Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

NAD-dependent protein deacetylase sirtuin-1 (EC 3.5.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (SIR2alpha) (Sir2) (mSIR2a) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)]

 SIR1_MOUSE              Reviewed;         737 AA.
Q923E4; Q9QXG8;
31-OCT-2003, integrated into UniProtKB/Swiss-Prot.
31-OCT-2003, sequence version 2.
07-NOV-2018, entry version 170.
RecName: Full=NAD-dependent protein deacetylase sirtuin-1;
EC=3.5.1.- {ECO:0000269|PubMed:20167603, ECO:0000269|PubMed:28883095};
AltName: Full=Regulatory protein SIR2 homolog 1;
AltName: Full=SIR2-like protein 1;
AltName: Full=SIR2alpha;
Short=Sir2;
Short=mSIR2a;
Contains:
RecName: Full=SirtT1 75 kDa fragment;
Short=75SirT1;
Name=Sirt1; Synonyms=Sir2l1;
Mus musculus (Mouse).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;
Muroidea; Muridae; Murinae; Mus; Mus.
NCBI_TaxID=10090;
[1]
NUCLEOTIDE SEQUENCE [MRNA].
STRAIN=Swiss Webster / NIH;
PubMed=10693811; DOI=10.1038/35001622;
Imai S., Armstrong C.M., Kaeberlein M., Guarente L.;
"Transcriptional silencing and longevity protein Sir2 is an NAD-
dependent histone deacetylase.";
Nature 403:795-800(2000).
[2]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 545-737.
TISSUE=Mammary tumor;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[3]
FUNCTION, INTERACTION WITH TP53, ACTIVITY REGULATION, ACTIVE SITE, AND
MUTAGENESIS OF HIS-355.
PubMed=11672522; DOI=10.1016/S0092-8674(01)00524-4;
Luo J., Nikolaev A.Y., Imai S., Chen D., Su F., Shiloh A.,
Guarente L., Gu W.;
"Negative control of p53 by Sir2alpha promotes cell survival under
stress.";
Cell 107:137-148(2001).
[4]
FUNCTION IN DEACETYLATION OF TAF1B.
PubMed=11250901; DOI=10.1093/emboj/20.6.1353;
Muth V., Nadaud S., Grummt I., Voit R.;
"Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA
polymerase I transcription.";
EMBO J. 20:1353-1362(2001).
[5]
FUNCTION.
PubMed=12651913;
McBurney M.W., Yang X., Jardine K., Bieman M., Th'ng J., Lemieux M.;
"The absence of SIR2alpha protein has no effect on global gene
silencing in mouse embryonic stem cells.";
Mol. Cancer Res. 1:402-409(2003).
[6]
TISSUE SPECIFICITY, AND DISRUPTION PHENOTYPE.
PubMed=12482959; DOI=10.1128/MCB.23.1.38-54.2003;
McBurney M.W., Yang X., Jardine K., Hixon M., Boekelheide K.,
Webb J.R., Lansdorp P.M., Lemieux M.;
"The mammalian SIR2alpha protein has a role in embryogenesis and
gametogenesis.";
Mol. Cell. Biol. 23:38-54(2003).
[7]
FUNCTION, INTERACTION WITH MYOD1 AND PCAF, MUTAGENESIS OF HIS-355, AND
ACTIVE SITE.
PubMed=12887892; DOI=10.1016/S1097-2765(03)00226-0;
Fulco M., Schiltz R.L., Iezzi S., King M.T., Zhao P., Kashiwaya Y.,
Hoffman E., Veech R.L., Sartorelli V.;
"Sir2 regulates skeletal muscle differentiation as a potential sensor
of the redox state.";
Mol. Cell 12:51-62(2003).
[8]
FUNCTION.
PubMed=12960381; DOI=10.1073/pnas.1934713100;
Cheng H.-L., Mostoslavsky R., Saito S., Manis J.P., Gu Y., Patel P.,
Bronson R., Appella E., Alt F.W., Chua K.F.;
"Developmental defects and p53 hyperacetylation in Sir2 homolog
(SIRT1)-deficient mice.";
Proc. Natl. Acad. Sci. U.S.A. 100:10794-10799(2003).
[9]
FUNCTION IN ADIPODIGENESIS, FUNCTION IN FAT MOBILIZATION, AND
INTERACTION WITH PPARG AND NCOR1.
PubMed=15175761; DOI=10.1038/nature02583;
Picard F., Kurtev M., Chung N., Topark-Ngarm A., Senawong T.,
Machado De Oliveira R., Leid M., McBurney M.W., Guarente L.;
"Sirt1 promotes fat mobilization in white adipocytes by repressing
PPAR-gamma.";
Nature 429:771-776(2004).
[10]
FUNCTION IN DEACETYLATION OF ACSS2, AND FUNCTION IN REGULATION OF
ACCS2.
PubMed=16790548; DOI=10.1073/pnas.0604392103;
Hallows W.C., Lee S., Denu J.M.;
"Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases.";
Proc. Natl. Acad. Sci. U.S.A. 103:10230-10235(2006).
[11]
FUNCTION IN DEACETYLATION OF NR1H3 AND NR1H2, AND FUNCTION IN
REGULATION OF NR1H3.
PubMed=17936707; DOI=10.1016/j.molcel.2007.07.032;
Li X., Zhang S., Blander G., Tse J.G., Krieger M., Guarente L.;
"SIRT1 deacetylates and positively regulates the nuclear receptor
LXR.";
Mol. Cell 28:91-106(2007).
[12]
FUNCTION IN APOPTOSIS.
PubMed=18371449; DOI=10.1016/j.stem.2008.01.002;
Han M.K., Song E.K., Guo Y., Ou X., Mantel C., Broxmeyer H.E.;
"SIRT1 regulates apoptosis and Nanog expression in mouse embryonic
stem cells by controlling p53 subcellular localization.";
Cell Stem Cell 2:241-251(2008).
[13]
INTERACTION WITH FOXO1, FUNCTION IN DEACETYLATION OF FOXO1,
MUTAGENESIS OF HIS-355, AND ACTIVE SITE.
PubMed=15220471; DOI=10.1073/pnas.0400593101;
Daitoku H., Hatta M., Matsuzaki H., Aratani S., Ohshima T.,
Miyagishi M., Nakajima T., Fukamizu A.;
"Silent information regulator 2 potentiates Foxo1-mediated
transcription through its deacetylase activity.";
Proc. Natl. Acad. Sci. U.S.A. 101:10042-10047(2004).
[14]
INTERACTION WITH HIC1.
PubMed=16269335; DOI=10.1016/j.cell.2005.08.011;
Chen W.Y., Wang D.H., Yen R.C., Luo J., Gu W., Baylin S.B.;
"Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-
dependent DNA-damage responses.";
Cell 123:437-448(2005).
[15]
FUNCTION IN REGULATION OF INSULIN SECRETION.
PubMed=16098828; DOI=10.1016/j.cmet.2005.07.001;
Moynihan K.A., Grimm A.A., Plueger M.M., Bernal-Mizrachi E., Ford E.,
Cras-Meneur C., Permutt M.A., Imai S.;
"Increased dosage of mammalian Sir2 in pancreatic beta cells enhances
glucose-stimulated insulin secretion in mice.";
Cell Metab. 2:105-117(2005).
[16]
FUNCTION.
PubMed=15632193; DOI=10.1074/jbc.M408748200;
Bouras T., Fu M., Sauve A.A., Wang F., Quong A.A., Perkins N.D.,
Hay R.T., Gu W., Pestell R.G.;
"SIRT1 deacetylation and repression of p300 involves lysine residues
1020/1024 within the cell cycle regulatory domain 1.";
J. Biol. Chem. 280:10264-10276(2005).
[17]
FUNCTION IN REGULATION OF FOXO1.
PubMed=15788402; DOI=10.1074/jbc.M412357200;
Frescas D., Valenti L., Accili D.;
"Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-
dependent deacetylation promotes expression of glucogenetic genes.";
J. Biol. Chem. 280:20589-20595(2005).
[18]
FUNCTION IN DEACETYLATION OF PPARGC1A, FUNCTION IN REGULATION OF
GLUCOSE HOMEOSTASIS, AND INDUCTION.
PubMed=15744310; DOI=10.1038/nature03354;
Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M.,
Puigserver P.;
"Nutrient control of glucose homeostasis through a complex of PGC-
1alpha and SIRT1.";
Nature 434:113-118(2005).
[19]
INDUCTION.
PubMed=16224023; DOI=10.1126/science.1117728;
Nisoli E., Tonello C., Cardile A., Cozzi V., Bracale R., Tedesco L.,
Falcone S., Valerio A., Cantoni O., Clementi E., Moncada S.,
Carruba M.O.;
"Calorie restriction promotes mitochondrial biogenesis by inducing the
expression of eNOS.";
Science 310:314-317(2005).
[20]
FUNCTION, INTERACTION WITH E2F1, MUTAGENESIS OF HIS-355, AND ACTIVE
SITE.
PubMed=16892051; DOI=10.1038/ncb1468;
Wang C., Chen L., Hou X., Li Z., Kabra N., Ma Y., Nemoto S.,
Finkel T., Gu W., Cress W.D., Chen J.;
"Interactions between E2F1 and SirT1 regulate apoptotic response to
DNA damage.";
Nat. Cell Biol. 8:1025-1031(2006).
[21]
FUNCTION IN REGULATION OF INSULIN SECRETION.
PubMed=16366736; DOI=10.1371/journal.pbio.0040031;
Bordone L., Motta M.C., Picard F., Robinson A., Jhala U.S., Apfeld J.,
McDonagh T., Lemieux M., McBurney M., Szilvasi A., Easlon E.J.,
Lin S.J., Guarente L.;
"Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic
beta cells.";
PLoS Biol. 4:E31-E31(2006).
[22]
FUNCTION IN DEACETYLATION OF RB1.
PubMed=17620057; DOI=10.1042/BJ20070151;
Wong S., Weber J.D.;
"Deacetylation of the retinoblastoma tumour suppressor protein by
SIRT1.";
Biochem. J. 407:451-460(2007).
[23]
FUNCTION IN DEACETYLATION OF PPARGC1A, AND FUNCTION IN REGULATION OF
MUSCLE METABOLISM.
PubMed=17347648; DOI=10.1038/sj.emboj.7601633;
Gerhart-Hines Z., Rodgers J.T., Bare O., Lerin C., Kim S.H.,
Mostoslavsky R., Alt F.W., Wu Z., Puigserver P.;
"Metabolic control of muscle mitochondrial function and fatty acid
oxidation through SIRT1/PGC-1alpha.";
EMBO J. 26:1913-1923(2007).
[24]
FUNCTION IN DEACETYLATION OF SMAD7.
PubMed=17098745; DOI=10.1074/jbc.M605904200;
Kume S., Haneda M., Kanasaki K., Sugimoto T., Araki S., Isshiki K.,
Isono M., Uzu T., Guarente L., Kashiwagi A., Koya D.;
"SIRT1 inhibits transforming growth factor beta-induced apoptosis in
glomerular mesangial cells via Smad7 deacetylation.";
J. Biol. Chem. 282:151-158(2007).
[25]
SUBCELLULAR LOCATION, AND MUTAGENESIS OF 38-ARG-ARG-39;
138-LEU--LEU-145; 227-LYS--LYS-230 AND 425-VAL--ILE-431.
PubMed=17197703; DOI=10.1074/jbc.M609554200;
Tanno M., Sakamoto J., Miura T., Shimamoto K., Horio Y.;
"Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase
SIRT1.";
J. Biol. Chem. 282:6823-6832(2007).
[26]
FUNCTION, SUBCELLULAR LOCATION, AND INTERACTION WITH IRS1 AND IRS2.
PubMed=17901049; DOI=10.1074/jbc.M706644200;
Zhang J.;
"The direct involvement of SirT1 in insulin-induced insulin receptor
substrate-2 tyrosine phosphorylation.";
J. Biol. Chem. 282:34356-34364(2007).
[27]
FUNCTION, SUBCELLULAR LOCATION, AND DISRUPTION PHENOTYPE.
PubMed=18004385; DOI=10.1038/nature06268;
Vaquero A., Scher M., Erdjument-Bromage H., Tempst P., Serrano L.,
Reinberg D.;
"SIRT1 regulates the histone methyl-transferase SUV39H1 during
heterochromatin formation.";
Nature 450:440-444(2007).
[28]
FUNCTION, SUBCELLULAR LOCATION, INDUCTION, AND INTERACTION WITH CLOCK;
ARNTL AND PER2.
PubMed=18662546; DOI=10.1016/j.cell.2008.06.050;
Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F.,
Mostoslavsky R., Alt F.W., Schibler U.;
"SIRT1 regulates circadian clock gene expression through PER2
deacetylation.";
Cell 134:317-328(2008).
[29]
FUNCTION, INDUCTION, AND INTERACTION WITH CLOCK AND ARNTL.
PubMed=18662547; DOI=10.1016/j.cell.2008.07.002;
Nakahata Y., Kaluzova M., Grimaldi B., Sahar S., Hirayama J., Chen D.,
Guarente L.P., Sassone-Corsi P.;
"The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated
chromatin remodeling and circadian control.";
Cell 134:329-340(2008).
[30]
FUNCTION.
PubMed=18477450; DOI=10.1016/j.devcel.2008.02.004;
Fulco M., Cen Y., Zhao P., Hoffman E.P., McBurney M.W., Sauve A.A.,
Sartorelli V.;
"Glucose restriction inhibits skeletal myoblast differentiation by
activating SIRT1 through AMPK-mediated regulation of Nampt.";
Dev. Cell 14:661-673(2008).
[31]
DISRUPTION PHENOTYPE.
PubMed=18687325; DOI=10.1016/j.yexcr.2008.07.011;
Sequeira J., Boily G., Bazinet S., Saliba S., He X., Jardine K.,
Kennedy C., Staines W., Rousseaux C., Mueller R., McBurney M.W.;
"sirt1-null mice develop an autoimmune-like condition.";
Exp. Cell Res. 314:3069-3074(2008).
[32]
FUNCTION IN DEACETYLATION OF STK11, AND FUNCTION IN POSSIBLE
REGULATION OF STK11.
PubMed=18687677; DOI=10.1074/jbc.M805711200;
Lan F., Cacicedo J.M., Ruderman N., Ido Y.;
"SIRT1 modulation of the acetylation status, cytosolic localization,
and activity of LKB1. Possible role in AMP-activated protein kinase
activation.";
J. Biol. Chem. 283:27628-27635(2008).
[33]
DISRUPTION PHENOTYPE.
PubMed=18270565; DOI=10.1371/journal.pone.0001571;
Coussens M., Maresh J.G., Yanagimachi R., Maeda G., Allsopp R.;
"Sirt1 deficiency attenuates spermatogenesis and germ cell function.";
PLoS ONE 3:E1571-E1571(2008).
[34]
FUNCTION IN AUTOPHAGY.
PubMed=18296641; DOI=10.1073/pnas.0712145105;
Lee I.H., Cao L., Mostoslavsky R., Lombard D.B., Liu J., Bruns N.E.,
Tsokos M., Alt F.W., Finkel T.;
"A role for the NAD-dependent deacetylase Sirt1 in the regulation of
autophagy.";
Proc. Natl. Acad. Sci. U.S.A. 105:3374-3379(2008).
[35]
FUNCTION IN REGULATION OF PPARA, AND INTERACTION WITH PPARA.
PubMed=19356714; DOI=10.1016/j.cmet.2009.02.006;
Purushotham A., Schug T.T., Xu Q., Surapureddi S., Guo X., Li X.;
"Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism
and results in hepatic steatosis and inflammation.";
Cell Metab. 9:327-338(2009).
[36]
INTERACTION WITH NMNAT1.
PubMed=19478080; DOI=10.1074/jbc.M109.016469;
Zhang T., Berrocal J.G., Frizzell K.M., Gamble M.J., DuMond M.E.,
Krishnakumar R., Yang T., Sauve A.A., Kraus W.L.;
"Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target
gene promoters.";
J. Biol. Chem. 284:20408-20417(2009).
[37]
PHOSPHORYLATION AT SER-649, AND MUTAGENESIS OF SER-154; SER-649;
SER-651 AND SER-683.
PubMed=19680552; DOI=10.1371/journal.pone.0006611;
Kang H., Jung J.W., Kim M.K., Chung J.H.;
"CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase
activity and cellular response to DNA-damage.";
PLoS ONE 4:E6611-E6611(2009).
[38]
FUNCTION, AND INTERACTION WITH ARNTL.
PubMed=19299583; DOI=10.1126/science.1171641;
Ramsey K.M., Yoshino J., Brace C.S., Abrassart D., Kobayashi Y.,
Marcheva B., Hong H.K., Chong J.L., Buhr E.D., Lee C., Takahashi J.S.,
Imai S., Bass J.;
"Circadian clock feedback cycle through NAMPT-mediated NAD+
biosynthesis.";
Science 324:651-654(2009).
[39]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-151 AND SER-154, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Kidney, Lung, Spleen, and Testis;
PubMed=21183079; DOI=10.1016/j.cell.2010.12.001;
Huttlin E.L., Jedrychowski M.P., Elias J.E., Goswami T., Rad R.,
Beausoleil S.A., Villen J., Haas W., Sowa M.E., Gygi S.P.;
"A tissue-specific atlas of mouse protein phosphorylation and
expression.";
Cell 143:1174-1189(2010).
[40]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=20620997; DOI=10.1016/j.cmet.2010.05.010;
Ramadori G., Fujikawa T., Fukuda M., Anderson J., Morgan D.A.,
Mostoslavsky R., Stuart R.C., Perello M., Vianna C.R., Nillni E.A.,
Rahmouni K., Coppari R.;
"SIRT1 deacetylase in POMC neurons is required for homeostatic
defenses against diet-induced obesity.";
Cell Metab. 12:78-87(2010).
[41]
FUNCTION IN DEACETYLATION OF SREBF1, AND FUNCTION IN REGULATION OF
SREBF1.
PubMed=20817729; DOI=10.1074/jbc.M110.122978;
Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., Wu S.Y.,
Chiang C.M., Veenstra T.D., Kemper J.K.;
"SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of
hepatic lipid metabolism.";
J. Biol. Chem. 285:33959-33970(2010).
[42]
FUNCTION IN TELOMERE MAINTENANCE.
PubMed=21187328; DOI=10.1083/jcb.201005160;
Palacios J.A., Herranz D., De Bonis M.L., Velasco S., Serrano M.,
Blasco M.A.;
"SIRT1 contributes to telomere maintenance and augments global
homologous recombination.";
J. Cell Biol. 191:1299-1313(2010).
[43]
PHOSPHORYLATION AT THR-522, MUTAGENESIS OF THR-522, FUNCTION, AND
CATALYTIC ACTIVITY.
PubMed=20167603; DOI=10.1074/jbc.M110.102574;
Guo X., Williams J.G., Schug T.T., Li X.;
"DYRK1A and DYRK3 promote cell survival through phosphorylation and
activation of SIRT1.";
J. Biol. Chem. 285:13223-13232(2010).
[44]
S-NITROSYLATION AT CYS-387 AND CYS-390, AND MUTAGENESIS OF CYS-363;
CYS-366; CYS-387 AND CYS-390.
PubMed=20972425; DOI=10.1038/ncb2114;
Kornberg M.D., Sen N., Hara M.R., Juluri K.R., Nguyen J.V.,
Snowman A.M., Law L., Hester L.D., Snyder S.H.;
"GAPDH mediates nitrosylation of nuclear proteins.";
Nat. Cell Biol. 12:1094-1100(2010).
[45]
INTERACTION WITH FOXO1.
PubMed=20668652; DOI=10.1371/journal.pone.0011786;
Goitre L., Balzac F., Degani S., Degan P., Marchi S., Pinton P.,
Retta S.F.;
"KRIT1 regulates the homeostasis of intracellular reactive oxygen
species.";
PLoS ONE 5:E11786-E11786(2010).
[46]
ALTERNATIVE SPLICING (ISOFORM 2).
PubMed=20975832; DOI=10.1371/journal.pone.0013502;
Lynch C.J., Shah Z.H., Allison S.J., Ahmed S.U., Ford J.,
Warnock L.J., Li H., Serrano M., Milner J.;
"SIRT1 undergoes alternative splicing in a novel auto-regulatory loop
with p53.";
PLoS ONE 5:E13502-E13502(2010).
[47]
FUNCTION, AND INTERACTION WITH HNF1A.
PubMed=21176092; DOI=10.1111/j.1474-9726.2010.00667.x;
Grimm A.A., Brace C.S., Wang T., Stormo G.D., Imai S.;
"A nutrient-sensitive interaction between Sirt1 and HNF-1alpha
regulates Crp expression.";
Aging Cell 10:305-317(2011).
[48]
FUNCTION IN DEACETYLATION OF XBP1, AND SUBCELLULAR LOCATION.
PubMed=20955178; DOI=10.1042/BJ20101293;
Wang F.M., Chen Y.J., Ouyang H.J.;
"Regulation of unfolded protein response modulator XBP1s by
acetylation and deacetylation.";
Biochem. J. 433:245-252(2011).
[49]
FUNCTION IN AUTOPHAGY, AND DISRUPTION PHENOTYPE.
PubMed=21189328; DOI=10.1158/0008-5472.CAN-10-3172;
Powell M.J., Casimiro M.C., Cordon-Cardo C., He X., Yeow W.S.,
Wang C., McCue P.A., McBurney M.W., Pestell R.G.;
"Disruption of a Sirt1-dependent autophagy checkpoint in the prostate
results in prostatic intraepithelial neoplasia lesion formation.";
Cancer Res. 71:964-975(2011).
[50]
FUNCTION IN PALMITATE-INDUCED APOPTOSIS, INDUCTION, AND
DOWN-REGULATION BY PALMITATE.
PubMed=21622680; DOI=10.1093/cvr/cvr145;
Zhu H., Yang Y., Wang Y., Li J., Schiller P.W., Peng T.;
"MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes
by down-regulating Sirt1.";
Cardiovasc. Res. 92:75-84(2011).
[51]
INTERACTION WITH FOXO1.
PubMed=22510882; DOI=10.1038/emboj.2012.97;
Nakae J., Cao Y., Hakuno F., Takemori H., Kawano Y., Sekioka R.,
Abe T., Kiyonari H., Tanaka T., Sakai J., Takahashi S., Itoh H.;
"Novel repressor regulates insulin sensitivity through interaction
with Foxo1.";
EMBO J. 31:2275-2295(2012).
[52]
FUNCTION IN NEUROGENESIS, AND INTERACTION WITH BCL6.
PubMed=23160044; DOI=10.1038/nn.3264;
Tiberi L., van den Ameele J., Dimidschstein J., Piccirilli J.,
Gall D., Herpoel A., Bilheu A., Bonnefont J., Iacovino M., Kyba M.,
Bouschet T., Vanderhaeghen P.;
"BCL6 controls neurogenesis through Sirt1-dependent epigenetic
repression of selective Notch targets.";
Nat. Neurosci. 15:1627-1635(2012).
[53]
FUNCTION, AND CATALYTIC ACTIVITY.
PubMed=28883095; DOI=10.1242/jcs.206904;
Lai Y., Li J., Li X., Zou C.;
"Lipopolysaccharide modulates p300 and Sirt1 to promote PRMT1
stability via an SCFFbxl17-recognized acetyldegron.";
J. Cell Sci. 130:3578-3587(2017).
-!- FUNCTION: NAD-dependent protein deacetylase that links
transcriptional regulation directly to intracellular energetics
and participates in the coordination of several separated cellular
functions such as cell cycle, response to DNA damage, metabolism,
apoptosis and autophagy (PubMed:11250901, PubMed:11672522,
PubMed:12651913, PubMed:12887892, PubMed:12960381,
PubMed:15175761, PubMed:15220471, PubMed:15632193,
PubMed:15744310, PubMed:15788402, PubMed:16098828,
PubMed:16366736, PubMed:16790548, PubMed:16892051,
PubMed:17098745, PubMed:17347648, PubMed:17620057,
PubMed:17901049, PubMed:17936707, PubMed:18004385,
PubMed:18296641, PubMed:18371449, PubMed:18477450,
PubMed:18662546, PubMed:18662547, PubMed:18687677,
PubMed:19299583, PubMed:19356714, PubMed:20817729,
PubMed:21176092, PubMed:21187328, PubMed:21189328,
PubMed:21622680, PubMed:23160044, PubMed:20167603,
PubMed:28883095). Can modulate chromatin function through
deacetylation of histones and can promote alterations in the
methylation of histones and DNA, leading to transcriptional
repression (By similarity). Deacetylates a broad range of
transcription factors and coregulators, thereby regulating target
gene expression positively and negatively (By similarity). Serves
as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered
by glucose deprivation and metabolic changes associated with
caloric restriction (By similarity). Is essential in skeletal
muscle cell differentiation and in response to low nutrients
mediates the inhibitory effect on skeletal myoblast
differentiation which also involves 5'-AMP-activated protein
kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT)
(PubMed:12887892, PubMed:18477450). Component of the eNoSC
(energy-dependent nucleolar silencing) complex, a complex that
mediates silencing of rDNA in response to intracellular energy
status and acts by recruiting histone-modifying enzymes (By
similarity). The eNoSC complex is able to sense the energy status
of cell: upon glucose starvation, elevation of NAD(+)/NADP(+)
ratio activates SIRT1, leading to histone H3 deacetylation
followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1
and the formation of silent chromatin in the rDNA locus
(PubMed:18004385). Deacetylates 'Lys-266' of SUV39H1, leading to
its activation (By similarity). Inhibits skeletal muscle
differentiation by deacetylating PCAF and MYOD1 (PubMed:12887892).
Deacetylates H2A and 'Lys-26' of HIST1H1E (By similarity).
Deacetylates 'Lys-16' of histone H4 (in vitro) (By similarity).
Involved in NR0B2/SHP corepression function through chromatin
remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP
thereby stimulating histone H3 and H4 deacetylation leading to
transcriptional repression (By similarity). Proposed to contribute
to genomic integrity via positive regulation of telomere length;
however, reports on localization to pericentromeric
heterochromatin are conflicting (PubMed:21187328). Proposed to
play a role in constitutive heterochromatin (CH) formation and/or
maintenance through regulation of the available pool of nuclear
SUV39H1 (By similarity). Upon oxidative/metabolic stress decreases
SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by
MDM2 (By similarity). This increase in SUV39H1 levels enhances
SUV39H1 turnover in CH, which in turn seems to accelerate renewal
of the heterochromatin which correlates with greater genomic
integrity during stress response (By similarity). Deacetylates
'Lys-382' of p53/TP53 and impairs its ability to induce
transcription-dependent proapoptotic program and modulate cell
senescence (PubMed:11672522, PubMed:12960381). Deacetylates TAF1B
and thereby represses rDNA transcription by the RNA polymerase I
(PubMed:11250901). Deacetylates MYC, promotes the association of
MYC with MAX and decreases MYC stability leading to compromised
transformational capability (By similarity). Deacetylates FOXO3 in
response to oxidative stress thereby increasing its ability to
induce cell cycle arrest and resistance to oxidative stress but
inhibiting FOXO3-mediated induction of apoptosis transcriptional
activity; also leading to FOXO3 ubiquitination and protesomal
degradation (By similarity). Appears to have a similar effect on
MLLT7/FOXO4 in regulation of transcriptional activity and
apoptosis (By similarity). Deacetylates DNMT1; thereby impairs
DNMT1 methyltransferase-independent transcription repressor
activity, modulates DNMT1 cell cycle regulatory function and
DNMT1-mediated gene silencing (By similarity). Deacetylates
RELA/NF-kappa-B p65 thereby inhibiting its transactivating
potential and augments apoptosis in response to TNF-alpha (By
similarity). Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1
(PubMed:17620057). Deacetylates FOXO1, which increases its DNA
binding ability and enhances its transcriptional activity leading
to increased gluconeogenesis in liver (PubMed:15220471,
PubMed:15788402). Inhibits E2F1 transcriptional activity and
apoptotic function, possibly by deacetylation (PubMed:16892051).
Involved in HES1- and HEY2-mediated transcriptional repression (By
similarity). In cooperation with MYCN seems to be involved in
transcriptional repression of DUSP6/MAPK3 leading to MYCN
stabilization by phosphorylation at 'Ser-62' (By similarity).
Deacetylates MEF2D (By similarity). Required for antagonist-
mediated transcription suppression of AR-dependent genes which may
be linked to local deacetylation of histone H3 (By similarity).
Represses HNF1A-mediated transcription (PubMed:21176092). Required
for the repression of ESRRG by CREBZF (By similarity).
Deacetylates NR1H3 and NR1H2 and deacetylation of NR1H3 at 'Lys-
434' positively regulates transcription of NR1H3:RXR target genes,
promotes NR1H3 proteosomal degradation and results in cholesterol
efflux; a promoter clearing mechanism after reach round of
transcription is proposed (PubMed:17936707). Involved in lipid
metabolism (By similarity). Implicated in regulation of
adipogenesis and fat mobilization in white adipocytes by
repression of PPARG which probably involves association with NCOR1
and SMRT/NCOR2 (PubMed:15175761). Deacetylates p300/EP300 and
PRMT1 (PubMed:15632193, PubMed:28883095). Deacetylates ACSS2
leading to its activation, and HMGCS1 deacetylation
(PubMed:16790548). Involved in liver and muscle metabolism (By
similarity). Through deacteylation and activation of PPARGC1A is
required to activate fatty acid oxidation in skeletel muscle under
low-glucose conditions and is involved in glucose homeostasis
(PubMed:15744310, PubMed:17347648). Involved in regulation of
PPARA and fatty acid beta-oxidation in liver (PubMed:19356714).
Involved in positive regulation of insulin secretion in pancreatic
beta cells in response to glucose; the function seems to imply
transcriptional repression of UCP2 (PubMed:16098828,
PubMed:16366736, PubMed:17901049). Proposed to deacetylate IRS2
thereby facilitating its insulin-induced tyrosine phosphorylation
(PubMed:17901049). Deacetylates SREBF1 isoform SREBP-1C thereby
decreasing its stability and transactivation in lipogenic gene
expression (By similarity). Involved in DNA damage response by
repressing genes which are involved in DNA repair, such as XPC and
TP73, deacetylating XRCC6/Ku70, and faciliting recruitment of
additional factors to sites of damaged DNA, such as SIRT1-
deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-
deacetylated XPA interacts with RPA2 (By similarity). Also
involved in DNA repair of DNA double-strand breaks by homologous
recombination and specifically single-strand annealing
independently of XRCC6/Ku70 and NBN. Transcriptional suppression
of XPC probably involves an E2F4:RBL2 suppressor complex and
protein kinase B (AKT) signaling (By similarity). Transcriptional
suppression of TP73 probably involves E2F4 and PCAF (By
similarity). Deacetylates WRN thereby regulating its helicase and
exonuclease activities and regulates WRN nuclear translocation in
response to DNA damage (By similarity). Deacetylates APEX1 at
'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease
activity by promoting the association of APEX1 to XRCC1 (By
similarity). Increases p53/TP53-mediated transcription-independent
apoptosis by blocking nuclear translocation of cytoplasmic
p53/TP53 and probably redirecting it to mitochondria (By
similarity). Deacetylates XRCC6/Ku70 at 'Lys-537' and 'Lys-540'
causing it to sequester BAX away from mitochondria thereby
inhibiting stress-induced apoptosis (By similarity). Is involved
in autophagy, presumably by deacetylating ATG5, ATG7 and
MAP1LC3B/ATG8 (PubMed:18296641, PubMed:21189328). Deacetylates
AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and
promotes their activation (By similarity). Proposed to play role
in regulation of STK11/LBK1-dependent AMPK signaling pathways
implicated in cellular senescence which seems to involve the
regulation of the acetylation status of STK11/LBK1
(PubMed:18687677). Can deacetylate STK11/LBK1 and thereby increase
its activity, cytoplasmic localization and association with STRAD;
however, the relevance of such activity in normal cells is unclear
(By similarity). In endothelial cells is shown to inhibit
STK11/LBK1 activity and to promote its degradation (By
similarity). Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby
promoting its degradation (PubMed:17098745). Deacetylates CIITA
and augments its MHC class II transactivation and contributes to
its stability (By similarity). Deacetylates MECOM/EVI1 (By
similarity). Deacetylates PML at 'Lys-487' and this deacetylation
promotes PML control of PER2 nuclear localization (By similarity).
During the neurogenic transition, repress selective NOTCH1-target
genes through histone deacetylation in a BCL6-dependent manner and
leading to neuronal differentiation (By similarity). Regulates the
circadian expression of several core clock genes, including
ARNTL/BMAL1, RORC, PER2 and CRY1 and plays a critical role in
maintaining a controlled rhythmicity in histone acetylation,
thereby contributing to circadian chromatin remodeling
(PubMed:18662546, PubMed:18662547, PubMed:19299583). Deacetylates
ARNTL/BMAL1 and histones at the circadian gene promoters in order
to facilitate repression by inhibitory components of the circadian
oscillator (PubMed:18662546, PubMed:18662547, PubMed:19299583).
Deacetylates PER2, facilitating its ubiquitination and degradation
by the proteosome (PubMed:18662546). Protects cardiomyocytes
against palmitate-induced apoptosis (PubMed:21622680).
Deacetylates XBP1 isoform 2; deacetylation decreases protein
stability of XBP1 isoform 2 and inhibits its transcriptional
activity (By similarity). Involved in the CCAR2-mediated
regulation of PCK1 and NR1D1 (By similarity). Deacetylates CTNB1
at 'Lys-49' (By similarity). In POMC (pro-opiomelanocortin)
neurons, required for leptin-induced activation of PI3K signaling
(PubMed:20620997). {ECO:0000250|UniProtKB:Q96EB6,
ECO:0000269|PubMed:11250901, ECO:0000269|PubMed:11672522,
ECO:0000269|PubMed:12651913, ECO:0000269|PubMed:12887892,
ECO:0000269|PubMed:12960381, ECO:0000269|PubMed:15175761,
ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15632193,
ECO:0000269|PubMed:15744310, ECO:0000269|PubMed:15788402,
ECO:0000269|PubMed:16098828, ECO:0000269|PubMed:16366736,
ECO:0000269|PubMed:16790548, ECO:0000269|PubMed:16892051,
ECO:0000269|PubMed:17098745, ECO:0000269|PubMed:17347648,
ECO:0000269|PubMed:17620057, ECO:0000269|PubMed:17901049,
ECO:0000269|PubMed:17936707, ECO:0000269|PubMed:18004385,
ECO:0000269|PubMed:18296641, ECO:0000269|PubMed:18371449,
ECO:0000269|PubMed:18477450, ECO:0000269|PubMed:18662546,
ECO:0000269|PubMed:18662547, ECO:0000269|PubMed:18687677,
ECO:0000269|PubMed:19299583, ECO:0000269|PubMed:19356714,
ECO:0000269|PubMed:20167603, ECO:0000269|PubMed:20620997,
ECO:0000269|PubMed:20817729, ECO:0000269|PubMed:21176092,
ECO:0000269|PubMed:21187328, ECO:0000269|PubMed:21189328,
ECO:0000269|PubMed:21622680, ECO:0000269|PubMed:23160044,
ECO:0000269|PubMed:28883095}.
-!- FUNCTION: Isoform 2: Deacetylates 'Lys-382' of p53/TP53, however
with lower activity than isoform 1. In combination, the two
isoforms exert an additive effect. Isoform 2 regulates p53/TP53
expression and cellular stress response and is in turn repressed
by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory
loop. {ECO:0000250|UniProtKB:Q96EB6}.
-!- FUNCTION: SirtT1 75 kDa fragment: Catalytically inactive 75SirT1
may be involved in regulation of apoptosis. May be involved in
protecting chondrocytes from apoptotic death by associating with
cytochrome C and interfering with apoptosome assembly.
{ECO:0000250|UniProtKB:Q96EB6}.
-!- CATALYTIC ACTIVITY: NAD(+) + an acetylprotein = nicotinamide + O-
acetyl-ADP-ribose + a protein. {ECO:0000255|PROSITE-
ProRule:PRU00236, ECO:0000269|PubMed:20167603,
ECO:0000269|PubMed:28883095}.
-!- COFACTOR:
Name=Zn(2+); Xref=ChEBI:CHEBI:29105;
Evidence={ECO:0000250|UniProtKB:Q8IXJ6};
Note=Binds 1 zinc ion per subunit. {ECO:0000250|UniProtKB:Q8IXJ6};
-!- ACTIVITY REGULATION: Activated by resveratrol (3,5,4'-trihydroxy-
trans-stilbene), butein (3,4,2',4'-tetrahydroxychalcone),
piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene),
Isoliquiritigenin (4,2',4'-trihydroxychalcone), fisetin
(3,7,3',4'-tetrahydroxyflavone) and quercetin (3,5,7,3',4'-
pentahydroxyflavone). MAPK8/JNK1 and RPS19BP1/AROS act as positive
regulators of deacetylation activity (By similarity). Inhibited by
nicotinamide. Negatively regulated by CCAR2 (By similarity).
{ECO:0000250|UniProtKB:Q96EB6}.
-!- SUBUNIT: Interacts with XBP1 isoform 2 (By similarity). Found in a
complex with PCAF and MYOD1 Component of the eNoSC complex,
composed of SIRT1, SUV39H1 and RRP8. Interacts with HES1, HEY2 and
PML. Interacts with RPS19BP1/AROS. Interacts with CCAR2 (via N-
terminus); the interaction disrupts the interaction between SIRT1
and p53/TP53. Interacts with SETD7; the interaction induces the
dissociation of SIRT1 from p53/TP53 and increases p53/TP53
activity. Interacts with MYCN, NR1I2, CREBZF, TSC2, TLE1, FOS,
JUN, NR0B2, PPARG, NCOR, IRS1, IRS2 and NMNAT1. Interacts with
HNF1A; the interaction occurs under nutrient restriction.
Interacts with SUZ12; the interaction mediates the association
with the PRC4 histone methylation complex which is specific as an
association with PCR2 and PCR3 complex variants is not found.
Interacts with FOXO1; the interaction deacetylates FOXO1, enhances
its DNA-binding ability and increases its transcriptional
activity. Interacts with BCL6; leads to a epigenetic repression of
specific target genes. Interacts with CLOCK, ARNTL/BMAL1 and PER2.
Interacts with PPARA; the interaction seems to be modulated by
NAD(+) levels. Interacts with NR1H3 and this interaction is
inhibited in the presence of CCAR2. Interacts with CHEK2 and
p53/TP53. Exhibits a preferential interaction with sumoylated
CCAR2 over its unmodified form (By similarity).
{ECO:0000250|UniProtKB:Q96EB6, ECO:0000269|PubMed:11672522,
ECO:0000269|PubMed:12887892, ECO:0000269|PubMed:15175761,
ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:16269335,
ECO:0000269|PubMed:16892051, ECO:0000269|PubMed:17901049,
ECO:0000269|PubMed:18662546, ECO:0000269|PubMed:18662547,
ECO:0000269|PubMed:19299583, ECO:0000269|PubMed:19356714,
ECO:0000269|PubMed:19478080, ECO:0000269|PubMed:20668652,
ECO:0000269|PubMed:21176092, ECO:0000269|PubMed:22510882,
ECO:0000269|PubMed:23160044}.
-!- INTERACTION:
O08785:Clock; NbExp=11; IntAct=EBI-1802585, EBI-79859;
Q61214:Dyrk1a; NbExp=4; IntAct=EBI-1802585, EBI-80344;
Q922Y0:Dyrk3; NbExp=7; IntAct=EBI-1802585, EBI-5242007;
Q01094:E2F1 (xeno); NbExp=3; IntAct=EBI-1802585, EBI-448924;
Q12778:FOXO1 (xeno); NbExp=2; IntAct=EBI-1802585, EBI-1108782;
Q9R1Y5:Hic1; NbExp=2; IntAct=EBI-1802585, EBI-5236187;
P22361:Hnf1a; NbExp=5; IntAct=EBI-1802585, EBI-5272860;
P81122:Irs2; NbExp=2; IntAct=EBI-1802585, EBI-1369862;
Q60974:Ncor1; NbExp=3; IntAct=EBI-1802585, EBI-349004;
Q64221:Nhlh2; NbExp=2; IntAct=EBI-1802585, EBI-5378529;
Q62227:Nr0b2; NbExp=2; IntAct=EBI-1802585, EBI-4310440;
P37238:Pparg; NbExp=2; IntAct=EBI-1802585, EBI-5260705;
O70343:Ppargc1a; NbExp=6; IntAct=EBI-1802585, EBI-1371053;
P06400:RB1 (xeno); NbExp=4; IntAct=EBI-1802585, EBI-491274;
P28749:RBL1 (xeno); NbExp=2; IntAct=EBI-1802585, EBI-971402;
Q08999:RBL2 (xeno); NbExp=2; IntAct=EBI-1802585, EBI-971439;
O35253:Smad7; NbExp=6; IntAct=EBI-1802585, EBI-5274835;
Q9WTN3:Srebf1; NbExp=2; IntAct=EBI-1802585, EBI-5273743;
P04637:TP53 (xeno); NbExp=4; IntAct=EBI-1802585, EBI-366083;
-!- SUBCELLULAR LOCATION: Nucleus, PML body
{ECO:0000250|UniProtKB:Q96EB6}. Cytoplasm
{ECO:0000269|PubMed:17197703, ECO:0000269|PubMed:17901049}.
Nucleus {ECO:0000269|PubMed:17197703, ECO:0000269|PubMed:17901049,
ECO:0000269|PubMed:18004385, ECO:0000269|PubMed:18662546,
ECO:0000269|PubMed:20955178}. Note=Colocalizes in the nucleus with
XBP1 isoform 2. Recruited to the nuclear bodies via its
interaction with PML. Colocalized with APEX1 in the nucleus. May
be found in nucleolus, nuclear euchromatin, heterochromatin and
inner membrane (By similarity). Shuttles between nucleus and
cytoplasm (PubMed:17197703). {ECO:0000250|UniProtKB:Q96EB6,
ECO:0000269|PubMed:17197703}.
-!- SUBCELLULAR LOCATION: SirtT1 75 kDa fragment: Cytoplasm
{ECO:0000250|UniProtKB:Q96EB6}. Mitochondrion
{ECO:0000250|UniProtKB:Q96EB6}.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing; Named isoforms=2;
Name=1;
IsoId=Q923E4-1; Sequence=Displayed;
Name=2; Synonyms=delta-exon8;
IsoId=Q923E4-2; Sequence=VSP_042190;
-!- TISSUE SPECIFICITY: Widely expressed. Weakly expressed in liver
and skeletal muscle. {ECO:0000269|PubMed:12482959}.
-!- INDUCTION: By calorie restriction which induces endothelial nitric
oxide synthase (eNOS) expression. Induced in liver by pyruvate
during fasting. Expressed in a circadian manner in the liver with
maximal and minimal levels reached at around Zeitgeber time (ZT)
16 and ZT4, respectively. Its deacetylase activity in the liver is
also regulated in a circadian manner, with a peak at ZT15. Down-
regulated by palmitate; palmitate down-regulation is mediated by
the induction of miR-195 that directly targets SIRT1.
{ECO:0000269|PubMed:15744310, ECO:0000269|PubMed:16224023,
ECO:0000269|PubMed:18662546, ECO:0000269|PubMed:18662547,
ECO:0000269|PubMed:21622680}.
-!- PTM: Phosphorylated. Phosphorylated by STK4/MST1, resulting in
inhibition of SIRT1-mediated p53/TP53 deacetylation.
Phosphorylation by MAPK8/JNK1 at Ser-46 and Thr-522 leads to
increased nuclear localization and enzymatic activity.
Phosphorylation at Thr-522 by DYRK1A and DYRK3 activates
deacetylase activity and promotes cell survival (PubMed:20167603).
Phosphorylation by mammalian target of rapamycin complex 1
(mTORC1) at Ser-46 inhibits deacetylation activity. Phosphorylated
by CaMK2, leading to increased p53/TP53 and NF-kappa-B p65/RELA
deacetylation activity (By similarity). {ECO:0000250,
ECO:0000269|PubMed:20167603}.
-!- PTM: Proteolytically cleaved by cathepsin B upon TNF-alpha
treatment to yield catalytic inactive but stable SirtT1 75 kDa
fragment (75SirT1). {ECO:0000250|UniProtKB:Q96EB6}.
-!- PTM: S-nitrosylated by GAPDH, leading to inhibit the NAD-dependent
protein deacetylase activity. {ECO:0000269|PubMed:20972425}.
-!- DISRUPTION PHENOTYPE: High degree of embryonic and postnatal
lethality. Decreased levels of histone H3 containing a trimethyl
group at its lysine 9 position (H3K9me3) in regions of
heterochromatin. Attenuates spermatogenesis but not oogenesis with
reduced numbers of mature sperm and spermatogenic precursors. Mice
develop an autoimmune-like condition with late onset diabetes
insipidus. Prostatic intraepithelial neoplasia associated with
reduced autophagy. Conditional knockout in POMC neurons leads to
an increase of body weight compare to controls when animals are
challenged with high-fat diet (PubMed:20620997).
{ECO:0000269|PubMed:12482959, ECO:0000269|PubMed:18004385,
ECO:0000269|PubMed:18270565, ECO:0000269|PubMed:18687325,
ECO:0000269|PubMed:20620997, ECO:0000269|PubMed:21189328}.
-!- SIMILARITY: Belongs to the sirtuin family. Class I subfamily.
{ECO:0000305}.
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
Distributed under the Creative Commons Attribution (CC BY 4.0) License
-----------------------------------------------------------------------
EMBL; AF214646; AAF24983.1; -; mRNA.
EMBL; BC006584; AAH06584.1; -; mRNA.
CCDS; CCDS23898.1; -. [Q923E4-1]
RefSeq; NP_062786.1; NM_019812.3. [Q923E4-1]
UniGene; Mm.351459; -.
ProteinModelPortal; Q923E4; -.
SMR; Q923E4; -.
BioGrid; 220297; 45.
ComplexPortal; CPX-468; eNoSc complex.
CORUM; Q923E4; -.
DIP; DIP-47052N; -.
IntAct; Q923E4; 49.
STRING; 10090.ENSMUSP00000020257; -.
iPTMnet; Q923E4; -.
PhosphoSitePlus; Q923E4; -.
EPD; Q923E4; -.
PaxDb; Q923E4; -.
PeptideAtlas; Q923E4; -.
PRIDE; Q923E4; -.
DNASU; 93759; -.
Ensembl; ENSMUST00000020257; ENSMUSP00000020257; ENSMUSG00000020063. [Q923E4-1]
Ensembl; ENSMUST00000120239; ENSMUSP00000112595; ENSMUSG00000020063. [Q923E4-1]
Ensembl; ENSMUST00000177694; ENSMUSP00000137565; ENSMUSG00000020063. [Q923E4-2]
GeneID; 93759; -.
KEGG; mmu:93759; -.
UCSC; uc007fke.2; mouse. [Q923E4-1]
CTD; 23411; -.
MGI; MGI:2135607; Sirt1.
eggNOG; KOG2684; Eukaryota.
eggNOG; COG0846; LUCA.
GeneTree; ENSGT00870000136443; -.
HOGENOM; HOG000038016; -.
HOVERGEN; HBG054192; -.
InParanoid; Q923E4; -.
KO; K11411; -.
OrthoDB; EOG091G07CT; -.
PhylomeDB; Q923E4; -.
BRENDA; 3.5.1.98; 3474.
Reactome; R-MMU-3371453; Regulation of HSF1-mediated heat shock response.
Reactome; R-MMU-427359; SIRT1 negatively regulates rRNA expression.
PRO; PR:Q923E4; -.
Proteomes; UP000000589; Chromosome 10.
Bgee; ENSMUSG00000020063; Expressed in 274 organ(s), highest expression level in cleaving embryo.
ExpressionAtlas; Q923E4; baseline and differential.
Genevisible; Q923E4; MM.
GO; GO:0030424; C:axon; ISO:MGI.
GO; GO:0000785; C:chromatin; IDA:UniProtKB.
GO; GO:0005677; C:chromatin silencing complex; ISO:MGI.
GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
GO; GO:0005829; C:cytosol; ISO:MGI.
GO; GO:0035098; C:ESC/E(Z) complex; IEA:Ensembl.
GO; GO:0030426; C:growth cone; ISO:MGI.
GO; GO:0005739; C:mitochondrion; IDA:MGI.
GO; GO:0000790; C:nuclear chromatin; ISO:MGI.
GO; GO:0005635; C:nuclear envelope; ISO:MGI.
GO; GO:0005719; C:nuclear euchromatin; ISS:UniProtKB.
GO; GO:0005720; C:nuclear heterochromatin; IDA:UniProtKB.
GO; GO:0005637; C:nuclear inner membrane; ISS:UniProtKB.
GO; GO:0005730; C:nucleolus; IEA:Ensembl.
GO; GO:0005654; C:nucleoplasm; ISS:UniProtKB.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0016605; C:PML body; ISO:MGI.
GO; GO:0033553; C:rDNA heterochromatin; ISO:MGI.
GO; GO:0043425; F:bHLH transcription factor binding; ISS:UniProtKB.
GO; GO:0019213; F:deacetylase activity; IMP:UniProtKB.
GO; GO:0019899; F:enzyme binding; IPI:UniProtKB.
GO; GO:0042393; F:histone binding; ISO:MGI.
GO; GO:0004407; F:histone deacetylase activity; ISO:MGI.
GO; GO:0043398; F:HLH domain binding; ISO:MGI.
GO; GO:0042802; F:identical protein binding; ISO:MGI.
GO; GO:1990254; F:keratin filament binding; ISO:MGI.
GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
GO; GO:0051019; F:mitogen-activated protein kinase binding; ISO:MGI.
GO; GO:0070403; F:NAD+ binding; IBA:GO_Central.
GO; GO:0017136; F:NAD-dependent histone deacetylase activity; IDA:MGI.
GO; GO:0046969; F:NAD-dependent histone deacetylase activity (H3-K9 specific); IDA:UniProtKB.
GO; GO:0034979; F:NAD-dependent protein deacetylase activity; IDA:UniProtKB.
GO; GO:0035257; F:nuclear hormone receptor binding; ISO:MGI.
GO; GO:0002039; F:p53 binding; IPI:BHF-UCL.
GO; GO:0008022; F:protein C-terminus binding; ISO:MGI.
GO; GO:0033558; F:protein deacetylase activity; IDA:UniProtKB.
GO; GO:0019904; F:protein domain specific binding; IPI:BHF-UCL.
GO; GO:0043422; F:protein kinase B binding; ISO:MGI.
GO; GO:0001077; F:proximal promoter DNA-binding transcription activator activity, RNA polymerase II-specific; IDA:BHF-UCL.
GO; GO:0000980; F:RNA polymerase II distal enhancer sequence-specific DNA binding; IDA:UniProtKB.
GO; GO:0003714; F:transcription corepressor activity; IMP:BHF-UCL.
GO; GO:0008134; F:transcription factor binding; ISO:MGI.
GO; GO:0001525; P:angiogenesis; IMP:UniProtKB.
GO; GO:0042595; P:behavioral response to starvation; IMP:MGI.
GO; GO:0001678; P:cellular glucose homeostasis; IMP:UniProtKB.
GO; GO:0006974; P:cellular response to DNA damage stimulus; ISO:MGI.
GO; GO:0070301; P:cellular response to hydrogen peroxide; ISO:MGI.
GO; GO:0071456; P:cellular response to hypoxia; ISS:UniProtKB.
GO; GO:0071479; P:cellular response to ionizing radiation; IMP:UniProtKB.
GO; GO:1990830; P:cellular response to leukemia inhibitory factor; IEP:MGI.
GO; GO:0009267; P:cellular response to starvation; IMP:BHF-UCL.
GO; GO:0071356; P:cellular response to tumor necrosis factor; ISS:UniProtKB.
GO; GO:0035356; P:cellular triglyceride homeostasis; IMP:UniProtKB.
GO; GO:0042632; P:cholesterol homeostasis; IMP:UniProtKB.
GO; GO:0006325; P:chromatin organization; ISO:MGI.
GO; GO:0000183; P:chromatin silencing at rDNA; ISO:MGI.
GO; GO:0032922; P:circadian regulation of gene expression; IMP:UniProtKB.
GO; GO:0007623; P:circadian rhythm; IEP:UniProtKB.
GO; GO:0000731; P:DNA synthesis involved in DNA repair; IMP:UniProtKB.
GO; GO:0097009; P:energy homeostasis; ISO:MGI.
GO; GO:0006343; P:establishment of chromatin silencing; ISO:MGI.
GO; GO:0055089; P:fatty acid homeostasis; IMP:UniProtKB.
GO; GO:0016575; P:histone deacetylation; IDA:UniProtKB.
GO; GO:0070932; P:histone H3 deacetylation; ISO:MGI.
GO; GO:0008630; P:intrinsic apoptotic signaling pathway in response to DNA damage; IDA:UniProtKB.
GO; GO:0042771; P:intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator; ISS:UniProtKB.
GO; GO:0033210; P:leptin-mediated signaling pathway; IMP:UniProtKB.
GO; GO:0010934; P:macrophage cytokine production; IMP:UniProtKB.
GO; GO:0030225; P:macrophage differentiation; IMP:UniProtKB.
GO; GO:0006344; P:maintenance of chromatin silencing; ISO:MGI.
GO; GO:0007517; P:muscle organ development; IEA:UniProtKB-KW.
GO; GO:0060766; P:negative regulation of androgen receptor signaling pathway; ISO:MGI.
GO; GO:0043066; P:negative regulation of apoptotic process; ISS:UniProtKB.
GO; GO:2000480; P:negative regulation of cAMP-dependent protein kinase activity; ISS:UniProtKB.
GO; GO:0010667; P:negative regulation of cardiac muscle cell apoptotic process; ISO:MGI.
GO; GO:0060548; P:negative regulation of cell death; ISO:MGI.
GO; GO:0030308; P:negative regulation of cell growth; ISO:MGI.
GO; GO:2000655; P:negative regulation of cellular response to testosterone stimulus; ISO:MGI.
GO; GO:2000773; P:negative regulation of cellular senescence; ISS:UniProtKB.
GO; GO:0043392; P:negative regulation of DNA binding; ISO:MGI.
GO; GO:0043518; P:negative regulation of DNA damage response, signal transduction by p53 class mediator; ISO:MGI.
GO; GO:0043433; P:negative regulation of DNA-binding transcription factor activity; IMP:ParkinsonsUK-UCL.
GO; GO:0045599; P:negative regulation of fat cell differentiation; IMP:BHF-UCL.
GO; GO:2000270; P:negative regulation of fibroblast apoptotic process; ISO:MGI.
GO; GO:0010629; P:negative regulation of gene expression; ISO:MGI.
GO; GO:0060125; P:negative regulation of growth hormone secretion; ISO:MGI.
GO; GO:0051097; P:negative regulation of helicase activity; ISO:MGI.
GO; GO:0071441; P:negative regulation of histone H3-K14 acetylation; ISO:MGI.
GO; GO:1900113; P:negative regulation of histone H3-K9 trimethylation; IDA:BHF-UCL.
GO; GO:2000619; P:negative regulation of histone H4-K16 acetylation; ISO:MGI.
GO; GO:0043124; P:negative regulation of I-kappaB kinase/NF-kappaB signaling; ISS:UniProtKB.
GO; GO:1902166; P:negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator; IMP:BHF-UCL.
GO; GO:0043524; P:negative regulation of neuron apoptotic process; ISO:MGI.
GO; GO:1901215; P:negative regulation of neuron death; IGI:MGI.
GO; GO:0032088; P:negative regulation of NF-kappaB transcription factor activity; ISS:UniProtKB.
GO; GO:1902176; P:negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway; ISO:MGI.
GO; GO:2000757; P:negative regulation of peptidyl-lysine acetylation; ISS:UniProtKB.
GO; GO:0042326; P:negative regulation of phosphorylation; IMP:UniProtKB.
GO; GO:0031393; P:negative regulation of prostaglandin biosynthetic process; IMP:UniProtKB.
GO; GO:1901984; P:negative regulation of protein acetylation; ISO:MGI.
GO; GO:0051898; P:negative regulation of protein kinase B signaling; IMP:UniProtKB.
GO; GO:1900181; P:negative regulation of protein localization to nucleus; ISO:MGI.
GO; GO:1903427; P:negative regulation of reactive oxygen species biosynthetic process; ISO:MGI.
GO; GO:0032007; P:negative regulation of TOR signaling; IMP:UniProtKB.
GO; GO:0000122; P:negative regulation of transcription by RNA polymerase II; IDA:BHF-UCL.
GO; GO:0045892; P:negative regulation of transcription, DNA-templated; IDA:MGI.
GO; GO:0030512; P:negative regulation of transforming growth factor beta receptor signaling pathway; IDA:UniProtKB.
GO; GO:0032720; P:negative regulation of tumor necrosis factor production; ISO:MGI.
GO; GO:0001542; P:ovulation from ovarian follicle; IMP:MGI.
GO; GO:0018394; P:peptidyl-lysine acetylation; ISO:MGI.
GO; GO:0034983; P:peptidyl-lysine deacetylation; ISO:MGI.
GO; GO:0002821; P:positive regulation of adaptive immune response; ISS:UniProtKB.
GO; GO:1904179; P:positive regulation of adipose tissue development; IMP:UniProtKB.
GO; GO:0045766; P:positive regulation of angiogenesis; ISO:MGI.
GO; GO:0043065; P:positive regulation of apoptotic process; IMP:UniProtKB.
GO; GO:0097755; P:positive regulation of blood vessel diameter; ISO:MGI.
GO; GO:0043536; P:positive regulation of blood vessel endothelial cell migration; ISO:MGI.
GO; GO:2000481; P:positive regulation of cAMP-dependent protein kinase activity; IDA:UniProtKB.
GO; GO:0061051; P:positive regulation of cell growth involved in cardiac muscle cell development; ISO:MGI.
GO; GO:0008284; P:positive regulation of cell proliferation; ISS:UniProtKB.
GO; GO:2000774; P:positive regulation of cellular senescence; ISS:UniProtKB.
GO; GO:0010875; P:positive regulation of cholesterol efflux; IMP:UniProtKB.
GO; GO:0031937; P:positive regulation of chromatin silencing; ISO:MGI.
GO; GO:0043280; P:positive regulation of cysteine-type endopeptidase activity involved in apoptotic process; ISO:MGI.
GO; GO:0045739; P:positive regulation of DNA repair; ISS:UniProtKB.
GO; GO:1902237; P:positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway; IMP:UniProtKB.
GO; GO:0001938; P:positive regulation of endothelial cell proliferation; ISO:MGI.
GO; GO:0045722; P:positive regulation of gluconeogenesis; ISO:MGI.
GO; GO:0010460; P:positive regulation of heart rate; ISO:MGI.
GO; GO:0051574; P:positive regulation of histone H3-K9 methylation; ISO:MGI.
GO; GO:0046628; P:positive regulation of insulin receptor signaling pathway; ISS:UniProtKB.
GO; GO:0035774; P:positive regulation of insulin secretion involved in cellular response to glucose stimulus; ISO:MGI.
GO; GO:0016239; P:positive regulation of macroautophagy; IDA:UniProtKB.
GO; GO:2000111; P:positive regulation of macrophage apoptotic process; IMP:UniProtKB.
GO; GO:0045348; P:positive regulation of MHC class II biosynthetic process; ISO:MGI.
GO; GO:0010976; P:positive regulation of neuron projection development; ISO:MGI.
GO; GO:0014068; P:positive regulation of phosphatidylinositol 3-kinase signaling; IMP:UniProtKB.
GO; GO:0090312; P:positive regulation of protein deacetylation; ISO:MGI.
GO; GO:0001934; P:positive regulation of protein phosphorylation; IMP:UniProtKB.
GO; GO:0014858; P:positive regulation of skeletal muscle cell proliferation; ISO:MGI.
GO; GO:0051152; P:positive regulation of smooth muscle cell differentiation; IMP:BHF-UCL.
GO; GO:2000614; P:positive regulation of thyroid-stimulating hormone secretion; ISO:MGI.
GO; GO:0045944; P:positive regulation of transcription by RNA polymerase II; IDA:UniProtKB.
GO; GO:0043161; P:proteasome-mediated ubiquitin-dependent protein catabolic process; ISS:UniProtKB.
GO; GO:0006476; P:protein deacetylation; IDA:BHF-UCL.
GO; GO:0031648; P:protein destabilization; IDA:UniProtKB.
GO; GO:0016567; P:protein ubiquitination; ISS:UniProtKB.
GO; GO:0000720; P:pyrimidine dimer repair by nucleotide-excision repair; IMP:UniProtKB.
GO; GO:0042981; P:regulation of apoptotic process; ISS:UniProtKB.
GO; GO:0070857; P:regulation of bile acid biosynthetic process; IMP:UniProtKB.
GO; GO:0090335; P:regulation of brown fat cell differentiation; IMP:UniProtKB.
GO; GO:0042127; P:regulation of cell proliferation; ISO:MGI.
GO; GO:0032071; P:regulation of endodeoxyribonuclease activity; ISS:UniProtKB.
GO; GO:0010906; P:regulation of glucose metabolic process; IMP:UniProtKB.
GO; GO:0010883; P:regulation of lipid storage; IMP:UniProtKB.
GO; GO:0007346; P:regulation of mitotic cell cycle; ISS:UniProtKB.
GO; GO:0035358; P:regulation of peroxisome proliferator activated receptor signaling pathway; IMP:BHF-UCL.
GO; GO:0033158; P:regulation of protein import into nucleus, translocation; ISO:MGI.
GO; GO:0071900; P:regulation of protein serine/threonine kinase activity; ISO:MGI.
GO; GO:0034391; P:regulation of smooth muscle cell apoptotic process; IDA:UniProtKB.
GO; GO:0045471; P:response to ethanol; ISO:MGI.
GO; GO:0042542; P:response to hydrogen peroxide; ISS:UniProtKB.
GO; GO:0032868; P:response to insulin; IDA:UniProtKB.
GO; GO:0044321; P:response to leptin; IMP:UniProtKB.
GO; GO:0006979; P:response to oxidative stress; ISO:MGI.
GO; GO:0006364; P:rRNA processing; IEA:UniProtKB-KW.
GO; GO:0000012; P:single strand break repair; ISS:UniProtKB.
GO; GO:0007283; P:spermatogenesis; IMP:MGI.
GO; GO:0090400; P:stress-induced premature senescence; ISO:MGI.
GO; GO:0007179; P:transforming growth factor beta receptor signaling pathway; ISO:MGI.
GO; GO:0006642; P:triglyceride mobilization; IMP:BHF-UCL.
GO; GO:0070914; P:UV-damage excision repair; ISO:MGI.
GO; GO:0050872; P:white fat cell differentiation; IMP:BHF-UCL.
Gene3D; 3.30.1600.10; -; 1.
InterPro; IPR029035; DHS-like_NAD/FAD-binding_dom.
InterPro; IPR003000; Sirtuin.
InterPro; IPR026591; Sirtuin_cat_small_dom_sf.
InterPro; IPR026590; Ssirtuin_cat_dom.
Pfam; PF02146; SIR2; 1.
SUPFAM; SSF52467; SSF52467; 1.
PROSITE; PS50305; SIRTUIN; 1.
1: Evidence at protein level;
Acetylation; Alternative splicing; Apoptosis; Biological rhythms;
Complete proteome; Cytoplasm; Developmental protein; Differentiation;
Hydrolase; Metal-binding; Mitochondrion; Myogenesis; NAD; Nucleus;
Phosphoprotein; Reference proteome; rRNA processing; S-nitrosylation;
Transcription; Transcription regulation; Zinc.
INIT_MET 1 1 Removed. {ECO:0000250|UniProtKB:Q96EB6}.
CHAIN 2 737 NAD-dependent protein deacetylase
sirtuin-1.
/FTId=PRO_0000110257.
CHAIN 2 525 SirtT1 75 kDa fragment.
{ECO:0000250|UniProtKB:Q96EB6}.
/FTId=PRO_0000415290.
DOMAIN 236 490 Deacetylase sirtuin-type.
{ECO:0000255|PROSITE-ProRule:PRU00236}.
NP_BIND 253 272 NAD. {ECO:0000250|UniProtKB:Q8IXJ6}.
NP_BIND 337 340 NAD. {ECO:0000250|UniProtKB:Q8IXJ6}.
NP_BIND 432 434 NAD. {ECO:0000250|UniProtKB:Q8IXJ6}.
NP_BIND 457 459 NAD. {ECO:0000250|UniProtKB:Q8IXJ6}.
REGION 2 268 Interaction with HIST1H1E.
{ECO:0000250|UniProtKB:Q96EB6}.
REGION 2 131 Interaction with CLOCK.
{ECO:0000269|PubMed:18662547}.
REGION 135 533 Interaction with CCAR2.
{ECO:0000250|UniProtKB:Q96EB6}.
REGION 248 251 Required for interaction with the
sumoylated form of CCAR2.
{ECO:0000250|UniProtKB:Q96EB6}.
MOTIF 32 39 Nuclear localization signal.
MOTIF 138 145 Nuclear export signal.
MOTIF 223 230 Nuclear localization signal.
MOTIF 425 431 Nuclear export signal.
COMPBIAS 2 131 Ala-rich.
COMPBIAS 155 158 Poly-Asp.
ACT_SITE 355 355 Proton acceptor.
{ECO:0000269|PubMed:11672522,
ECO:0000269|PubMed:12887892,
ECO:0000269|PubMed:15220471,
ECO:0000269|PubMed:16892051}.
METAL 363 363 Zinc. {ECO:0000255|PROSITE-
ProRule:PRU00236}.
METAL 366 366 Zinc. {ECO:0000255|PROSITE-
ProRule:PRU00236}.
METAL 387 387 Zinc. {ECO:0000255|PROSITE-
ProRule:PRU00236}.
METAL 390 390 Zinc. {ECO:0000255|PROSITE-
ProRule:PRU00236}.
BINDING 474 474 NAD; via amide nitrogen. {ECO:0000250}.
MOD_RES 2 2 N-acetylalanine.
{ECO:0000250|UniProtKB:Q96EB6}.
MOD_RES 14 14 Phosphoserine.
{ECO:0000250|UniProtKB:Q96EB6}.
MOD_RES 25 25 Phosphoserine.
{ECO:0000250|UniProtKB:Q96EB6}.
MOD_RES 46 46 Phosphoserine; by MAPK8.
{ECO:0000250|UniProtKB:Q96EB6}.
MOD_RES 151 151 Phosphoserine.
{ECO:0000244|PubMed:21183079}.
MOD_RES 154 154 Phosphoserine.
{ECO:0000244|PubMed:21183079}.
MOD_RES 164 164 Phosphoserine.
{ECO:0000250|UniProtKB:Q96EB6}.
MOD_RES 165 165 Phosphoserine.
{ECO:0000250|UniProtKB:Q96EB6}.
MOD_RES 387 387 S-nitrosocysteine.
{ECO:0000269|PubMed:20972425}.
MOD_RES 390 390 S-nitrosocysteine.
{ECO:0000269|PubMed:20972425}.
MOD_RES 522 522 Phosphothreonine; by DYRK1A, DYRK3 and
MAPK8. {ECO:0000269|PubMed:20167603}.
MOD_RES 527 527 Phosphoserine.
{ECO:0000250|UniProtKB:Q96EB6}.
MOD_RES 536 536 Phosphothreonine.
{ECO:0000250|UniProtKB:Q96EB6}.
MOD_RES 649 649 Phosphoserine; by CaMK2.
{ECO:0000269|PubMed:19680552}.
MOD_RES 651 651 Phosphoserine; by CaMK2.
{ECO:0000250|UniProtKB:Q96EB6}.
MOD_RES 737 737 Phosphoserine.
{ECO:0000250|UniProtKB:Q96EB6}.
VAR_SEQ 446 629 Missing (in isoform 2). {ECO:0000305}.
/FTId=VSP_042190.
MUTAGEN 37 38 RR->AA: Abolishes nuclear localization;
when associated with A-227; A-228; A-229
and A-230.
MUTAGEN 138 145 LLLTDGLL->AAATGAA: Abolishes nuclear
export; when associated with A-425; A-
427; A-428; A-429; A-430 and A-431.
{ECO:0000269|PubMed:17197703}.
MUTAGEN 154 154 S->A: Abolishes in vitro phosphorylation
by CaMK2; when associated with A-649; A-
651 and A-683.
{ECO:0000269|PubMed:19680552}.
MUTAGEN 227 230 KKRK->AAAA: Abolishes nuclear
localization; when associated with A-37
and A-38. {ECO:0000269|PubMed:17197703}.
MUTAGEN 355 355 H->Y: Loss of deacetylation activity.
Loss of inhibition of E2F1 and loss of
coactivation of FOXO1-mediated
transcription.
{ECO:0000269|PubMed:11672522,
ECO:0000269|PubMed:12887892,
ECO:0000269|PubMed:15220471,
ECO:0000269|PubMed:16892051}.
MUTAGEN 363 363 C->S: Does not affect S-nitrosylation.
{ECO:0000269|PubMed:20972425}.
MUTAGEN 366 366 C->S: Does not affect S-nitrosylation.
{ECO:0000269|PubMed:20972425}.
MUTAGEN 387 387 C->S: Impairs S-nitrosylation. Abolishes
S-nitrosylation; when associated with S-
390. {ECO:0000269|PubMed:20972425}.
MUTAGEN 390 390 C->S: Impairs S-nitrosylation. Abolishes
S-nitrosylation; when associated with S-
387. {ECO:0000269|PubMed:20972425}.
MUTAGEN 425 431 VDLLIVI->ADAAAAA: Abolishes nuclear
export; when associated with A-138; A-
139; A-140; A-144 and A-145.
{ECO:0000269|PubMed:17197703}.
MUTAGEN 522 522 T->D: Increased deacetylase activity
toward p53/TP53 and increases resistance
to genotoxic stress (mimicks residue
phosphorylation).
{ECO:0000269|PubMed:20167603}.
MUTAGEN 522 522 T->V: Reduces phosphorylation. Impairs
deacetylase activity toward p53/TP53 and
decreases resistance to genotoxic stress.
Does not change nuclear localization.
{ECO:0000269|PubMed:20167603}.
MUTAGEN 649 649 S->A: Abolishes in vitro phosphorylation
by CaMK2; when associated with A-154; A-
651 and A-683.
{ECO:0000269|PubMed:19680552}.
MUTAGEN 651 651 S->A: Abolishes in vitro phosphorylation
by CaMK2; when associated with A-154; A-
649 and A-683.
{ECO:0000269|PubMed:19680552}.
MUTAGEN 683 683 S->A: Abolishes in vitro phosphorylation
by CaMK2; when associated with A-154; A-
649 and A-651.
{ECO:0000269|PubMed:19680552}.
SEQUENCE 737 AA; 80372 MW; 7F15625E29433119 CRC64;
MADEVALALQ AAGSPSAAAA MEAASQPADE PLRKRPRRDG PGLGRSPGEP SAAVAPAAAG
CEAASAAAPA ALWREAAGAA ASAEREAPAT AVAGDGDNGS GLRREPRAAD DFDDDEGEEE
DEAAAAAAAA AIGYRDNLLL TDGLLTNGFH SCESDDDDRT SHASSSDWTP RPRIGPYTFV
QQHLMIGTDP RTILKDLLPE TIPPPELDDM TLWQIVINIL SEPPKRKKRK DINTIEDAVK
LLQECKKIIV LTGAGVSVSC GIPDFRSRDG IYARLAVDFP DLPDPQAMFD IEYFRKDPRP
FFKFAKEIYP GQFQPSLCHK FIALSDKEGK LLRNYTQNID TLEQVAGIQR ILQCHGSFAT
ASCLICKYKV DCEAVRGDIF NQVVPRCPRC PADEPLAIMK PEIVFFGENL PEQFHRAMKY
DKDEVDLLIV IGSSLKVRPV ALIPSSIPHE VPQILINREP LPHLHFDVEL LGDCDVIINE
LCHRLGGEYA KLCCNPVKLS EITEKPPRPQ KELVHLSELP PTPLHISEDS SSPERTVPQD
SSVIATLVDQ ATNNNVNDLE VSESSCVEEK PQEVQTSRNV ENINVENPDF KAVGSSTADK
NERTSVAETV RKCWPNRLAK EQISKRLEGN QYLFVPPNRY IFHGAEVYSD SEDDVLSSSS
CGSNSDSGTC QSPSLEEPLE DESEIEEFYN GLEDDTERPE CAGGSGFGAD GGDQEVVNEA
IATRQELTDV NYPSDKS


Related products :

Catalog number Product name Quantity
EIAAB38504 Mouse,mSIR2a,Mus musculus,NAD-dependent deacetylase sirtuin-1,Sir2,SIR2alpha,Sir2l1,SIR2-like protein 1,Sirt1
18-003-43078 NAD-dependent deacetylase sirtuin-2 - EC 3.5.1.-; SIR2-like; SIR2-like protein 2 Polyclonal 0.1 mg Protein A
18-003-43078 NAD-dependent deacetylase sirtuin-2 - EC 3.5.1.-; SIR2-like; SIR2-like protein 2 Polyclonal 0.05 mg Aff Pur
18-003-43079 NAD-dependent deacetylase sirtuin-1 - EC 3.5.1.-; hSIRT1; hSIR2; SIR2-like protein 1 Polyclonal 0.1 mg Protein A
18-003-43080 NAD-dependent deacetylase sirtuin-3. mitochondrial - EC 3.5.1.-; SIR2-like protein 3; hSIRT3 Polyclonal 0.05 mg Aff Pur
18-003-43080 NAD-dependent deacetylase sirtuin-3. mitochondrial - EC 3.5.1.-; SIR2-like protein 3; hSIRT3 Polyclonal 0.1 mg Protein A
18-003-43079 NAD-dependent deacetylase sirtuin-1 - EC 3.5.1.-; hSIRT1; hSIR2; SIR2-like protein 1 Polyclonal 0.05 mg Aff Pur
EIAAB38516 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-7,Sir2l7,SIR2-like protein 7,Sirt7
EIAAB38510 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-5,Sir2l5,SIR2-like protein 5,Sirt5
EIAAB38513 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-6,Sir2l6,SIR2-like protein 6,Sirt6
E0430r ELISA NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
E0430r ELISA kit NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
EIAAB38511 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-5,SIR2L5,SIR2-like protein 5,SIRT5
EIAAB38515 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-7,SIR2L7,SIR2-like protein 7,SIRT7
EIAAB38514 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-6,SIR2L6,SIR2-like protein 6,SIRT6
U0430r CLIA NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
U2135m CLIA Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
E0430m ELISA Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
E0430m ELISA kit Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
U0430m CLIA Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
U2135m CLIA kit Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
E2135m ELISA Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
E2135m ELISA kit Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
EIAAB38505 Homo sapiens,hSIR2,hSIRT1,Human,NAD-dependent deacetylase sirtuin-1,SIR2L1,SIR2-like protein 1,SIRT1
E0430h ELISA kit Homo sapiens,Human,NAD-dependent deacetylase sirtuin-2,SIR2L,SIR2L2,SIR2-like protein 2,SIRT2 96T


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur | Gentaur





GENTAUR Ltd.
Unicorn House, Station Cl
Hertfordshire, Potters Bar EN6 1TL
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017
RIB 30004 00187 00010092253 10
BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG
IBAN FR76 3000 4001 8700 0100 9225 310
france@gentaur.com | Gentaur | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur | Gentaur