.
{ECO:0000244|PubMed:23186163,
ECO:0000244|PubMed:24275569,
ECO:0000269|PubMed:11447121,
ECO:0000269|PubMed:12665592,
ECO:0000269|PubMed:15760475,
ECO:0000269|PubMed:16371476,
ECO:0000269|PubMed:8940068,
ECO:0000269|PubMed:8946918,
ECO:0000269|PubMed:9121459}.
MOD_RES 307 307 Phosphoserine; by MAPK3.
{ECO:0000244|PubMed:23186163,
ECO:0000269|PubMed:11447121,
ECO:0000269|PubMed:15760475,
ECO:0000269|PubMed:8940068,
ECO:0000269|PubMed:8946918,
ECO:0000269|PubMed:9121459,
ECO:0000269|PubMed:9535852}.
MOD_RES 314 314 Phosphoserine.
{ECO:0000244|PubMed:18220336,
ECO:0000244|PubMed:19690332,
ECO:0000244|PubMed:20068231,
ECO:0000269|PubMed:15760475}.
MOD_RES 319 319 Phosphoserine.
{ECO:0000269|PubMed:15760475}.
MOD_RES 320 320 Phosphoserine; by PKA.
{ECO:0000269|PubMed:21085490,
ECO:0000269|PubMed:27189267}.
MOD_RES 323 323 Phosphothreonine.
{ECO:0000244|PubMed:17081983,
ECO:0000244|PubMed:19690332}.
MOD_RES 326 326 Phosphoserine; by MAPK12.
{ECO:0000244|PubMed:19690332,
ECO:0000244|PubMed:20068231,
ECO:0000269|PubMed:15760475,
ECO:0000269|PubMed:27354066}.
MOD_RES 344 344 Phosphoserine.
{ECO:0000269|PubMed:15760475}.
MOD_RES 363 363 Phosphoserine; by MAPK8.
{ECO:0000244|PubMed:18669648,
ECO:0000244|PubMed:23186163,
ECO:0000244|PubMed:24275569,
ECO:0000269|PubMed:10747973,
ECO:0000269|PubMed:15760475}.
MOD_RES 419 419 Phosphoserine; by PLK1.
{ECO:0000269|PubMed:15661742}.
MOD_RES 444 444 Phosphoserine.
{ECO:0000269|PubMed:15760475}.
MOD_RES 524 524 N6-acetyllysine.
{ECO:0000269|PubMed:24581496}.
CROSSLNK 91 91 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO2);
alternate. {ECO:0000244|PubMed:28112733}.
CROSSLNK 126 126 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO2).
{ECO:0000244|PubMed:28112733}.
CROSSLNK 131 131 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO2).
{ECO:0000244|PubMed:28112733}.
CROSSLNK 208 208 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO2);
alternate. {ECO:0000244|PubMed:28112733}.
CROSSLNK 224 224 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO2).
{ECO:0000244|PubMed:28112733}.
CROSSLNK 298 298 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO);
alternate. {ECO:0000269|PubMed:11514557,
ECO:0000269|PubMed:12665592,
ECO:0000269|PubMed:16371476}.
CROSSLNK 298 298 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO2);
alternate. {ECO:0000244|PubMed:28112733}.
VAR_SEQ 462 489 GKQLVHYTAQPLFLLDPGSVDTGSNDLP -> AGALHSAAA
VPAGPRLRGHREQRPAGAV (in isoform Short).
{ECO:0000305}.
/FTId=VSP_002414.
VAR_SEQ 490 529 Missing (in isoform Short).
{ECO:0000305}.
/FTId=VSP_002415.
MUTAGEN 22 22 L->A: Inhibits HSE DNA-binding activity
and transcriptional activation.
{ECO:0000269|PubMed:9341107}.
MUTAGEN 80 80 K->Q: Loss of nuclear stress bodies
localization. Loss of DNA-binding and
transcriptional activities upon heat
shock. No change in homotrimerization
upon heat shock.
{ECO:0000269|PubMed:19229036,
ECO:0000269|PubMed:24581496}.
MUTAGEN 80 80 K->R: Does not change interaction with
XRCC5 and XRCC6. Loss of nuclear stress
bodies localization. Decreased nuclear
stress bodies localization. Loss of DNA-
binding and transcriptional activities
upon heat shock.
{ECO:0000269|PubMed:19229036,
ECO:0000269|PubMed:24581496,
ECO:0000269|PubMed:26359349}.
MUTAGEN 91 91 K->R: No effect on sumoylation.
{ECO:0000269|PubMed:12665592}.
MUTAGEN 118 118 K->Q: Loss of nuclear stress bodies
localization. No change in protein
abundance. {ECO:0000269|PubMed:24581496}.
MUTAGEN 118 118 K->R: No change in nuclear stress bodies
localization.
{ECO:0000269|PubMed:24581496}.
MUTAGEN 120 120 T->A: No effect on binding HSE nor on
transcriptional activity.
{ECO:0000269|PubMed:16278218}.
MUTAGEN 121 121 S->A: Increased binding HSE and
transcriptional activity. Greatly reduced
binding to HSP90AA1. No effect on
MAPKAPK2 binding.
{ECO:0000269|PubMed:16278218}.
MUTAGEN 121 121 S->D: Some inhibition of binding HSE and
transcriptional activity. No change in
binding HSP90AA1. Inhibits MAPKAPK2
binding. Decreased HSF1-induced
expression of HSPA1A mRNA in a IER5-
dependent manner; when associated with D-
307; D-314; D-323 and D-367.
{ECO:0000269|PubMed:16278218,
ECO:0000269|PubMed:26754925}.
MUTAGEN 123 123 S->A: No effect on binding HSE nor on
transcriptional activity.
{ECO:0000269|PubMed:16278218}.
MUTAGEN 124 124 T->A: No effect on binding HSE nor on
transcriptional activity.
{ECO:0000269|PubMed:16278218}.
MUTAGEN 126 126 K->R: No effect on sumoylation.
{ECO:0000269|PubMed:12665592}.
MUTAGEN 140 140 L->K: Leads to constitutive
homotrimerization and DNA-binding
activities at 20 degrees Celsius. Does
not lead to constitutive transactivation
activity at 20 degrees Celsius. Decreased
DNA-binding activity at 37 degrees
Celsius. {ECO:0000269|PubMed:7623826,
ECO:0000269|PubMed:7935471}.
MUTAGEN 142 142 T->A: Reduced promoter activity by about
90%. Almost no transcriptional activity
when coexpressed with CK2.
{ECO:0000269|PubMed:12659875}.
MUTAGEN 147 147 M->A: Leads to constitutive
homotrimerization and DNA-binding
activities at 20 degrees Celsius. Does
not lead to constitutive transactivation
activity at 20 degrees Celsius. No effect
on DNA-binding activity at 37 degrees
Celsius. {ECO:0000269|PubMed:7623826,
ECO:0000269|PubMed:7935471}.
MUTAGEN 147 147 M->E: Does not lead to constitutive
homotrimerization and DNA-binding
activities at 20 degrees Celsius. Loss of
DNA-binding activity at 37 degrees
Celsius. {ECO:0000269|PubMed:7935471}.
MUTAGEN 147 147 M->K: Does not lead to constitutive
homotrimerization and DNA-binding
activities at 20 degrees Celsius. Loss of
DNA-binding activity at 37 degrees
Celsius. {ECO:0000269|PubMed:7935471}.
MUTAGEN 150 150 K->R: No effect on sumoylation.
{ECO:0000269|PubMed:12665592}.
MUTAGEN 162 162 K->R: No effect on sumoylation.
{ECO:0000269|PubMed:12665592}.
MUTAGEN 189 189 L->A: Does not lead to constitutive
homotrimerization and DNA-binding
activities at 20 degrees Celsius. Leads
to constitutive homotrimerization and
DNA-binding activities at 30 degrees
Celsius. No effect on DNA-binding
activity at 37 degrees Celsius.
{ECO:0000269|PubMed:7935471}.
MUTAGEN 189 189 L->E: Leads to constitutive
homotrimerization, DNA-binding and
transactivation activities at 20 degrees
Celsius. Decreased DNA-binding activity
at 37 degrees Celsius.
{ECO:0000269|PubMed:7623826,
ECO:0000269|PubMed:7935471}.
MUTAGEN 189 189 L->K: Leads to constitutive
homotrimerization and DNA-binding
activities at 20 degrees Celsius. No
effect on DNA-binding activity at 37
degrees Celsius.
{ECO:0000269|PubMed:7935471}.
MUTAGEN 193 193 L->A: Does not lead to constitutive
homotrimerization and DNA-binding
activities at 20 degrees Celsius. Leads
to constitutive homotrimerization and
DNA-binding activities at 30 degrees
Celsius. No effect on DNA-binding
activity at 37 degrees Celsius.
{ECO:0000269|PubMed:7935471}.
MUTAGEN 193 193 L->E: Leads to constitutive
homotrimerization and DNA-binding
activities at 20 degrees Celsius.
Decreased DNA-binding activity at 37
degrees Celsius.
{ECO:0000269|PubMed:7935471}.
MUTAGEN 193 193 L->K: Leads to constitutive
homotrimerization and DNA-binding
activities at 20 degrees Celsius. Loss of
DNA-binding activity at 37 degrees
Celsius. {ECO:0000269|PubMed:7935471}.
MUTAGEN 208 208 K->Q: No change in nuclear stress bodies
localization. Increased protein
abundance. {ECO:0000269|PubMed:24581496}.
MUTAGEN 208 208 K->R: No change in nuclear stress bodies
localization. No change in protein
abundance. {ECO:0000269|PubMed:24581496}.
MUTAGEN 216 216 S->A: Does not change interaction with
XRCC5 and XRCC6. No PLK1-induced
phosphorylation in mitosis. Inhibits
PLK1-stimulated ubiquitinylation.
Increased protein stability.
{ECO:0000269|PubMed:18794143,
ECO:0000269|PubMed:26359349}.
MUTAGEN 216 216 S->E: Does not change interaction with
XRCC5 and XRCC6. No change in spindle
pole localization. Increases weakly PLK1-
stimulated ubiquitinylation. No change in
protein stability. Increased interaction
with BTRC. {ECO:0000269|PubMed:18794143,
ECO:0000269|PubMed:26359349}.
MUTAGEN 216 216 S->N: Decreased spindle pole
localization. Decreased interaction with
BTRC. Increased protein stability.
{ECO:0000269|PubMed:18794143}.
MUTAGEN 230 230 S->A: No phosphorylation. No change in
PLK1-induced phosphorylation in mitosis.
No change in DNA-binding activity upon
heat shock. Decreased transcriptional
activity upon heat shock.
{ECO:0000269|PubMed:11447121,
ECO:0000269|PubMed:12665592,
ECO:0000269|PubMed:18794143}.
MUTAGEN 230 230 S->D: Mimics phosphorylation. No effect
on transcriptional activity upon heat
shock. {ECO:0000269|PubMed:11447121,
ECO:0000269|PubMed:12665592}.
MUTAGEN 275 275 S->A: Reduced increase in heat-induced
transcriptional activity.
{ECO:0000269|PubMed:9535852}.
MUTAGEN 275 275 S->G: Leads to weak constitutive
transactivation activity at room
temperature.
{ECO:0000269|PubMed:8940068}.
MUTAGEN 292 292 S->A: Weak decreased PLK1-induced
phosphorylation. Increased nuclear
localization upon heat shock.
{ECO:0000269|PubMed:15661742}.
MUTAGEN 296 296 R->A: No effect neither on repression of
transcriptional activity at control
temperature nor on transcriptional
activation upon heat shock.
{ECO:0000269|PubMed:8946918}.
MUTAGEN 297 297 V->A: Slight effect on derepression of
transcriptional activity at control
temperature and on transcriptional
activation upon heat shock.
{ECO:0000269|PubMed:8946918}.
MUTAGEN 298 298 K->A: Induces derepression of
transcriptional activity at control
temperature.
{ECO:0000269|PubMed:12665592,
ECO:0000269|PubMed:8946918}.
MUTAGEN 298 298 K->Q: No change in nuclear stress bodies
localization. Increased protein
abundance. {ECO:0000269|PubMed:24581496}.
MUTAGEN 298 298 K->R: Abolishes sumoylation. No effect on
phosphorylation of S-303 nor of S-307. No
change in subcellular location to nuclear
stress granules upon heat shock. Loss of
colocalization with SUMO1 to nuclear
stress granules upon heat shock. Does not
change interaction with XRCC5 and XRCC6.
No effect on binding to HSE nor on
transactivation of HSP70. Increases
transcriptional activity in a DAXX-
dependent manner. No change in protein
abundance. {ECO:0000269|PubMed:11514557,
ECO:0000269|PubMed:12646186,
ECO:0000269|PubMed:12665592,
ECO:0000269|PubMed:15016915,
ECO:0000269|PubMed:24581496,
ECO:0000269|PubMed:26359349,
ECO:0000269|PubMed:8946918}.
MUTAGEN 299 299 E->A: No effect on repression of
transcriptional activity at control
temperature.
{ECO:0000269|PubMed:8946918}.
MUTAGEN 300 300 E->A: Induces derepression of
transcriptional activity at control
temperature.
{ECO:0000269|PubMed:8946918}.
MUTAGEN 303 303 S->A: No phosphorylation nor sumoylation.
No change in nuclear stress granules
subcellular location upon heat shock.
Loss of colocalization with SUMO1 to
nuclear stress granules upon heat shock.
Slight decrease in transcriptional
activity on heat treatment. No change in
PLK1-induced phosphorylation in mitosis,
induces derepression of transcription
activation at control temperature,
abolishes sumoylation and induces 2.5-
fold increase in transcriptional activity
on heat treatment; when associated with
A-307. {ECO:0000269|PubMed:12646186,
ECO:0000269|PubMed:12665592,
ECO:0000269|PubMed:18794143,
ECO:0000269|PubMed:8946918,
ECO:0000269|PubMed:9121459,
ECO:0000269|PubMed:9535852}.
MUTAGEN 303 303 S->D: Mimics phosphorylation. No effect
on in vitro sumoylation. Greatly
increased transcriptional activity on
heat induction. 5-fold derepression of
transcriptional activity at control
temperature; when associated with D-307.
{ECO:0000269|PubMed:12665592,
ECO:0000269|PubMed:8946918,
ECO:0000269|PubMed:9121459,
ECO:0000269|PubMed:9535852}.
MUTAGEN 303 303 S->G: Leads to constitutive
transactivation activity at room
temperature. Inhibits interaction with
YWHAE and increases cytoplasmic
localization; when associated with G-307.
{ECO:0000269|PubMed:12917326,
ECO:0000269|PubMed:8940068}.
MUTAGEN 307 307 S->A: No phosphorylation. Does not reduce
Ser-303 phosphorylation. 1.5% increase in
transcriptional activity on heat-
treatment. No change in PLK1-induced
phosphorylation in mitosis, induces
derepression of transcription activation
at control temperature, abolishes
sumoylation and induces 2.5-fold increase
in transcriptional activity on heat
treatment; when associated with A-303.
{ECO:0000269|PubMed:12646186,
ECO:0000269|PubMed:12665592,
ECO:0000269|PubMed:18794143,
ECO:0000269|PubMed:8946918,
ECO:0000269|PubMed:9121459,
ECO:0000269|PubMed:9535852}.
MUTAGEN 307 307 S->D: 5-fold derepression of
transcriptional activity at control
temperature; when associated with D-303.
Decreased HSF1-induced expression of
HSPA1A mRNA in a IER5-dependent manner;
when associated with D-121; D-314; D-323
and D-367. {ECO:0000269|PubMed:26754925,
ECO:0000269|PubMed:8946918,
ECO:0000269|PubMed:9121459}.
MUTAGEN 307 307 S->G: Leads to constitutive
transactivation activity at room
temperature. Inhibits interaction with
YWHAE and increases cytoplasmic
localization; when associated with G-303.
{ECO:0000269|PubMed:12917326,
ECO:0000269|PubMed:8940068}.
MUTAGEN 309 309 R->A: No effect on repression of
transcriptional activity at control
temperature.
{ECO:0000269|PubMed:8946918}.
MUTAGEN 311 311 E->A: No effect neither on repression of
transcriptional activity at control
temperature nor on transcriptional
activation upon heat shock.
{ECO:0000269|PubMed:8946918}.
MUTAGEN 314 314 S->A: Weak decreased PLK1-induced
phosphorylation.
{ECO:0000269|PubMed:15661742}.
MUTAGEN 314 314 S->D: Decreased HSF1-induced expression
of HSPA1A mRNA in a IER5-dependent
manner; when associated with D-121; D-
307; D-323 and D-367.
{ECO:0000269|PubMed:26754925}.
MUTAGEN 319 319 S->A: Weak decreased PLK1-induced
phosphorylation.
{ECO:0000269|PubMed:15661742}.
MUTAGEN 320 320 S->A: Decreased nuclear localization and
transcriptional activity upon heat shock.
{ECO:0000269|PubMed:21085490}.
MUTAGEN 320 320 S->D: Increased nuclear localization and
transcriptional activity upon heat shock.
{ECO:0000269|PubMed:21085490}.
MUTAGEN 323 323 T->D: Decreased HSF1-induced expression
of HSPA1A mRNA in a IER5-dependent
manner; when associated with D-121; D-
307; D-314 and D-367.
{ECO:0000269|PubMed:26754925}.
MUTAGEN 326 326 S->A: No phosphorylation. Increased
nuclear localization upon heat shock. No
effect on oligomerization, DNA-binding
activities and nuclear localization.
Significant decrease in transcriptional
activity by heat shock. Decreases
transcriptional activity in a DAXX-
dependent manner. Does not change
interaction with XRCC5 and XRCC6. Weak
decreased PLK1-induced phosphorylation.
{ECO:0000269|PubMed:15016915,
ECO:0000269|PubMed:15661742,
ECO:0000269|PubMed:15760475,
ECO:0000269|PubMed:26359349,
ECO:0000269|PubMed:27354066}.
MUTAGEN 326 326 S->E: Does not change interaction with
XRCC5 and XRCC6.
{ECO:0000269|PubMed:26359349}.
MUTAGEN 363 363 S->A: Decreases MAPK8-induced
phosphorylation and does not negatively
regulates transactivating activity upon
heat shock. No effect on sumoylation.
{ECO:0000269|PubMed:10747973,
ECO:0000269|PubMed:12665592}.
MUTAGEN 367 367 T->D: Decreased HSF1-induced expression
of HSPA1A mRNA in a IER5-dependent
manner; when associated with D-121; D-
307; D-314 and D-323.
{ECO:0000269|PubMed:26754925}.
MUTAGEN 381 381 K->R: No effect on sumoylation.
{ECO:0000269|PubMed:12665592}.
MUTAGEN 391 391 M->A: Does not lead to constitutive DNA-
binding activity at 20 degrees Celsius.
Leads to weak constitutive DNA-binding
and homotrimerization activities at 30
degrees Celsius. Decreased DNA-binding
activity at 37 degrees Celsius.
{ECO:0000269|PubMed:7935471}.
MUTAGEN 391 391 M->E: Leads to constitutive DNA-binding
and homotrimerization activities at 20
degrees Celsius. Does not lead to
constitutive transactivation activity at
20 degrees Celsius. No effect on DNA-
binding activity at 37 degrees Celsius.
{ECO:0000269|PubMed:7623826,
ECO:0000269|PubMed:7935471}.
MUTAGEN 391 391 M->K: Leads to constitutive DNA-binding
and homotrimerization activities at 20
degrees Celsius. No effect on DNA-binding
activity at 37 degrees Celsius.
{ECO:0000269|PubMed:7935471}.
MUTAGEN 395 395 L->E: Leads to constitutive DNA-binding
and homotrimerization activities at 20
degrees Celsius. No effect on DNA-binding
activity at 37 degrees Celsius.
{ECO:0000269|PubMed:7935471}.
MUTAGEN 395 395 L->K: Leads to constitutive DNA-binding
and homotrimerization activities at 20
degrees Celsius. No effect on DNA-binding
activity at 37 degrees Celsius.
{ECO:0000269|PubMed:7935471}.
MUTAGEN 419 419 S->A: Does not change interaction with
XRCC5 and XRCC6. Decreased nuclear
localization upon heat shock. Strongly
decreases PLK1-induced phosphorylation.
No change in PLK1-induced phosphorylation
in mitosis. {ECO:0000269|PubMed:15661742,
ECO:0000269|PubMed:18794143,
ECO:0000269|PubMed:26359349}.
MUTAGEN 419 419 S->E: Does not change interaction with
XRCC5 and XRCC6.
{ECO:0000269|PubMed:26359349}.
MUTAGEN 527 527 T->A: No change in binding HSE nor on
transcriptional activity. Decreased
binding HSE; when associated with A-529.
{ECO:0000269|PubMed:16278218}.
MUTAGEN 529 529 S->A: No change in binding HSE nor on
transcriptional activity. Decreased
binding HSE; when associated with A-527.
{ECO:0000269|PubMed:16278218}.
HELIX 17 27 {ECO:0000244|PDB:5HDN}.
HELIX 29 31 {ECO:0000244|PDB:5HDN}.
TURN 32 34 {ECO:0000244|PDB:5HDN}.
STRAND 35 37 {ECO:0000244|PDB:5HDN}.
STRAND 39 42 {ECO:0000244|PDB:5D5U}.
STRAND 44 47 {ECO:0000244|PDB:5HDN}.
HELIX 49 55 {ECO:0000244|PDB:5HDN}.
HELIX 57 60 {ECO:0000244|PDB:5HDN}.
HELIX 66 75 {ECO:0000244|PDB:5HDN}.
STRAND 79 83 {ECO:0000244|PDB:5HDN}.
STRAND 87 91 {ECO:0000244|PDB:2LDU}.
STRAND 96 100 {ECO:0000244|PDB:5HDN}.
HELIX 109 114 {ECO:0000244|PDB:5HDN}.
SEQUENCE 529 AA; 57260 MW; 735074507C954365 CRC64;
MDLPVGPGAA GPSNVPAFLT KLWTLVSDPD TDALICWSPS GNSFHVFDQG QFAKEVLPKY
FKHNNMASFV RQLNMYGFRK VVHIEQGGLV KPERDDTEFQ HPCFLRGQEQ LLENIKRKVT
SVSTLKSEDI KIRQDSVTKL LTDVQLMKGK QECMDSKLLA MKHENEALWR EVASLRQKHA
QQQKVVNKLI QFLISLVQSN RILGVKRKIP LMLNDSGSAH SMPKYSRQFS LEHVHGSGPY
SAPSPAYSSS SLYAPDAVAS SGPIISDITE LAPASPMASP GGSIDERPLS SSPLVRVKEE
PPSPPQSPRV EEASPGRPSS VDTLLSPTAL IDSILRESEP APASVTALTD ARGHTDTEGR
PPSPPPTSTP EKCLSVACLD KNELSDHLDA MDSNLDNLQT MLSSHGFSVD TSALLDLFSP
SVTVPDMSLP DLDSSLASIQ ELLSPQEPPR PPEAENSSPD SGKQLVHYTA QPLFLLDPGS
VDTGSNDLPV LFELGEGSYF SEGDGFAEDP TISLLTGSEP PKAKDPTVS


Related products :

Catalog number Product name Quantity
U0435h CLIA Heat shock factor protein 1,Heat shock transcription factor 1,Homo sapiens,HSF 1,HSF1,HSTF 1,HSTF1,Human 96T
E0435h ELISA Heat shock factor protein 1,Heat shock transcription factor 1,Homo sapiens,HSF 1,HSF1,HSTF 1,HSTF1,Human 96T
E0435h ELISA kit Heat shock factor protein 1,Heat shock transcription factor 1,Homo sapiens,HSF 1,HSF1,HSTF 1,HSTF1,Human 96T
E0435m ELISA Heat shock factor protein 1,Heat shock transcription factor 1,HSF 1,Hsf1,HSTF 1,Mouse,Mus musculus 96T
E0435m ELISA kit Heat shock factor protein 1,Heat shock transcription factor 1,HSF 1,Hsf1,HSTF 1,Mouse,Mus musculus 96T
U0435m CLIA Heat shock factor protein 1,Heat shock transcription factor 1,HSF 1,Hsf1,HSTF 1,Mouse,Mus musculus 96T
E0435b ELISA Bos taurus,Bovine,Heat shock factor protein 1,Heat shock transcription factor 1,HSF 1,HSF1,HSTF 1 96T
U0435b CLIA Bos taurus,Bovine,Heat shock factor protein 1,Heat shock transcription factor 1,HSF 1,HSF1,HSTF 1 96T
E0435b ELISA kit Bos taurus,Bovine,Heat shock factor protein 1,Heat shock transcription factor 1,HSF 1,HSF1,HSTF 1 96T
E0435c ELISA kit Chicken,Gallus gallus,Heat shock factor protein 1,Heat shock transcription factor 1,HSF 1,HSF 3A,HSF1,HSTF 1,HSTF 3A 96T
U0435c CLIA Chicken,Gallus gallus,Heat shock factor protein 1,Heat shock transcription factor 1,HSF 1,HSF 3A,HSF1,HSTF 1,HSTF 3A 96T
E0435c ELISA Chicken,Gallus gallus,Heat shock factor protein 1,Heat shock transcription factor 1,HSF 1,HSF 3A,HSF1,HSTF 1,HSTF 3A 96T
18-003-43825 Heat shock factor protein 4 - HSF 4; Heat shock transcription factor 4; HSTF 4; hHSF4 Polyclonal 0.1 mg Protein A
18-003-43943 Heat shock factor protein 1 - HSF 1; Heat shock transcription factor 1; HSTF 1 Polyclonal 0.1 mg Protein A
18-003-43942 Heat shock factor protein 1 - HSF 1; Heat shock transcription factor 1; HSTF 1 Polyclonal 0.05 mg Aff Pur
18-003-43304 Heat shock factor protein 1 - HSF 1; Heat shock transcription factor 1; HSTF 1 Polyclonal 0.05 mg Aff Pur
20-372-60242 heat shock transcription factor 2. mRNA (cDNA clone IMAGE 3684733). complete cds - Mouse monoclonal anti-human HSF2 antibody; HSF 2; Heat shock transcription factor 2; HSTF 2 Monoclonal 0.1 mg
20-372-60110 heat shock transcription factor 1 (HSF1). mRNA - Mouse monoclonal anti-human HSF1 antibody; HSF 1; Heat shock transcription factor 1; HSTF 1 Monoclonal 0.1 mg
18-785-210203 HSF1 (Ab-307) - HSF 1; Heat shock transcription factor 1; HSTF 1 Polyclonal 0.1 mg
18-785-210204 HSF1 (Ab-303) - HSF 1; Heat shock transcription factor 1; HSTF 1 Polyclonal 0.05 mg
18-785-210204 HSF1 (Ab-303) - HSF 1; Heat shock transcription factor 1; HSTF 1 Polyclonal 0.1 mg
18-785-210203 HSF1 (Ab-307) - HSF 1; Heat shock transcription factor 1; HSTF 1 Polyclonal 0.05 mg
27-259 HSF2 binds specifically to the heat-shock element and has homology to HSFs of other species. Heat shock transcription factors activate heat-shock response genes under conditions of heat or other stres 0.05 mg
31-175 HSF1 is a heat-shock transcription factor. Transcription of heat-shock genes is rapidly induced after temperature stress. Hsp90, by itself and_or associated with multichaperone complexes, is a major r 0.05 mg
18-785-210202 HSF1 (phospho-Ser303) - HSF 1; Heat shock transcription factor 1; HSTF 1 Polyclonal 0.05 mg


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur