Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2 mRNA-binding protein 1) (IMP-1) (IMP1) (Coding region determinant-binding protein) (CRD-BP) (IGF-II mRNA-binding protein 1) (VICKZ family member 1) (Zipcode-binding protein 1) (ZBP-1)

 IF2B1_HUMAN             Reviewed;         577 AA.
Q9NZI8; C9JT33;
03-APR-2007, integrated into UniProtKB/Swiss-Prot.
18-MAY-2010, sequence version 2.
25-OCT-2017, entry version 153.
RecName: Full=Insulin-like growth factor 2 mRNA-binding protein 1;
Short=IGF2 mRNA-binding protein 1;
Short=IMP-1;
Short=IMP1;
AltName: Full=Coding region determinant-binding protein;
Short=CRD-BP;
AltName: Full=IGF-II mRNA-binding protein 1;
AltName: Full=VICKZ family member 1;
AltName: Full=Zipcode-binding protein 1;
Short=ZBP-1;
Name=IGF2BP1; Synonyms=CRDBP, VICKZ1, ZBP1;
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
Ioannidis P., Trangas T., Dimitriadis E., Samiotaki M.,
Panoutsakopoulos G., Kyriazoglou I., Voutzoulias S., Tsiapalis C.M.,
Kittas C., Agnantis N., Pandis N.;
"Ectopic expression of a KH-domain containing protein, highly
homologous to both human IMP-1 and mouse CRD-BP, in benign and
malignant mesenchymal tumors.";
Submitted (OCT-1999) to the EMBL/GenBank/DDBJ databases.
[2]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), AND ALTERNATIVE SPLICING.
Gong H.Y., Hu M.C., Wu J.L.;
"A novel splice variant of the human IGF2 mRNA-binding protein 1
(IMP1/CRD-BP) isolated from human Hep3B hepatoma cells.";
Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
[3]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=16625196; DOI=10.1038/nature04689;
Zody M.C., Garber M., Adams D.J., Sharpe T., Harrow J., Lupski J.R.,
Nicholson C., Searle S.M., Wilming L., Young S.K., Abouelleil A.,
Allen N.R., Bi W., Bloom T., Borowsky M.L., Bugalter B.E., Butler J.,
Chang J.L., Chen C.-K., Cook A., Corum B., Cuomo C.A., de Jong P.J.,
DeCaprio D., Dewar K., FitzGerald M., Gilbert J., Gibson R.,
Gnerre S., Goldstein S., Grafham D.V., Grocock R., Hafez N.,
Hagopian D.S., Hart E., Norman C.H., Humphray S., Jaffe D.B.,
Jones M., Kamal M., Khodiyar V.K., LaButti K., Laird G., Lehoczky J.,
Liu X., Lokyitsang T., Loveland J., Lui A., Macdonald P., Major J.E.,
Matthews L., Mauceli E., McCarroll S.A., Mihalev A.H., Mudge J.,
Nguyen C., Nicol R., O'Leary S.B., Osoegawa K., Schwartz D.C.,
Shaw-Smith C., Stankiewicz P., Steward C., Swarbreck D.,
Venkataraman V., Whittaker C.A., Yang X., Zimmer A.R., Bradley A.,
Hubbard T., Birren B.W., Rogers J., Lander E.S., Nusbaum C.;
"DNA sequence of human chromosome 17 and analysis of rearrangement in
the human lineage.";
Nature 440:1045-1049(2006).
[4]
PROTEIN SEQUENCE OF 4-19; 26-35; 309-324 AND 508-525, FUNCTION,
RNA-BINDING, ASSOCIATION WITH A MRNP COMPLEX, TISSUE SPECIFICITY, GENE
NOMENCLATURE, AND SUBCELLULAR LOCATION.
PubMed=9891060; DOI=10.1128/MCB.19.2.1262;
Nielsen J., Christiansen J., Lykke-Andersen J., Johnsen A.H.,
Wewer U.M., Nielsen F.C.;
"A family of insulin-like growth factor II mRNA-binding proteins
represses translation in late development.";
Mol. Cell. Biol. 19:1262-1270(1999).
[5]
PROTEIN SEQUENCE OF 27-35; 66-75 AND 510-524, FUNCTION, IDENTIFICATION
IN A MRNP COMPLEX WITH PABPC1 AND CSDE1, IDENTIFICATION BY MASS
SPECTROMETRY, AND RNA-BINDING.
PubMed=16356927; DOI=10.1093/nar/gki1014;
Patel G.P., Ma S., Bag J.;
"The autoregulatory translational control element of poly(A)-binding
protein mRNA forms a heteromeric ribonucleoprotein complex.";
Nucleic Acids Res. 33:7074-7089(2005).
[6]
PROTEIN SEQUENCE OF 413-429 AND 510-524, SUBCELLULAR LOCATION, AND
RNA-BINDING.
PubMed=9801297; DOI=10.1093/nar/26.22.5036;
Doyle G.A., Betz N.A., Leeds P.F., Fleisig A.J., Prokipcak R.D.,
Ross J.;
"The c-myc coding region determinant-binding protein: a member of a
family of KH domain RNA-binding proteins.";
Nucleic Acids Res. 26:5036-5044(1998).
[7]
FUNCTION, AND RNA-BINDING.
PubMed=8132663;
Prokipcak R.D., Herrick D.J., Ross J.;
"Purification and properties of a protein that binds to the C-terminal
coding region of human c-myc mRNA.";
J. Biol. Chem. 269:9261-9269(1994).
[8]
FUNCTION, SUBCELLULAR LOCATION, AND RNA-BINDING.
PubMed=10875929; DOI=10.1074/jbc.M001156200;
Runge S., Nielsen F.C., Nielsen J., Lykke-Andersen J., Wewer U.M.,
Christiansen J.;
"H19 RNA binds four molecules of insulin-like growth factor II mRNA-
binding protein.";
J. Biol. Chem. 275:29562-29569(2000).
[9]
SUBCELLULAR LOCATION, TISSUE SPECIFICITY, AND MUTAGENESIS OF
213-LYS-GLU-214; 294-LYS-GLU-295 AND 423-LYS-LYS-424.
PubMed=12921532; DOI=10.1042/BJ20030943;
Nielsen J., Adolph S.K., Rajpert-De Meyts E., Lykke-Andersen J.,
Koch G., Christiansen J., Nielsen F.C.;
"Nuclear transit of human zipcode-binding protein IMP1.";
Biochem. J. 376:383-391(2003).
[10]
INTERACTION WITH FMR1, RNA-BINDING, AND SUBCELLULAR LOCATION.
PubMed=15282548; DOI=10.1038/sj.emboj.7600341;
Rackham O., Brown C.M.;
"Visualization of RNA-protein interactions in living cells: FMRP and
IMP1 interact on mRNAs.";
EMBO J. 23:3346-3355(2004).
[11]
SUBUNIT, AND RNA-BINDING.
PubMed=15314207; DOI=10.1093/nar/gkh754;
Nielsen J., Kristensen M.A., Willemoes M., Nielsen F.C.,
Christiansen J.;
"Sequential dimerization of human zipcode-binding protein IMP1 on RNA:
a cooperative mechanism providing RNP stability.";
Nucleic Acids Res. 32:4368-4376(2004).
[12]
TISSUE SPECIFICITY.
PubMed=16049158; DOI=10.1530/rep.1.00664;
Hammer N.A., Hansen T.O., Byskov A.G., Rajpert-De Meyts E.,
Groendahl M.L., Bredkjaer H.E., Wewer U.M., Christiansen J.,
Nielsen F.C.;
"Expression of IGF-II mRNA-binding proteins (IMPs) in gonads and
testicular cancer.";
Reproduction 130:203-212(2005).
[13]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-181, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
Mann M.;
"Global, in vivo, and site-specific phosphorylation dynamics in
signaling networks.";
Cell 127:635-648(2006).
[14]
FUNCTION, RNA-BINDING, AND SUBCELLULAR LOCATION.
PubMed=16541107; DOI=10.1038/sj.emboj.7601039;
Vikesaa J., Hansen T.V., Joenson L., Borup R., Wewer U.M.,
Christiansen J., Nielsen F.C.;
"RNA-binding IMPs promote cell adhesion and invadopodia formation.";
EMBO J. 25:1456-1468(2006).
[15]
HOMODIMERIZATION, INTERACTION WITH PABPC1, AND RNA-BINDING.
PubMed=17212783; DOI=10.1111/j.1742-4658.2006.05556.x;
Patel G.P., Bag J.;
"IMP1 interacts with poly(A)-binding protein (PABP) and the
autoregulatory translational control element of PABP-mRNA through the
KH III-IV domain.";
FEBS J. 273:5678-5690(2006).
[16]
FUNCTION, RNA-BINDING, AND SUBCELLULAR LOCATION.
PubMed=17101699; DOI=10.1083/jcb.200608071;
Stoehr N., Lederer M., Reinke C., Meyer S., Hatzfeld M., Singer R.H.,
Huettelmaier S.;
"ZBP1 regulates mRNA stability during cellular stress.";
J. Cell Biol. 175:527-534(2006).
[17]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-181, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=16964243; DOI=10.1038/nbt1240;
Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.;
"A probability-based approach for high-throughput protein
phosphorylation analysis and site localization.";
Nat. Biotechnol. 24:1285-1292(2006).
[18]
FUNCTION, RNA-BINDING, AND INDUCTION.
PubMed=16778892; DOI=10.1038/nature04839;
Noubissi F.K., Elcheva I., Bhatia N., Shakoori A., Ougolkov A.,
Liu J., Minamoto T., Ross J., Fuchs S.Y., Spiegelman V.S.;
"CRD-BP mediates stabilization of betaTrCP1 and c-myc mRNA in response
to beta-catenin signaling.";
Nature 441:898-901(2006).
[19]
FUNCTION, AND TISSUE SPECIFICITY.
PubMed=17255263; DOI=10.1158/1078-0432.CCR-06-1297;
Kato T., Hayama S., Yamabuki T., Ishikawa N., Miyamoto M., Ito T.,
Tsuchiya E., Kondo S., Nakamura Y., Daigo Y.;
"Increased expression of insulin-like growth factor-II messenger RNA-
binding protein 1 is associated with tumor progression in patients
with lung cancer.";
Clin. Cancer Res. 13:434-442(2007).
[20]
INTERACTION WITH AGO1 AND AGO2.
PubMed=17932509; DOI=10.1038/sj.embor.7401088;
Hoeck J., Weinmann L., Ender C., Ruedel S., Kremmer E., Raabe M.,
Urlaub H., Meister G.;
"Proteomic and functional analysis of Argonaute-containing mRNA-
protein complexes in human cells.";
EMBO Rep. 8:1052-1060(2007).
[21]
FUNCTION.
PubMed=17893325; DOI=10.1128/MCB.00972-07;
Pan F., Huettelmaier S., Singer R.H., Gu W.;
"ZBP2 facilitates binding of ZBP1 to beta-actin mRNA during
transcription.";
Mol. Cell. Biol. 27:8340-8351(2007).
[22]
IDENTIFICATION IN A MRNP GRANULE COMPLEX, INTERACTION WITH DHX9;
ELAVL2; HNRNPA2B1; HNRNPC; HNRNPH1; HNRNPU; IGF2BP2; IGF2BP3; ILF2;
PABPC1 AND YBX1, RNA-BINDING, SUBCELLULAR LOCATION, AND IDENTIFICATION
BY MASS SPECTROMETRY.
PubMed=17289661; DOI=10.1074/mcp.M600346-MCP200;
Joeson L., Vikesaa J., Krogh A., Nielsen L.K., Hansen T., Borup R.,
Johnsen A.H., Christiansen J., Nielsen F.C.;
"Molecular composition of IMP1 ribonucleoprotein granules.";
Mol. Cell. Proteomics 6:798-811(2007).
[23]
FUNCTION, INTERACTION WITH HIV-1 GAG, AND SUBCELLULAR LOCATION.
PubMed=18385235; DOI=10.1128/JVI.00189-08;
Zhou Y., Rong L., Lu J., Pan Q., Liang C.;
"Insulin-like growth factor II mRNA binding protein 1 associates with
Gag protein of human immunodeficiency virus type 1, and its
overexpression affects virus assembly.";
J. Virol. 82:5683-5692(2008).
[24]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18669648; DOI=10.1073/pnas.0805139105;
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
Elledge S.J., Gygi S.P.;
"A quantitative atlas of mitotic phosphorylation.";
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
[25]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19413330; DOI=10.1021/ac9004309;
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
Mohammed S.;
"Lys-N and trypsin cover complementary parts of the phosphoproteome in
a refined SCX-based approach.";
Anal. Chem. 81:4493-4501(2009).
[26]
FUNCTION, AND RNA-BINDING.
PubMed=19647520; DOI=10.1016/j.molcel.2009.06.007;
Elcheva I., Goswami S., Noubissi F.K., Spiegelman V.S.;
"CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-
mediated degradation.";
Mol. Cell 35:240-246(2009).
[27]
FUNCTION, COMPONENT OF THE CRD-MEDIATED MRNA STABILIZATION COMPLEX,
IDENTIFICATION IN A MRNP COMPLEX, SUBCELLULAR LOCATION, AND
IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=19029303; DOI=10.1261/rna.1175909;
Weidensdorfer D., Stoehr N., Baude A., Lederer M., Koehn M.,
Schierhorn A., Buchmeier S., Wahle E., Huettelmaiery S.;
"Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic
RNPs.";
RNA 15:104-115(2009).
[28]
FUNCTION, RNA-BINDING, AND IDENTIFICATION IN A HCV IRES-MEDIATED
TRANSLATION COMPLEX.
PubMed=19541769; DOI=10.1261/rna.1578409;
Weinlich S., Huettelmaier S., Schierhorn A., Behrens S.-E.,
Ostareck-Lederer A., Ostareck D.H.;
"IGF2BP1 enhances HCV IRES-mediated translation initiation via the
3'UTR.";
RNA 15:1528-1542(2009).
[29]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-181, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=20068231; DOI=10.1126/scisignal.2000475;
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
Mann M.;
"Quantitative phosphoproteomics reveals widespread full
phosphorylation site occupancy during mitosis.";
Sci. Signal. 3:RA3-RA3(2010).
[30]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21269460; DOI=10.1186/1752-0509-5-17;
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
"Initial characterization of the human central proteome.";
BMC Syst. Biol. 5:17-17(2011).
[31]
FUNCTION IN CELL MIGRATION.
PubMed=22279049; DOI=10.1101/gad.177642.111;
Stohr N., Kohn M., Lederer M., Glass M., Reinke C., Singer R.H.,
Huttelmaier S.;
"IGF2BP1 promotes cell migration by regulating MK5 and PTEN
signaling.";
Genes Dev. 26:176-189(2012).
[32]
INTERACTION WITH ELAVL1; DHX9 AND HNRNPU.
PubMed=23640942; DOI=10.1515/hsz-2013-0111;
Wachter K., Kohn M., Stohr N., Huttelmaier S.;
"Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-
binding proteins) is modulated by distinct RNA-binding domains.";
Biol. Chem. 394:1077-1090(2013).
[33]
REVIEW.
PubMed=23069990; DOI=10.1007/s00018-012-1186-z;
Bell J.L., Wachter K., Muhleck B., Pazaitis N., Kohn M., Lederer M.,
Huttelmaier S.;
"Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-
transcriptional drivers of cancer progression?";
Cell. Mol. Life Sci. 70:2657-2675(2013).
[34]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-12; SER-73; SER-181 AND
THR-528, AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE
ANALYSIS].
TISSUE=Cervix carcinoma, and Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[35]
X-RAY CRYSTALLOGRAPHY (2.75 ANGSTROMS) OF 404-566, FUNCTION,
RNA-BINDING, AND DOMAIN.
PubMed=20080952; DOI=10.1101/gad.1862910;
Chao J.A., Patskovsky Y., Patel V., Levy M., Almo S.C., Singer R.H.;
"ZBP1 recognition of beta-actin zipcode induces RNA looping.";
Genes Dev. 24:148-158(2010).
-!- FUNCTION: RNA-binding factor that recruits target transcripts to
cytoplasmic protein-RNA complexes (mRNPs). This transcript
'caging' into mRNPs allows mRNA transport and transient storage.
It also modulates the rate and location at which target
transcripts encounter the translational apparatus and shields them
from endonuclease attacks or microRNA-mediated degradation. Plays
a direct role in the transport and translation of transcripts
required for axonal regeneration in adult sensory neurons (By
similarity). Regulates localized beta-actin/ACTB mRNA translation,
a crucial process for cell polarity, cell migration and neurite
outgrowth. Co-transcriptionally associates with the ACTB mRNA in
the nucleus. This binding involves a conserved 54-nucleotide
element in the ACTB mRNA 3'-UTR, known as the 'zipcode'. The RNP
thus formed is exported to the cytoplasm, binds to a motor protein
and is transported along the cytoskeleton to the cell periphery.
During transport, prevents ACTB mRNA from being translated into
protein. When the RNP complex reaches its destination near the
plasma membrane, IGF2BP1 is phosphorylated. This releases the
mRNA, allowing ribosomal 40S and 60S subunits to assemble and
initiate ACTB protein synthesis. Monomeric ACTB then assembles
into the subcortical actin cytoskeleton (By similarity). During
neuronal development, key regulator of neurite outgrowth, growth
cone guidance and neuronal cell migration, presumably through the
spatiotemporal fine tuning of protein synthesis, such as that of
ACTB (By similarity). May regulate mRNA transport to activated
synapses (By similarity). Binds to and stabilizes ABCB1/MDR-1 mRNA
(By similarity). During interstinal wound repair, interacts with
and stabilizes PTGS2 transcript. PTGS2 mRNA stabilization may be
crucial for colonic mucosal wound healing (By similarity). Binds
to the 3'-UTR of IGF2 mRNA by a mechanism of cooperative and
sequential dimerization and regulates IGF2 mRNA subcellular
localization and translation. Binds to MYC mRNA, in the coding
region instability determinant (CRD) of the open reading frame
(ORF), hence prevents MYC cleavage by endonucleases and possibly
microRNA targeting to MYC-CRD. Binds to the 3'-UTR of CD44 mRNA
and stabilizes it, hence promotes cell adhesion and invadopodia
formation in cancer cells. Binds to the oncofetal H19 transcript
and to the neuron-specific TAU mRNA and regulates their
localizations. Binds to and stabilizes BTRC/FBW1A mRNA. Binds to
the adenine-rich autoregulatory sequence (ARS) located in PABPC1
mRNA and represses its translation. PABPC1 mRNA-binding is
stimulated by PABPC1 protein. Prevents BTRC/FBW1A mRNA degradation
by disrupting microRNA-dependent interaction with AGO2. Promotes
the directed movement of tumor-derived cells by fine-tuning
intracellular signaling networks. Binds to MAPK4 3'-UTR and
inhibits its translation. Interacts with PTEN transcript open
reading frame (ORF) and prevents mRNA decay. This combined action
on MAPK4 (down-regulation) and PTEN (up-regulation) antagonizes
HSPB1 phosphorylation, consequently it prevents G-actin
sequestration by phosphorylated HSPB1, allowing F-actin
polymerization. Hence enhances the velocity of cell migration and
stimulates directed cell migration by PTEN-modulated polarization.
Interacts with Hepatitis C virus (HCV) 5'-UTR and 3'-UTR and
specifically enhances translation at the HCV IRES, but not 5'-cap-
dependent translation, possibly by recruiting eIF3. Interacts with
HIV-1 GAG protein and blocks the formation of infectious HIV-1
particles. Reduces HIV-1 assembly by inhibiting viral RNA
packaging, as well as assembly and processing of GAG protein on
cellular membranes. During cellular stress, such as oxidative
stress or heat shock, stabilizes target mRNAs that are recruited
to stress granules, including CD44, IGF2, MAPK4, MYC, PTEN,
RAPGEF2 and RPS6KA5 transcripts. {ECO:0000250,
ECO:0000269|PubMed:10875929, ECO:0000269|PubMed:16356927,
ECO:0000269|PubMed:16541107, ECO:0000269|PubMed:16778892,
ECO:0000269|PubMed:17101699, ECO:0000269|PubMed:17255263,
ECO:0000269|PubMed:17893325, ECO:0000269|PubMed:18385235,
ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19541769,
ECO:0000269|PubMed:19647520, ECO:0000269|PubMed:20080952,
ECO:0000269|PubMed:22279049, ECO:0000269|PubMed:8132663,
ECO:0000269|PubMed:9891060}.
-!- SUBUNIT: Can form homodimers and heterodimers with IGF2BP1 and
IGF2BP3. Component of the coding region determinant (CRD)-mediated
complex, composed of DHX9, HNRNPU, IGF2BP1, SYNCRIP and YBX1.
During HCV infection, identified in a HCV IRES-mediated
translation complex, at least composed of EIF3C, IGF2BP1, RPS3 and
HCV RNA-replicon. Interacts (via the KH domains) with HIV-1 GAG
(via the second zinc finger motif of NC). Associates (via the RRM
domains and KH domains) with HIV-1 particles. Identified in a mRNP
complex, composed of at least DHX9, DDX3X, ELAVL1, HNRNPU,
IGF2BP1, ILF3, PABPC1, PCBP2, PTBP2, STAU1, STAU2, SYNCRIP and
YBX1. Identified in a IGF2BP1-dependent mRNP granule complex
containing untranslated mRNAs. Interacts with DHX9, ELAVL2,
HNRNPA2B1, HNRNPC, HNRNPH1, HNRNPU, IGF2BP2, ILF2, and YBX1.
Interacts with FMR1. Component of a multisubunit autoregulatory
RNP complex (ARC), at least composed of IGF2BP1, PABPC1 and
CSDE1/UNR. Directly interacts with PABPC1. Component of a TAU mRNP
complex, at least composed of IGF2BP1, ELAVL4 and G3BP. Interacts
with ELAVL4 in an RNA-dependent manner. Associates with
microtubules and polysomes. Interacts with AGO1 and AGO2.
{ECO:0000269|PubMed:15282548, ECO:0000269|PubMed:15314207,
ECO:0000269|PubMed:16356927, ECO:0000269|PubMed:17212783,
ECO:0000269|PubMed:17289661, ECO:0000269|PubMed:17932509,
ECO:0000269|PubMed:18385235, ECO:0000269|PubMed:19029303,
ECO:0000269|PubMed:19541769, ECO:0000269|PubMed:23640942}.
-!- INTERACTION:
Q8VDS3:Cbx7 (xeno); NbExp=2; IntAct=EBI-1053892, EBI-1216533;
O95793:STAU1; NbExp=6; IntAct=EBI-1053892, EBI-358174;
-!- SUBCELLULAR LOCATION: Nucleus. Cytoplasm. Cytoplasm, perinuclear
region. Cell projection, lamellipodium. Cell projection, dendrite
{ECO:0000250}. Cell projection, dendritic spine {ECO:0000250}.
Cell projection, growth cone. Cell projection, filopodium
{ECO:0000250}. Cell projection, axon {ECO:0000250}. Note=In the
nucleus, located in discrete foci, coinciding with the sites of
ACTB transcription (By similarity). In the cytoplasm, localizes in
cytoplasmic mRNP granules. Colocalizes with microtubules in growth
cone filopodia and along neurites in neuronal cells (By
similarity). Cytoplasmic colocalization with ACTB mRNA is
partially lost at the cell periphery, suggesting release of the
transcript. In neuronal processes, exhibits fast retrograde and
anterograde movements, when associated with ACTB mRNA; this
motility is lost when the association is inhibited (By
similarity). In hippocampal neurons, predominantly located within
dendrites, particularly at dendritic branching points in young
cells, compared to axons (By similarity). In axons, predominantly
found in axonal branches and their growth cones (By similarity).
In motile cells, such as migrating fibroblasts, localizes to
leading edges where it colocalizes with microtubules and
microfilaments and to retracting tails (By similarity). Dendritic
levels are regulated by neuronal activity and glutaminergic
signals: they are increased by KCl-induced depolarization, which
induces rapid efflux from the cell body into dendrites, and
decreased by the NMDA receptor agonist (By similarity). In motile
cells, transported towards the leading edge into the cortical
region of the lamellipodia where it is connected to microfilaments
(By similarity). In response to cellular stress, such as oxidative
stress or heat shock, recruited to stress granules, but not to
processing bodies. {ECO:0000250}.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing; Named isoforms=2;
Name=1;
IsoId=Q9NZI8-1; Sequence=Displayed;
Name=2;
IsoId=Q9NZI8-2; Sequence=VSP_045366;
-!- TISSUE SPECIFICITY: Mainly expressed in the embryo, including in
fetal liver, fetal lung, fetal kidney, fetal thymus (at protein
level). Also expressed follicles of ovary, as well as in gonocytes
of testis, spermatogonia, semen, oocytes and placenta (at protein
level). Expressed in various cancers, including testis and lung
cancers (at protein level), as well as kidney, prostate and
trachea cancers. {ECO:0000269|PubMed:12921532,
ECO:0000269|PubMed:16049158, ECO:0000269|PubMed:17255263,
ECO:0000269|PubMed:9891060}.
-!- INDUCTION: May be up-regulated in response to CTNNB1/beta-catenin
activation. {ECO:0000269|PubMed:16778892}.
-!- DOMAIN: Domain KH3 and KH4 are the major RNA-binding modules,
although KH1 and KH2 may also contribute. KH1 and KH2, and
possibly KH3 and KH4, promote the formation of higher ordered
protein-RNA complexes, which may be essential for IGF2BP1
cytoplasmic retention. KH domains are required for RNA-dependent
homo- and heterooligomerization and for localization to stress
granules. KH3 and KH4 mediate association with the cytoskeleton.
Two nuclear export signals (NES) have been identified in KH2 and
KH4 domains, respectively. Only KH2 NES is XPO1-dependent. Both
NES may be redundant, since individual in vitro mutations do not
affect subcellular location of the full-length protein. The 4 KH
domains are important to suppress HIV-1 infectivity.
{ECO:0000269|PubMed:20080952}.
-!- PTM: Phosphorylated. Phosphorylation may impair association with
ACTB mRNA and hence abolishes translational repression (By
similarity). {ECO:0000250}.
-!- SIMILARITY: Belongs to the RRM IMP/VICKZ family. {ECO:0000305}.
-!- WEB RESOURCE: Name=Atlas of Genetics and Cytogenetics in Oncology
and Haematology;
URL="http://atlasgeneticsoncology.org/Genes/IGF2BP1ID40969ch17q21.html";
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; AF198254; AAF37203.1; -; mRNA.
EMBL; DQ227344; ABB46294.1; -; mRNA.
EMBL; AC091133; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; AC105030; -; NOT_ANNOTATED_CDS; Genomic_DNA.
CCDS; CCDS11543.1; -. [Q9NZI8-1]
CCDS; CCDS54138.1; -. [Q9NZI8-2]
RefSeq; NP_001153895.1; NM_001160423.1. [Q9NZI8-2]
RefSeq; NP_006537.3; NM_006546.3. [Q9NZI8-1]
UniGene; Hs.144936; -.
PDB; 3KRM; X-ray; 2.75 A; A/B/C=404-566.
PDBsum; 3KRM; -.
ProteinModelPortal; Q9NZI8; -.
SMR; Q9NZI8; -.
BioGrid; 115886; 80.
CORUM; Q9NZI8; -.
DIP; DIP-38139N; -.
IntAct; Q9NZI8; 67.
MINT; MINT-4998820; -.
STRING; 9606.ENSP00000290341; -.
iPTMnet; Q9NZI8; -.
PhosphoSitePlus; Q9NZI8; -.
SwissPalm; Q9NZI8; -.
BioMuta; IGF2BP1; -.
DMDM; 296434536; -.
EPD; Q9NZI8; -.
MaxQB; Q9NZI8; -.
PaxDb; Q9NZI8; -.
PeptideAtlas; Q9NZI8; -.
PRIDE; Q9NZI8; -.
TopDownProteomics; Q9NZI8-1; -. [Q9NZI8-1]
DNASU; 10642; -.
Ensembl; ENST00000290341; ENSP00000290341; ENSG00000159217. [Q9NZI8-1]
Ensembl; ENST00000431824; ENSP00000389135; ENSG00000159217. [Q9NZI8-2]
GeneID; 10642; -.
KEGG; hsa:10642; -.
UCSC; uc002iom.4; human. [Q9NZI8-1]
CTD; 10642; -.
DisGeNET; 10642; -.
EuPathDB; HostDB:ENSG00000159217.9; -.
GeneCards; IGF2BP1; -.
H-InvDB; HIX0013955; -.
HGNC; HGNC:28866; IGF2BP1.
HPA; HPA021367; -.
HPA; HPA062273; -.
MIM; 608288; gene.
neXtProt; NX_Q9NZI8; -.
OpenTargets; ENSG00000159217; -.
PharmGKB; PA143485501; -.
eggNOG; KOG2193; Eukaryota.
eggNOG; ENOG410ZKB4; LUCA.
GeneTree; ENSGT00530000063171; -.
HOGENOM; HOG000000675; -.
HOVERGEN; HBG052725; -.
InParanoid; Q9NZI8; -.
KO; K17391; -.
OMA; EKPISIH; -.
OrthoDB; EOG091G17T1; -.
PhylomeDB; Q9NZI8; -.
TreeFam; TF320229; -.
Reactome; R-HSA-428359; Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA.
Reactome; R-HSA-5687128; MAPK6/MAPK4 signaling.
ChiTaRS; IGF2BP1; human.
EvolutionaryTrace; Q9NZI8; -.
GeneWiki; IGF2BP1; -.
GenomeRNAi; 10642; -.
PRO; PR:Q9NZI8; -.
Proteomes; UP000005640; Chromosome 17.
Bgee; ENSG00000159217; -.
CleanEx; HS_IGF2BP1; -.
CleanEx; HS_ZBP1; -.
Genevisible; Q9NZI8; HS.
GO; GO:0030424; C:axon; IEA:UniProtKB-SubCell.
GO; GO:0070937; C:CRD-mediated mRNA stability complex; IDA:UniProtKB.
GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
GO; GO:0010494; C:cytoplasmic stress granule; IDA:UniProtKB.
GO; GO:0005829; C:cytosol; IDA:HPA.
GO; GO:0043197; C:dendritic spine; IEA:UniProtKB-SubCell.
GO; GO:0030175; C:filopodium; IEA:UniProtKB-SubCell.
GO; GO:0030426; C:growth cone; IEA:UniProtKB-SubCell.
GO; GO:0030529; C:intracellular ribonucleoprotein complex; IDA:UniProtKB.
GO; GO:0030027; C:lamellipodium; IEA:UniProtKB-SubCell.
GO; GO:0005654; C:nucleoplasm; IDA:HPA.
GO; GO:0048471; C:perinuclear region of cytoplasm; IEA:UniProtKB-SubCell.
GO; GO:0003730; F:mRNA 3'-UTR binding; IDA:UniProtKB.
GO; GO:0048027; F:mRNA 5'-UTR binding; IDA:BHF-UCL.
GO; GO:0003729; F:mRNA binding; IDA:UniProtKB.
GO; GO:0003723; F:RNA binding; IDA:UniProtKB.
GO; GO:0045182; F:translation regulator activity; IDA:BHF-UCL.
GO; GO:0070934; P:CRD-mediated mRNA stabilization; IDA:UniProtKB.
GO; GO:0051028; P:mRNA transport; IEA:UniProtKB-KW.
GO; GO:0017148; P:negative regulation of translation; IDA:BHF-UCL.
GO; GO:0097150; P:neuronal stem cell population maintenance; IEA:Ensembl.
GO; GO:0022013; P:pallium cell proliferation in forebrain; IEA:Ensembl.
GO; GO:0042035; P:regulation of cytokine biosynthetic process; IC:BHF-UCL.
GO; GO:0043488; P:regulation of mRNA stability; TAS:Reactome.
GO; GO:0010610; P:regulation of mRNA stability involved in response to stress; IMP:UniProtKB.
CDD; cd12625; RRM1_IGF2BP1; 1.
CDD; cd12628; RRM2_IGF2BP1; 1.
Gene3D; 3.30.1370.10; -; 4.
InterPro; IPR034837; IGF2BP1_RRM1.
InterPro; IPR034842; IGF2BP1_RRM2.
InterPro; IPR004087; KH_dom.
InterPro; IPR004088; KH_dom_type_1.
InterPro; IPR036612; KH_dom_type_1_sf.
InterPro; IPR035979; RBD_domain_sf.
InterPro; IPR000504; RRM_dom.
Pfam; PF00013; KH_1; 4.
Pfam; PF00076; RRM_1; 2.
SMART; SM00322; KH; 4.
SMART; SM00360; RRM; 2.
SUPFAM; SSF54791; SSF54791; 4.
SUPFAM; SSF54928; SSF54928; 1.
PROSITE; PS50084; KH_TYPE_1; 4.
PROSITE; PS50102; RRM; 2.
1: Evidence at protein level;
3D-structure; Alternative splicing; Cell projection;
Complete proteome; Cytoplasm; Direct protein sequencing;
mRNA transport; Nucleus; Phosphoprotein; Reference proteome; Repeat;
RNA-binding; Translation regulation; Transport.
CHAIN 1 577 Insulin-like growth factor 2 mRNA-binding
protein 1.
/FTId=PRO_0000282533.
DOMAIN 2 75 RRM 1. {ECO:0000255|PROSITE-
ProRule:PRU00176}.
DOMAIN 81 156 RRM 2. {ECO:0000255|PROSITE-
ProRule:PRU00176}.
DOMAIN 195 260 KH 1. {ECO:0000255|PROSITE-
ProRule:PRU00117}.
DOMAIN 276 343 KH 2. {ECO:0000255|PROSITE-
ProRule:PRU00117}.
DOMAIN 405 470 KH 3. {ECO:0000255|PROSITE-
ProRule:PRU00117}.
DOMAIN 487 553 KH 4. {ECO:0000255|PROSITE-
ProRule:PRU00117}.
REGION 187 570 Necessary for interaction with ELAVL4 and
binding to TAU mRNA. {ECO:0000250}.
REGION 310 324 Sufficient for nuclear export.
REGION 485 495 Sufficient for nuclear export.
MOD_RES 12 12 Phosphoserine.
{ECO:0000244|PubMed:23186163}.
MOD_RES 73 73 Phosphoserine.
{ECO:0000244|PubMed:23186163}.
MOD_RES 181 181 Phosphoserine.
{ECO:0000244|PubMed:16964243,
ECO:0000244|PubMed:17081983,
ECO:0000244|PubMed:20068231,
ECO:0000244|PubMed:23186163}.
MOD_RES 528 528 Phosphothreonine.
{ECO:0000244|PubMed:23186163}.
VAR_SEQ 135 273 Missing (in isoform 2).
{ECO:0000303|Ref.2}.
/FTId=VSP_045366.
MUTAGEN 213 214 KE->EL: 50-fold decrease in RNA-binding
affinity, decreased location in
cytoplasmic RNP, increased nuclear
location; when associated with 294-E-L-
295 and 423-E-L-424.
{ECO:0000269|PubMed:12921532}.
MUTAGEN 294 295 KE->EL: 50-fold decrease in RNA-binding
affinity, decreased location in
cytoplasmic RNP, increased nuclear
location; when associated with 213-E-L-
214 and 423-E-L-424.
{ECO:0000269|PubMed:12921532}.
MUTAGEN 423 424 KK->EL: 50-fold decrease in RNA-binding
affinity, decreased location in
cytoplasmic RNP, increased nuclear
location; when associated with 213-E-L-
214 and 294-E-L-295.
{ECO:0000269|PubMed:12921532}.
CONFLICT 10 10 Missing (in Ref. 4; AA sequence).
{ECO:0000305}.
CONFLICT 281 281 I -> T (in Ref. 1; AAF37203).
{ECO:0000305}.
CONFLICT 320 320 Missing (in Ref. 4; AA sequence).
{ECO:0000305}.
CONFLICT 365 365 I -> T (in Ref. 1; AAF37203).
{ECO:0000305}.
STRAND 406 413 {ECO:0000244|PDB:3KRM}.
HELIX 414 416 {ECO:0000244|PDB:3KRM}.
HELIX 417 421 {ECO:0000244|PDB:3KRM}.
HELIX 423 425 {ECO:0000244|PDB:3KRM}.
HELIX 426 435 {ECO:0000244|PDB:3KRM}.
STRAND 438 441 {ECO:0000244|PDB:3KRM}.
STRAND 450 458 {ECO:0000244|PDB:3KRM}.
HELIX 460 476 {ECO:0000244|PDB:3KRM}.
STRAND 488 495 {ECO:0000244|PDB:3KRM}.
TURN 496 498 {ECO:0000244|PDB:3KRM}.
HELIX 499 503 {ECO:0000244|PDB:3KRM}.
HELIX 505 507 {ECO:0000244|PDB:3KRM}.
HELIX 508 517 {ECO:0000244|PDB:3KRM}.
STRAND 520 522 {ECO:0000244|PDB:3KRM}.
STRAND 533 541 {ECO:0000244|PDB:3KRM}.
HELIX 543 560 {ECO:0000244|PDB:3KRM}.
SEQUENCE 577 AA; 63481 MW; 1D036AE5388D05FA CRC64;
MNKLYIGNLN ESVTPADLEK VFAEHKISYS GQFLVKSGYA FVDCPDEHWA MKAIETFSGK
VELQGKRLEI EHSVPKKQRS RKIQIRNIPP QLRWEVLDSL LAQYGTVENC EQVNTESETA
VVNVTYSNRE QTRQAIMKLN GHQLENHALK VSYIPDEQIA QGPENGRRGG FGSRGQPRQG
SPVAAGAPAK QQQVDIPLRL LVPTQYVGAI IGKEGATIRN ITKQTQSKID VHRKENAGAA
EKAISVHSTP EGCSSACKMI LEIMHKEAKD TKTADEVPLK ILAHNNFVGR LIGKEGRNLK
KVEQDTETKI TISSLQDLTL YNPERTITVK GAIENCCRAE QEIMKKVREA YENDVAAMSL
QSHLIPGLNL AAVGLFPASS SAVPPPPSSV TGAAPYSSFM QAPEQEMVQV FIPAQAVGAI
IGKKGQHIKQ LSRFASASIK IAPPETPDSK VRMVIITGPP EAQFKAQGRI YGKLKEENFF
GPKEEVKLET HIRVPASAAG RVIGKGGKTV NELQNLTAAE VVVPRDQTPD ENDQVIVKII
GHFYASQMAQ RKIRDILAQV KQQHQKGQSN QAQARRK


Related products :

Catalog number Product name Quantity
18-003-44208 Insulin-like growth factor 2 mRNA-binding protein 1 - IGF2 mRNA-binding protein 1; IGF-II mRNA-binding protein 1; IMP-1; Coding region determinant-binding protein; CRD-BP; VICKZ family member 1 Polycl 0.05 mg Aff Pur
29-384 IGF2BP1 is a member of the IGF-II mRNA-binding protein (IMP) family. The protein contains four K homology domains and two RNA recognition motifs. It functions by binding to the 5' UTR of the insulin-l 0.05 mg
27-158 IGF2BP1 is a member of the IGF-II mRNA-binding protein (IMP) family. The protein contains four K homology domains and two RNA recognition motifs. It functions by binding to the 5' UTR of the insulin-l 0.05 mg
EIAAB29756 Mouse,Mus musculus,PAI1 RNA-binding protein 1,Pairbp1,PAI-RBP1,Plasminogen activator inhibitor 1 RNA-binding protein,Serbp1,SERPINE1 mRNA-binding protein 1
EIAAB29757 CGI-55,Homo sapiens,Human,PAI1 RNA-binding protein 1,PAIRBP1,PAI-RBP1,Plasminogen activator inhibitor 1 RNA-binding protein,SERBP1,SERPINE1 mRNA-binding protein 1
29-520 CPEB2 is highly similar to cytoplasmic polyadenylation element binding protein (CPEB), an mRNA-binding protein that regulates cytoplasmic polyadenylation of mRNA as a trans factor in oogenesis and spe 0.05 mg
29-519 CPEB2 is highly similar to cytoplasmic polyadenylation element binding protein (CPEB), an mRNA-binding protein that regulates cytoplasmic polyadenylation of mRNA as a trans factor in oogenesis and spe 0.05 mg
29-521 CPEB2 is highly similar to cytoplasmic polyadenylation element binding protein (CPEB), an mRNA-binding protein that regulates cytoplasmic polyadenylation of mRNA as a trans factor in oogenesis and spe 0.1 mg
29-424 PUM2 is a sequence-specific RNA-binding protein that regulates translation and mRNA stability by binding the 3'-UTR of mRNA targets. Its interactions and tissue specificity suggest that it may be requ 0.1 mg
EIAAB29758 PAI1 RNA-binding protein 1,Pairbp1,PAI-RBP1,Plasminogen activator inhibitor 1 RNA-binding protein,Rat,Rattus norvegicus,RDA288,Rda288,Serbp1,SERPINE1 mRNA-binding protein 1
bs-1312P Peptides: IGF-IIBP3(Insulin like growth factor 2 mRNA binding protein 3) Protein Length:12-25 amino acids. 200ug lyophilized
EIAAB26845 Amyloid beta A4 protein-binding family A member 2-binding protein,APBA2BP,Bos taurus,Bovine,NECAB3,N-terminal EF-hand calcium-binding protein 3,X11L-binding protein 51,XB51
EIAAB26846 Amyloid beta A4 protein-binding family A member 2-binding protein,Apba2bp,Mouse,Mus musculus,mXB51,Necab3,N-terminal EF-hand calcium-binding protein 3,X11L-binding protein 51,Xb51
CE98 Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 IGF2BP2 500
CE98 Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 IGF2BP2 lmg
EH3257 Insulin Like Growth Factor 2 mRNA Binding Protein 3 Elisa Kit 96T
IGF2R IGF2BP2 Gene insulin-like growth factor 2 mRNA binding protein 2
CF61 Human Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 IGF2BP2 50
C031 Human Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 IGF2BP2 l0
IGFALS IGF2BP3 Gene insulin-like growth factor 2 mRNA binding protein 3
CN128_HUMAN Human ELISA Kit FOR Insulin-like growth factor 2 mRNA-binding protein 1 96T
IF2B3_MOUSE Mouse ELISA Kit FOR Insulin-like growth factor 2 mRNA-binding protein 3 96T
E80617Hu ELISA Kit for Insulin Like Growth Factor 2 mRNA Binding Protein 3 (IGF2BP3) 96T/Kit
E0131h Human ELISA Kit FOR Insulin-like growth factor 2 mRNA-binding protein 1 96T
E0674h Human ELISA Kit FOR Insulin-like growth factor 2 mRNA-binding protein 2 96T


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur