Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Non-structural polyprotein (Polyprotein nsP1234) (P1234) [Cleaved into: P123; P123'; mRNA-capping enzyme nsP1 (EC 2.1.1.-) (EC 2.7.7.-) (Non-structural protein 1); Protease nsP2 (EC 3.1.3.33) (EC 3.4.22.-) (EC 3.6.1.15) (EC 3.6.4.13) (Non-structural protein 2) (nsP2); Non-structural protein 3 (nsP3); Non-structural protein 3' (nsP3'); RNA-directed RNA polymerase nsP4 (EC 2.7.7.48) (Non-structural protein 4) (nsP4)]

 POLN_SINDV              Reviewed;        2512 AA.
P03317;
21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
21-JUL-1986, sequence version 1.
22-NOV-2017, entry version 150.
RecName: Full=Non-structural polyprotein;
AltName: Full=Polyprotein nsP1234;
Short=P1234;
Contains:
RecName: Full=P123;
Contains:
RecName: Full=P123';
Contains:
RecName: Full=mRNA-capping enzyme nsP1;
EC=2.1.1.-;
EC=2.7.7.-;
AltName: Full=Non-structural protein 1;
Contains:
RecName: Full=Protease nsP2;
EC=3.1.3.33;
EC=3.4.22.-;
EC=3.6.1.15;
EC=3.6.4.13;
AltName: Full=Non-structural protein 2;
Short=nsP2;
Contains:
RecName: Full=Non-structural protein 3;
Short=nsP3;
Contains:
RecName: Full=Non-structural protein 3';
Short=nsP3';
Contains:
RecName: Full=RNA-directed RNA polymerase nsP4;
EC=2.7.7.48;
AltName: Full=Non-structural protein 4;
Short=nsP4;
Sindbis virus (SINV).
Viruses; ssRNA viruses; ssRNA positive-strand viruses, no DNA stage;
Togaviridae; Alphavirus; WEEV complex.
NCBI_TaxID=11034;
NCBI_TaxID=48156; Acrocephalus scirpaceus (Eurasian reed-warbler).
NCBI_TaxID=7158; Aedes.
NCBI_TaxID=53527; Culex.
NCBI_TaxID=9606; Homo sapiens (Human).
NCBI_TaxID=45807; Motacilla alba (White wagtail) (Pied wagtail).
NCBI_TaxID=177155; Streptopelia turtur.
[1]
NUCLEOTIDE SEQUENCE [GENOMIC RNA].
PubMed=6322438; DOI=10.1016/0042-6822(84)90428-8;
Strauss E.G., Rice C.M., Strauss J.H.;
"Complete nucleotide sequence of the genomic RNA of Sindbis virus.";
Virology 133:92-110(1984).
[2]
NUCLEOTIDE SEQUENCE [GENOMIC RNA] OF 1-54.
PubMed=6308269; DOI=10.1016/S0022-2836(83)80319-2;
Ou J.H., Strauss E.G., Strauss J.H.;
"The 5'-terminal sequences of the genomic RNAs of several
alphaviruses.";
J. Mol. Biol. 168:1-15(1983).
[3]
NUCLEOTIDE SEQUENCE [GENOMIC RNA] OF 1429-2512.
PubMed=6577423; DOI=10.1073/pnas.80.17.5271;
Strauss E.G., Rice C.M., Strauss J.H.;
"Sequence coding for the alphavirus nonstructural proteins is
interrupted by an opal termination codon.";
Proc. Natl. Acad. Sci. U.S.A. 80:5271-5275(1983).
[4]
NUCLEOTIDE SEQUENCE [GENOMIC RNA] OF 2431-2512.
PubMed=6291034; DOI=10.1073/pnas.79.17.5235;
Ou J.-H., Rice C.M., Dalgarno L., Strauss E.G., Strauss J.H.;
"Sequence studies of several alphavirus genomic RNAs in the region
containing the start of the subgenomic RNA.";
Proc. Natl. Acad. Sci. U.S.A. 79:5235-5239(1982).
[5]
SUBCELLULAR LOCATION OF NON-STRUCTURAL PROTEINS.
PubMed=2904446; DOI=10.1083/jcb.107.6.2075;
Froshauer S., Kartenbeck J., Helenius A.;
"Alphavirus RNA replicase is located on the cytoplasmic surface of
endosomes and lysosomes.";
J. Cell Biol. 107:2075-2086(1988).
[6]
PROTEOLYTIC PROCESSING OF POLYPROTEIN.
PubMed=2529379;
Hardy W.R., Strauss J.H.;
"Processing the nonstructural polyproteins of sindbis virus:
nonstructural proteinase is in the C-terminal half of nsP2 and
functions both in cis and in trans.";
J. Virol. 63:4653-4664(1989).
[7]
MUTAGENESIS OF TYR-1896.
PubMed=2521676;
Li G.P., Rice C.M.;
"Mutagenesis of the in-frame opal termination codon preceding nsP4 of
Sindbis virus: studies of translational readthrough and its effect on
virus replication.";
J. Virol. 63:1326-1337(1989).
[8]
PROTEOLYTIC PROCESSING OF POLYPROTEIN BY NSP2.
PubMed=2142454;
de Groot R.J., Hardy W.R., Shirako Y., Strauss J.H.;
"Cleavage-site preferences of Sindbis virus polyproteins containing
the non-structural proteinase. Evidence for temporal regulation of
polyprotein processing in vivo.";
EMBO J. 9:2631-2638(1990).
[9]
UBIQUITIN DEGRADATION OF NSP4.
PubMed=1924357; DOI=10.1073/pnas.88.20.8967;
de Groot R.J., Ruemenapf T., Kuhn R.J., Strauss E.G., Strauss J.H.;
"Sindbis virus RNA polymerase is degraded by the N-end rule pathway.";
Proc. Natl. Acad. Sci. U.S.A. 88:8967-8971(1991).
[10]
MUTAGENESIS OF CYS-1021; HIS-1098 AND TRP-1099.
PubMed=1448929; DOI=10.1016/0042-6822(92)90268-T;
Strauss E.G., De Groot R.J., Levinson R., Strauss J.H.;
"Identification of the active site residues in the nsP2 proteinase of
Sindbis virus.";
Virology 191:932-940(1992).
[11]
FUNCTION.
PubMed=7517863;
Lemm J.A., Ruemenapf T., Strauss E.G., Strauss J.H., Rice C.M.;
"Polypeptide requirements for assembly of functional Sindbis virus
replication complexes: a model for the temporal regulation of
minus- and plus-strand RNA synthesis.";
EMBO J. 13:2925-2934(1994).
[12]
FUNCTION OF P123.
PubMed=8107248;
Shirako Y., Strauss J.H.;
"Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4
function in minus-strand RNA synthesis, whereas cleaved products from
P123 are required for efficient plus-strand RNA synthesis.";
J. Virol. 68:1874-1885(1994).
[13]
FUNCTION (MRNA-CAPPING ENZYME NSP1).
PubMed=7831320; DOI=10.1073/pnas.92.2.507;
Ahola T., Kaeaeriaeinen L.;
"Reaction in alphavirus mRNA capping: formation of a covalent complex
of nonstructural protein nsP1 with 7-methyl-GMP.";
Proc. Natl. Acad. Sci. U.S.A. 92:507-511(1995).
[14]
MUTAGENESIS OF HIS-39; HIS-81; ASP-91; ARG-94; TYR-249 AND ILE-369.
PubMed=8610444; DOI=10.1006/viro.1996.0147;
Wang H.-L., O'Rear J., Stollar V.;
"Mutagenesis of the Sindbis virus nsP1 protein: effects on
methyltransferase activity and viral infectivity.";
Virology 217:527-531(1996).
[15]
MUTAGENESIS OF TYR-1903.
PubMed=9499091;
Shirako Y., Strauss J.H.;
"Requirement for an aromatic amino acid or histidine at the N-terminus
of Sindbis virus RNA polymerase.";
J. Virol. 72:2310-2315(1998).
[16]
PALMITOYLATION AT CYS-420, AND MUTAGENESIS OF CYS-420.
PubMed=10888610; DOI=10.1128/JVI.74.15.6725-6733.2000;
Ahola T., Kujala P., Tuittila M., Blom T., Laakkonen P., Hinkkanen A.,
Auvinen P.;
"Effects of palmitoylation of replicase protein nsP1 on alphavirus
infection.";
J. Virol. 74:6725-6733(2000).
[17]
INDUCTION.
PubMed=16391235; DOI=10.1101/gad.357006;
Ventoso I., Sanz M.A., Molina S., Berlanga J.J., Carrasco L.,
Esteban M.;
"Translational resistance of late alphavirus mRNA to eIF2alpha
phosphorylation: a strategy to overcome the antiviral effect of
protein kinase PKR.";
Genes Dev. 20:87-100(2006).
[18]
FUNCTION OF NSP2.
PubMed=22514352; DOI=10.1128/JVI.00541-12;
Akhrymuk I., Kulemzin S.V., Frolova E.I.;
"Evasion of the innate immune response: the Old World alphavirus nsP2
protein induces rapid degradation of Rpb1, a catalytic subunit of RNA
polymerase II.";
J. Virol. 86:7180-7191(2012).
-!- FUNCTION: P123 and P123' are short-lived polyproteins,
accumulating during early stage of infection. P123 is directly
translated from the genome, whereas P123' is a product of the
cleavage of P1234. They localize the viral replication complex to
the cytoplasmic surface of modified endosomes and lysosomes. By
interacting with nsP4, they start viral genome replication into
antigenome. After these early events, P123 and P123' are cleaved
sequentially into nsP1, nsP2 and nsP3/nsP3'. This sequence of
delayed processing would allow correct assembly and membrane
association of the RNA polymerase complex.
-!- FUNCTION: nsP1 is a cytoplasmic capping enzyme. This function is
necessary since all viral RNAs are synthesized in the cytoplasm,
and host capping enzymes are restricted to the nucleus. The
enzymatic reaction involves a covalent link between 7-methyl-GMP
and nsP1, whereas eukaryotic capping enzymes form a covalent
complex only with GMP. nsP1 capping would consist in the following
reactions: GTP is first methylated and then forms the m7GMp-nsP1
complex, from which 7-methyl-GMP complex is transferred to the
mRNA to create the cap structure. Palmitoylated nsP1 is remodeling
host cell cytoskeleton, and induces filopodium-like structure
formation at the surface of the host cell.
{ECO:0000269|PubMed:7831320}.
-!- FUNCTION: nsP2 has two separate domain with different biological
activities. The N-terminal section is part of the RNA polymerase
complex and has RNA trisphosphatase and RNA helicase activity. The
C-terminal section harbors a protease that specifically cleaves
and releases the four mature proteins. Also inhibits cellular
transcription by inducing rapid degradation of POLR2A, a catalytic
subunit of the RNAPII complex. The resulting inhibition of
cellular protein synthesis serves to ensure maximal viral gene
expression and to evade host immune response.
-!- FUNCTION: nsP3 and nsP3' are essential for minus strand and
subgenomic 26S mRNA synthesis.
-!- FUNCTION: nsP4 is an RNA dependent RNA polymerase. It replicates
genomic and antigenomic RNA by recognizing replications specific
signals. Transcribes also a 26S subgenomic mRNA by initiating RNA
synthesis internally on antigenomic RNA. This 26S mRNA codes for
structural proteins. nsP4 is a short-lived protein regulated by
several ways: the opal codon readthrough and degradation by
ubiquitin pathway.
-!- CATALYTIC ACTIVITY: S-adenosyl-L-methionine + GTP = m(7)GTP.
-!- CATALYTIC ACTIVITY: m7GTP + [nsP1 protein] = m7GMP-[nsP1 protein]
+ diphosphate.
-!- CATALYTIC ACTIVITY: m7GMP-[nsP1 protein] + (5')pp-Pur-mRNA =
m(7)G(5')ppp-Pur-mRNA + [nsP1 protein].
-!- CATALYTIC ACTIVITY: (5')ppp-mRNA + H(2)O = (5')pp-mRNA +
phosphate.
-!- CATALYTIC ACTIVITY: A 5'-phosphopolynucleotide + H(2)O = a
polynucleotide + phosphate.
-!- CATALYTIC ACTIVITY: NTP + H(2)O = NDP + phosphate.
-!- CATALYTIC ACTIVITY: ATP + H(2)O = ADP + phosphate.
-!- CATALYTIC ACTIVITY: Nucleoside triphosphate + RNA(n) = diphosphate
+ RNA(n+1). {ECO:0000255|PROSITE-ProRule:PRU00539}.
-!- SUBUNIT: P123 interacts with nsP4; nsP1, nsP2, nsP3 and nsP4
interact with each other, and with uncharacterized host factors.
-!- SUBCELLULAR LOCATION: Non-structural polyprotein: Host endosome
membrane; Peripheral membrane protein; Cytoplasmic side. Host
lysosome membrane; Peripheral membrane protein; Cytoplasmic side.
Note=Located on the cytoplasmic surface of modified endosomes and
lysosomes, also called cytopathic vacuoles type I (CPVI). These
vacuoles contain numerous small circular invaginations (spherules)
which may be the sites of RNA synthesis.
-!- SUBCELLULAR LOCATION: P123: Host endosome membrane; Peripheral
membrane protein; Cytoplasmic side. Host lysosome membrane;
Peripheral membrane protein; Cytoplasmic side.
-!- SUBCELLULAR LOCATION: P123': Host endosome membrane; Peripheral
membrane protein; Cytoplasmic side. Host lysosome membrane;
Peripheral membrane protein; Cytoplasmic side.
-!- SUBCELLULAR LOCATION: mRNA-capping enzyme nsP1: Host endosome
membrane; Peripheral membrane protein; Cytoplasmic side. Host
lysosome membrane; Peripheral membrane protein; Cytoplasmic side.
Host cell membrane; Peripheral membrane protein; Cytoplasmic side.
Host cell projection, host filopodium. Note=In the late phase of
infection, the polyprotein is quickly cleaved before localization
to cellular membranes. Then a fraction of nsP1 localizes to the
inner surface of the plasma membrane and its filopodial
extensions.
-!- SUBCELLULAR LOCATION: Protease nsP2: Host endosome membrane;
Peripheral membrane protein; Cytoplasmic side. Host lysosome
membrane; Peripheral membrane protein; Cytoplasmic side. Host
nucleus. Note=In the late phase of infection, the polyprotein is
quickly cleaved before localization to cellular membranes. Then
approximately half of nsP2 is found in the nucleus.
-!- SUBCELLULAR LOCATION: Non-structural protein 3: Host endosome
membrane; Peripheral membrane protein; Cytoplasmic side. Host
lysosome membrane; Peripheral membrane protein; Cytoplasmic side.
Host cytoplasm. Note=In the late phase of infection, the
polyprotein is quickly cleaved before localization to cellular
membranes. Then nsP3 and nsP3' seems to aggregate in cytoplasm.
-!- SUBCELLULAR LOCATION: Non-structural protein 3': Host endosome
membrane; Peripheral membrane protein; Cytoplasmic side. Host
lysosome membrane; Peripheral membrane protein; Cytoplasmic side.
Host cytoplasm. Note=In the late phase of infection, the
polyprotein is quickly cleaved before localization to cellular
membranes. Then nsP3 and nsP3' seems to aggregate in cytoplasm.
-!- SUBCELLULAR LOCATION: RNA-directed RNA polymerase nsP4: Host
endosome membrane; Peripheral membrane protein; Cytoplasmic side.
Host lysosome membrane; Peripheral membrane protein; Cytoplasmic
side.
-!- INDUCTION: Viral replication produces dsRNA in the late phase of
infection, resulting in a strong activation of host EIF2AK2/PKR,
leading to almost complete phosphorylation of EIF2A. This
inactivates completely cellular translation initiation, resulting
in a dramatic shutoff of proteins synthesis. Translation of viral
non-structural polyprotein and all cellular proteins are stopped
in infected cell between 2 and 4 hours post infection. Only the
26S mRNA is still translated into viral structural proteins,
presumably through a unique mechanism of enhancer element which
counteract the translation inhibition mediated by EIF2A. By doing
this, the virus uses the cellular defense for its own advantage:
shutoff of cellular translation allows to produce big amounts of
structural proteins needed for the virus to bud out of the doomed
cell. {ECO:0000269|PubMed:16391235}.
-!- PTM: Specific enzymatic cleavages in vivo yield mature proteins.
The polyprotein is synthesized as P123, or P1234 by stop codon
readthrough. These polyproteins are processed differently
depending on the stage of infection. In early stages, P1234 is
first cleaved in trans, through its nsP2 protease activity,
releasing P123' and nsP4. P123/P123' and nsP4 start to replicate
the viral genome into its antigenome. After these early events,
nsP1 is cleaved in cis by nsP2 protease, releasing the P23/P23'
polyprotein. Cleavage of nsP1 exposes an 'activator' at the N-
terminus of P23/P23' which induces its cleavage into nsP2 and nsP3
by the viral protease. This sequence of delayed processing would
allow correct assembly and membrane association of the RNA-
polymerase complex. In the late stage of infection, the presence
of free nsP2 in the cytoplasm cleaves P1234 quickly into P12 and
P34, then into the four nsP. {ECO:0000269|PubMed:2142454,
ECO:0000269|PubMed:2529379}.
-!- PTM: nsP1 is palmitoylated by host. {ECO:0000269|PubMed:10888610}.
-!- PTM: nsP4 is ubiquitinated; targets the protein for rapid
degradation via the ubiquitin system.
-!- MISCELLANEOUS: The genome codes for P123, but readthrough of a
terminator codon UGA occurs between the codons for Tyr-1896 and
Leu-1897. This readthrough produces P1234, cleaved quickly by nsP2
into P123' and nsP4. Further processing of p123' gives nsP1, nsP2
and nsP3' which is 6 amino acids longer than nsP3 since the
cleavage site is after the readthrough. This unusual molecular
mechanism ensures that few nsP4 are produced compared to other
non-structural proteins. Mutant viruses with no alternative
termination site grow significantly slower than wild-type virus.
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; J02363; AAA96975.1; ALT_SEQ; Genomic_RNA.
PIR; A03917; MNWVS.
RefSeq; NP_062889.1; NC_001547.1.
PDB; 4GUA; X-ray; 2.85 A; A/B/C=1011-1675.
PDBsum; 4GUA; -.
ProteinModelPortal; P03317; -.
SMR; P03317; -.
ELM; P03317; -.
MEROPS; C09.001; -.
SwissPalm; P03317; -.
GeneID; 1502154; -.
KEGG; vg:1502154; -.
OrthoDB; VOG09000007; -.
PMAP-CutDB; P03317; -.
Proteomes; UP000006710; Genome.
GO; GO:0044175; C:host cell endosome membrane; IEA:UniProtKB-SubCell.
GO; GO:0044176; C:host cell filopodium; IEA:UniProtKB-SubCell.
GO; GO:0044188; C:host cell lysosomal membrane; IEA:UniProtKB-SubCell.
GO; GO:0042025; C:host cell nucleus; IEA:UniProtKB-SubCell.
GO; GO:0020002; C:host cell plasma membrane; IEA:UniProtKB-SubCell.
GO; GO:0016020; C:membrane; IEA:UniProtKB-KW.
GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
GO; GO:0008234; F:cysteine-type peptidase activity; IEA:UniProtKB-KW.
GO; GO:0005525; F:GTP binding; IEA:UniProtKB-KW.
GO; GO:0004386; F:helicase activity; IEA:UniProtKB-KW.
GO; GO:0008174; F:mRNA methyltransferase activity; IMP:CACAO.
GO; GO:0004651; F:polynucleotide 5'-phosphatase activity; IEA:UniProtKB-EC.
GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
GO; GO:0003968; F:RNA-directed 5'-3' RNA polymerase activity; IEA:UniProtKB-KW.
GO; GO:0006370; P:7-methylguanosine mRNA capping; IEA:UniProtKB-KW.
GO; GO:0039690; P:positive stranded viral RNA replication; IMP:CACAO.
GO; GO:0039523; P:suppression by virus of host RNA polymerase II activity; IEA:UniProtKB-KW.
GO; GO:0006351; P:transcription, DNA-templated; IEA:InterPro.
InterPro; IPR027351; (+)RNA_virus_helicase_core_dom.
InterPro; IPR002588; Alphavirus-like_MT_dom.
InterPro; IPR002620; Alphavirus_nsp2pro.
InterPro; IPR002589; Macro_dom.
InterPro; IPR027417; P-loop_NTPase.
InterPro; IPR007094; RNA-dir_pol_PSvirus.
InterPro; IPR029063; SAM-dependent_MTases.
InterPro; IPR001788; Tymovirus_RNA-dep_RNA_pol.
Pfam; PF01661; Macro; 1.
Pfam; PF01707; Peptidase_C9; 1.
Pfam; PF00978; RdRP_2; 1.
Pfam; PF01443; Viral_helicase1; 1.
Pfam; PF01660; Vmethyltransf; 1.
SMART; SM00506; A1pp; 1.
SUPFAM; SSF52540; SSF52540; 1.
SUPFAM; SSF53335; SSF53335; 1.
PROSITE; PS51743; ALPHAVIRUS_MT; 1.
PROSITE; PS51154; MACRO; 1.
PROSITE; PS51520; NSP2PRO; 1.
PROSITE; PS51657; PSRV_HELICASE; 1.
PROSITE; PS50507; RDRP_SSRNA_POS; 1.
1: Evidence at protein level;
3D-structure; ATP-binding; Complete proteome;
Eukaryotic host gene expression shutoff by virus;
Eukaryotic host transcription shutoff by virus; GTP-binding; Helicase;
Host cell membrane; Host cell projection; Host cytoplasm;
Host endosome; Host gene expression shutoff by virus; Host lysosome;
Host membrane; Host nucleus; Host-virus interaction; Hydrolase;
Inhibition of host RNA polymerase II by virus; Lipoprotein; Membrane;
Methyltransferase; mRNA capping; mRNA processing;
Multifunctional enzyme; Nucleotide-binding; Nucleotidyltransferase;
Palmitate; Phosphoprotein; Protease; Reference proteome;
RNA suppression of termination; RNA-binding;
RNA-directed RNA polymerase; S-adenosyl-L-methionine; Thiol protease;
Transferase; Ubl conjugation; Viral RNA replication.
CHAIN 1 2512 Non-structural polyprotein.
/FTId=PRO_0000308405.
CHAIN 1 1902 P123'.
/FTId=PRO_0000227771.
CHAIN 1 1896 P123.
/FTId=PRO_0000227772.
CHAIN 1 540 mRNA-capping enzyme nsP1.
/FTId=PRO_0000041236.
CHAIN 541 1347 Protease nsP2.
/FTId=PRO_0000041237.
CHAIN 1348 1902 Non-structural protein 3'.
/FTId=PRO_0000041238.
CHAIN 1348 1896 Non-structural protein 3.
/FTId=PRO_0000227773.
CHAIN 1903 2512 RNA-directed RNA polymerase nsP4.
/FTId=PRO_0000041239.
DOMAIN 30 260 Alphavirus-like MT. {ECO:0000255|PROSITE-
ProRule:PRU01079}.
DOMAIN 695 850 (+)RNA virus helicase ATP-binding.
DOMAIN 851 999 (+)RNA virus helicase C-terminal.
DOMAIN 1012 1341 Peptidase C9. {ECO:0000255|PROSITE-
ProRule:PRU00853}.
DOMAIN 1348 1507 Macro. {ECO:0000255|PROSITE-
ProRule:PRU00490}.
DOMAIN 2266 2381 RdRp catalytic. {ECO:0000255|PROSITE-
ProRule:PRU00539}.
NP_BIND 726 733 ATP. {ECO:0000255}.
REGION 245 264 nsP1 membrane-binding. {ECO:0000250}.
REGION 1013 1032 Nucleolus localization signal.
{ECO:0000250}.
MOTIF 1196 1200 Nuclear localization signal.
{ECO:0000250}.
ACT_SITE 1021 1021 For cysteine protease nsP2 activity.
ACT_SITE 1098 1098 For cysteine protease nsP2 activity.
SITE 540 541 Cleavage; by nsP2.
SITE 1347 1348 Cleavage; by nsP2.
SITE 1902 1903 Cleavage; by nsP2.
LIPID 420 420 S-palmitoyl cysteine; by host.
{ECO:0000269|PubMed:10888610}.
MUTAGEN 39 39 H->A: Complete loss of methyl transferase
activity or viral infectivity.
{ECO:0000269|PubMed:8610444}.
MUTAGEN 81 81 H->A: Complete loss of methyl transferase
activity or viral infectivity.
{ECO:0000269|PubMed:8610444}.
MUTAGEN 91 91 D->A: Complete loss of methyl transferase
activity or viral infectivity.
{ECO:0000269|PubMed:8610444}.
MUTAGEN 94 94 R->A: Complete loss of methyl transferase
activity or viral infectivity.
{ECO:0000269|PubMed:8610444}.
MUTAGEN 249 249 Y->A: Complete loss of methyl transferase
activity or viral infectivity.
{ECO:0000269|PubMed:8610444}.
MUTAGEN 369 369 I->V: No effect on methyl transferase
activity or viral infectivity.
{ECO:0000269|PubMed:8610444}.
MUTAGEN 420 420 C->A: Complete loss of palmitoylation.
{ECO:0000269|PubMed:10888610}.
MUTAGEN 1021 1021 C->A: Complete loss of nsP2 protease
activity. {ECO:0000269|PubMed:1448929}.
MUTAGEN 1098 1098 H->A: Complete loss of nsP2 protease
activity. {ECO:0000269|PubMed:1448929}.
MUTAGEN 1099 1099 W->A: Complete loss of nsP2 protease
activity. {ECO:0000269|PubMed:1448929}.
MUTAGEN 1896 1896 Y->YR,YS,YW: Reduces RNA synthesis in
early phase of infection.
{ECO:0000269|PubMed:2521676}.
MUTAGEN 1903 1903 Y->A: No effect on nsP4 cleavage.
{ECO:0000269|PubMed:9499091}.
MUTAGEN 1903 1903 Y->C: Destabilizes nsP4.
{ECO:0000269|PubMed:9499091}.
MUTAGEN 1903 1903 Y->E: Reduces nsP4 cleavage.
{ECO:0000269|PubMed:9499091}.
MUTAGEN 1903 1903 Y->F: Destabilizes nsP4.
{ECO:0000269|PubMed:9499091}.
MUTAGEN 1903 1903 Y->L: Reduces nsP4 cleavage and
destabilizes nsP4.
{ECO:0000269|PubMed:9499091}.
MUTAGEN 1903 1903 Y->M: Reduces nsP4 cleavage.
{ECO:0000269|PubMed:9499091}.
MUTAGEN 1903 1903 Y->N: Reduces nsP4 cleavage.
{ECO:0000269|PubMed:9499091}.
MUTAGEN 1903 1903 Y->P: Complete loss of nsP4 cleavage.
{ECO:0000269|PubMed:9499091}.
MUTAGEN 1903 1903 Y->Q: Reduces nsP4 cleavage.
{ECO:0000269|PubMed:9499091}.
MUTAGEN 1903 1903 Y->R: Destabilizes nsP4.
{ECO:0000269|PubMed:9499091}.
MUTAGEN 1903 1903 Y->T: Reduces nsP4 cleavage.
{ECO:0000269|PubMed:9499091}.
TURN 1013 1016 {ECO:0000244|PDB:4GUA}.
HELIX 1021 1032 {ECO:0000244|PDB:4GUA}.
HELIX 1039 1045 {ECO:0000244|PDB:4GUA}.
HELIX 1047 1050 {ECO:0000244|PDB:4GUA}.
HELIX 1057 1069 {ECO:0000244|PDB:4GUA}.
HELIX 1073 1075 {ECO:0000244|PDB:4GUA}.
STRAND 1079 1081 {ECO:0000244|PDB:4GUA}.
STRAND 1086 1088 {ECO:0000244|PDB:4GUA}.
STRAND 1098 1100 {ECO:0000244|PDB:4GUA}.
STRAND 1107 1109 {ECO:0000244|PDB:4GUA}.
HELIX 1112 1118 {ECO:0000244|PDB:4GUA}.
TURN 1119 1121 {ECO:0000244|PDB:4GUA}.
HELIX 1124 1127 {ECO:0000244|PDB:4GUA}.
TURN 1136 1138 {ECO:0000244|PDB:4GUA}.
STRAND 1141 1143 {ECO:0000244|PDB:4GUA}.
STRAND 1155 1159 {ECO:0000244|PDB:4GUA}.
HELIX 1174 1177 {ECO:0000244|PDB:4GUA}.
STRAND 1183 1188 {ECO:0000244|PDB:4GUA}.
STRAND 1198 1204 {ECO:0000244|PDB:4GUA}.
STRAND 1212 1214 {ECO:0000244|PDB:4GUA}.
HELIX 1217 1219 {ECO:0000244|PDB:4GUA}.
STRAND 1227 1232 {ECO:0000244|PDB:4GUA}.
HELIX 1242 1262 {ECO:0000244|PDB:4GUA}.
STRAND 1264 1275 {ECO:0000244|PDB:4GUA}.
HELIX 1280 1291 {ECO:0000244|PDB:4GUA}.
STRAND 1293 1299 {ECO:0000244|PDB:4GUA}.
STRAND 1310 1317 {ECO:0000244|PDB:4GUA}.
HELIX 1328 1338 {ECO:0000244|PDB:4GUA}.
STRAND 1351 1354 {ECO:0000244|PDB:4GUA}.
HELIX 1358 1360 {ECO:0000244|PDB:4GUA}.
STRAND 1363 1369 {ECO:0000244|PDB:4GUA}.
HELIX 1380 1387 {ECO:0000244|PDB:4GUA}.
HELIX 1389 1392 {ECO:0000244|PDB:4GUA}.
STRAND 1402 1407 {ECO:0000244|PDB:4GUA}.
STRAND 1410 1415 {ECO:0000244|PDB:4GUA}.
HELIX 1425 1445 {ECO:0000244|PDB:4GUA}.
STRAND 1449 1453 {ECO:0000244|PDB:4GUA}.
STRAND 1458 1460 {ECO:0000244|PDB:4GUA}.
TURN 1461 1464 {ECO:0000244|PDB:4GUA}.
HELIX 1468 1479 {ECO:0000244|PDB:4GUA}.
STRAND 1485 1489 {ECO:0000244|PDB:4GUA}.
HELIX 1493 1507 {ECO:0000244|PDB:4GUA}.
TURN 1531 1534 {ECO:0000244|PDB:4GUA}.
STRAND 1538 1541 {ECO:0000244|PDB:4GUA}.
STRAND 1543 1546 {ECO:0000244|PDB:4GUA}.
HELIX 1555 1567 {ECO:0000244|PDB:4GUA}.
HELIX 1571 1582 {ECO:0000244|PDB:4GUA}.
HELIX 1588 1593 {ECO:0000244|PDB:4GUA}.
STRAND 1609 1612 {ECO:0000244|PDB:4GUA}.
HELIX 1618 1626 {ECO:0000244|PDB:4GUA}.
STRAND 1632 1634 {ECO:0000244|PDB:4GUA}.
STRAND 1648 1650 {ECO:0000244|PDB:4GUA}.
STRAND 1654 1656 {ECO:0000244|PDB:4GUA}.
HELIX 1669 1672 {ECO:0000244|PDB:4GUA}.
SEQUENCE 2512 AA; 279549 MW; F3656FC8BB495726 CRC64;
MEKPVVNVDV DPQSPFVVQL QKSFPQFEVV AQQVTPNDHA NARAFSHLAS KLIELEVPTT
ATILDIGSAP ARRMFSEHQY HCVCPMRSPE DPDRMMKYAS KLAEKACKIT NKNLHEKIKD
LRTVLDTPDA ETPSLCFHND VTCNMRAEYS VMQDVYINAP GTIYHQAMKG VRTLYWIGFD
TTQFMFSAMA GSYPAYNTNW ADEKVLEARN IGLCSTKLSE GRTGKLSIMR KKELKPGSRV
YFSVGSTLYP EHRASLQSWH LPSVFHLNGK QSYTCRCDTV VSCEGYVVKK ITISPGITGE
TVGYAVTHNS EGFLLCKVTD TVKGERVSFP VCTYIPATIC DQMTGIMATD ISPDDAQKLL
VGLNQRIVIN GRTNRNTNTM QNYLLPIIAQ GFSKWAKERK DDLDNEKMLG TRERKLTYGC
LWAFRTKKVH SFYRPPGTQT CVKVPASFSA FPMSSVWTTS LPMSLRQKLK LALQPKKEEK
LLQVSEELVM EAKAAFEDAQ EEARAEKLRE ALPPLVADKG IEAAAEVVCE VEGLQADIGA
ALVETPRGHV RIIPQANDRM IGQYIVVSPN SVLKNAKLAP AHPLADQVKI ITHSGRSGRY
AVEPYDAKVL MPAGGAVPWP EFLALSESAT LVYNEREFVN RKLYHIAMHG PAKNTEEEQY
KVTKAELAET EYVFDVDKKR CVKKEEASGL VLSGELTNPP YHELALEGLK TRPAVPYKVE
TIGVIGTPGS GKSAIIKSTV TARDLVTSGK KENCREIEAD VLRLRGMQIT SKTVDSVMLN
GCHKAVEVLY VDEAFACHAG ALLALIAIVR PRKKVVLCGD PMQCGFFNMM QLKVHFNHPE
KDICTKTFYK YISRRCTQPV TAIVSTLHYD GKMKTTNPCK KNIEIDITGA TKPKPGDIIL
TCFRGWVKQL QIDYPGHEVM TAAASQGLTR KGVYAVRQKV NENPLYAITS EHVNVLLTRT
EDRLVWKTLQ GDPWIKQPTN IPKGNFQATI EDWEAEHKGI IAAINSPTPR ANPFSCKTNV
CWAKALEPIL ATAGIVLTGC QWSELFPQFA DDKPHSAIYA LDVICIKFFG MDLTSGLFSK
QSIPLTYHPA DSARPVAHWD NSPGTRKYGY DHAIAAELSR RFPVFQLAGK GTQLDLQTGR
TRVISAQHNL VPVNRNLPHA LVPEYKEKQP GPVKKFLNQF KHHSVLVVSE EKIEAPRKRI
EWIAPIGIAG ADKNYNLAFG FPPQARYDLV FINIGTKYRN HHFQQCEDHA ATLKTLSRSA
LNCLNPGGTL VVKSYGYADR NSEDVVTALA RKFVRVSAAR PDCVSSNTEM YLIFRQLDNS
RTRQFTPHHL NCVISSVYEG TRDGVGAAPS YRTKRENIAD CQEEAVVNAA NPLGRPGEGV
CRAIYKRWPT SFTDSATETG TARMTVCLGK KVIHAVGPDF RKHPEAEALK LLQNAYHAVA
DLVNEHNIKS VAIPLLSTGI YAAGKDRLEV SLNCLTTALD RTDADVTIYC LDKKWKERID
AALQLKESVT ELKDEDMEID DELVWIHPDS CLKGRKGFST TKGKLYSYFE GTKFHQAAKD
MAEIKVLFPN DQESNEQLCA YILGETMEAI REKCPVDHNP SSSPPKTLPC LCMYAMTPER
VHRLRSNNVK EVTVCSSTPL PKHKIKNVQK VQCTKVVLFN PHTPAFVPAR KYIEVPEQPT
APPAQAEEAP EVVATPSPST ADNTSLDVTD ISLDMDDSSE GSLFSSFSGS DNSITSMDSW
SSGPSSLEIV DRRQVVVADV HAVQEPAPIP PPRLKKMARL AAARKEPTPP ASNSSESLHL
SFGGVSMSLG SIFDGETARQ AAVQPLATGP TDVPMSFGSF SDGEIDELSR RVTESEPVLF
GSFEPGEVNS IISSRSAVSF PLRKQRRRRR SRRTEYLTGV GGYIFSTDTG PGHLQKKSVL
QNQLTEPTLE RNVLERIHAP VLDTSKEEQL KLRYQMMPTE ANKSRYQSRK VENQKAITTE
RLLSGLRLYN SATDQPECYK ITYPKPLYSS SVPANYSDPQ FAVAVCNNYL HENYPTVASY
QITDEYDAYL DMVDGTVACL DTATFCPAKL RSYPKKHEYR APNIRSAVPS AMQNTLQNVL
IAATKRNCNV TQMRELPTLD SATFNVECFR KYACNDEYWE EFARKPIRIT TEFVTAYVAR
LKGPKAAALF AKTYNLVPLQ EVPMDRFVMD MKRDVKVTPG TKHTEERPKV QVIQAAEPLA
TAYLCGIHRE LVRRLTAVLL PNIHTLFDMS AEDFDAIIAE HFKQGDPVLE TDIASFDKSQ
DDAMALTGLM ILEDLGVDQP LLDLIECAFG EISSTHLPTG TRFKFGAMMK SGMFLTLFVN
TVLNVVIASR VLEERLKTSR CAAFIGDDNI IHGVVSDKEM AERCATWLNM EVKIIDAVIG
ERPPYFCGGF ILQDSVTSTA CRVADPLKRL FKLGKPLPAD DEQDEDRRRA LLDETKAWFR
VGITGTLAVA VTTRYEVDNI TPVLLALRTF AQSKRAFQAI RGEIKHLYGG PK


Related products :

Catalog number Product name Quantity
orb81767 Measles Virus Non-Structural C-Protein (1-51) protein The E.coli derived recombinant protein contains the Non-Structural C-Protein immunodominant regions, 1-51 amino acids. For research use only. 100
10-663-45517 Measles Virus Non-Structural C-Protein (MEVNSCP) - Protein P; Non-structural protein C. 38 kDa_29 kDa N_A 0.1 mg
10-663-45517 Measles Virus Non-Structural C-Protein (MEVNSCP) - Protein P; Non-structural protein C. 38 kDa_29 kDa N_A 1 mg
10-663-45517 Measles Virus Non-Structural C-Protein (MEVNSCP) - Protein P; Non-structural protein C. 38 kDa_29 kDa N_A 0.5 mg
25-030 ZC3H7B is a protein that contains a tetratricopeptide repeat domain. The encoded protein also interacts with the rotavirus non-structural protein NSP3. This gene encodes a protein that contains a tetr 0.05 mg
27-617 ZC3H7B is a protein that contains a tetratricopeptide repeat domain. The encoded protein also interacts with the rotavirus non-structural protein NSP3. 0.1 mg
MCA4688 MOUSE ANTI INFLUENZA A NON STRUCTURAL PROTEIN , Product Type Monoclonal Antibody, Specificity INFLUENZA A NON STRUCTURAL PROTEIN, Target Species Viral, Host Mouse, Format Purified, Isotypes IgG2 0.2 mg
SCH-MCA4688 MOUSE ANTI INFLUENZA A NON STRUCTURAL PROTEIN , Product Type Monoclonal Antibody, Specificity INFLUENZA A NON STRUCTURAL PROTEIN, Target Species Viral, Host Mouse, Format Purified, Isotypes IgG2 0.2 mg
OBT1772 SMC2 (Structural Maintenance of Chromosomes 2), SMC2L1 (Structural Maintenance of Chromosomes 2_like 1), CAPE, CAP_E, hCAP_E (Human Chromosome _Associated Protein E), Rabbit anti_Human; WB 0.1 mg.
OBT1773 SMC2 (Structural Maintenance of Chromosomes 2), SMC2L1 (Structural Maintenance of Chromosomes 2_like 1), CAPE, CAP_E, hCAP_E (Human Chromosome _Associated Protein E), Rabbit anti_Human, Mouse; WB 0.1 mg.
OBT1774 SMC2 (Structural Maintenance of Chromosomes 2), SMC2L1 (Structural Maintenance of Chromosomes 2_like 1), CAPE, CAP_E, hCAP_E (Human Chromosome _Associated Protein E), Rabbit anti_Human, Mouse; WB_IP_I 0.1 mg.
OBT1774 SMC2 (Structural Maintenance of Chromosomes 2), SMC2L1 (Structural Maintenance of Chromosomes 2_like 1), CAPE, CAP_E, hCAP_E (Human Chromosome _Associated Protein E), Rabbit anti_Human, Mouse; WB_IP_I 0.1 mg.
20-272-190412 Filensin - Mouse monoclonal [FIL - 7B10] to Filensin; Beaded filament structural protein 1; Lens fiber cell beaded-filament structural protein CP 115; CP115; Lens intermediate filament-like heavy; LIF 0.1 ml
26-812 LPP may play a structural role at sites of cell adhesion in maintaining cell shape and motility. In addition to these structural functions, it may also be implicated in signaling events and activation 0.05 mg
10-663-45516 Measles Virus Large structural Protein RNA Polymerase - Protein L; Transcriptase; Replicase N_A 0.5 mg
10-663-45516 Measles Virus Large structural Protein RNA Polymerase - Protein L; Transcriptase; Replicase N_A 0.1 mg
10-663-45516 Measles Virus Large structural Protein RNA Polymerase - Protein L; Transcriptase; Replicase N_A 1 mg
EIAAB38762 Cape,Chromosome-associated protein E,FGF-inducible protein 16,Fin16,Mouse,Mus musculus,SMC protein 2,Smc2,SMC-2,Smc2l1,Structural maintenance of chromosomes protein 2,XCAP-E homolog
EIAAB38761 CAPE,Chromosome-associated protein E,hCAP-E,Homo sapiens,Human,PRO0324,SMC protein 2,SMC2,SMC-2,SMC2L1,Structural maintenance of chromosomes protein 2,XCAP-E homolog
EIAAB38770 Kiaa0594,MLZ-453,Mouse,mSMC5,Mus musculus,Protein expressed in male leptotene and zygotene spermatocytes 453,SMC protein 5,Smc5,SMC-5,Smc5l1,Structural maintenance of chromosomes protein 5
EIAAB38758 Mouse,Mus musculus,SMC protein 1B,Smc1b,SMC-1B,SMC-1-beta,Smc1l2,Structural maintenance of chromosomes protein 1B
EIAAB38757 Rat,Rattus norvegicus,SMC protein 1A,Smc1,Smc1a,SMC-1A,Smc1l1,Structural maintenance of chromosomes protein 1A
EIAAB38754 Bos taurus,Bovine,SMC protein 1A,SMC1,SMC1A,SMC-1A,SMC1L1,Structural maintenance of chromosomes protein 1A
orb81767 Measles Virus Non-Structural C-Protein (1-51) protein Proteins 100
EIAAB38773 Kiaa4103,Mouse,mSMC6,Mus musculus,SMC protein 6,Smc6,SMC-6,Smc6l1,Structural maintenance of chromosomes protein 6


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur