Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Potassium voltage-gated channel subfamily B member 1 (Delayed rectifier potassium channel 1) (DRK1) (Voltage-gated potassium channel subunit Kv2.1)

 KCNB1_RAT               Reviewed;         857 AA.
P15387;
01-APR-1990, integrated into UniProtKB/Swiss-Prot.
25-OCT-2002, sequence version 3.
22-NOV-2017, entry version 154.
RecName: Full=Potassium voltage-gated channel subfamily B member 1 {ECO:0000250|UniProtKB:Q14721};
AltName: Full=Delayed rectifier potassium channel 1 {ECO:0000303|PubMed:2770868};
Short=DRK1 {ECO:0000303|PubMed:2770868};
AltName: Full=Voltage-gated potassium channel subunit Kv2.1;
Name=Kcnb1 {ECO:0000312|RGD:2954};
Rattus norvegicus (Rat).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;
Muroidea; Muridae; Murinae; Rattus.
NCBI_TaxID=10116;
[1]
NUCLEOTIDE SEQUENCE [MRNA] OF 4-857, FUNCTION, BIOPHYSICOCHEMICAL
PROPERTIES, AND ENZYME REGULATION.
TISSUE=Brain;
PubMed=2770868; DOI=10.1038/340642a0;
Frech G.C., Vandongen A.M.J., Schuster G., Brown A.M., Joho R.H.;
"A novel potassium channel with delayed rectifier properties isolated
from rat brain by expression cloning.";
Nature 340:642-645(1989).
[2]
SEQUENCE REVISION.
Frech G.C.;
Submitted (FEB-1990) to the EMBL/GenBank/DDBJ databases.
[3]
NUCLEOTIDE SEQUENCE [MRNA] OF 1-575, AND TISSUE SPECIFICITY.
PubMed=1740690;
Drewe J.A., Verma S., Frech G.C., Joho R.H.;
"Distinct spatial and temporal expression patterns of K+ channel mRNAs
from different subfamilies.";
J. Neurosci. 12:538-548(1992).
[4]
FUNCTION, AND BIOPHYSICOCHEMICAL PROPERTIES.
PubMed=2206531; DOI=10.1016/0896-6273(90)90082-Q;
VanDongen A.M., Frech G.C., Drewe J.A., Joho R.H., Brown A.M.;
"Alteration and restoration of K+ channel function by deletions at the
N- and C-termini.";
Neuron 5:433-443(1990).
[5]
FUNCTION, AND ENZYME REGULATION.
PubMed=1875913;
Taglialatela M., Vandongen A.M., Drewe J.A., Joho R.H., Brown A.M.,
Kirsch G.E.;
"Patterns of internal and external tetraethylammonium block in four
homologous K+ channels.";
Mol. Pharmacol. 40:299-307(1991).
[6]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=1961744; DOI=10.1073/pnas.88.23.10764;
Trimmer J.S.;
"Immunological identification and characterization of a delayed
rectifier K+ channel polypeptide in rat brain.";
Proc. Natl. Acad. Sci. U.S.A. 88:10764-10768(1991).
[7]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=8508921; DOI=10.1016/0014-5793(93)81394-F;
Trimmer J.S.;
"Expression of Kv2.1 delayed rectifier K+ channel isoforms in the
developing rat brain.";
FEBS Lett. 324:205-210(1993).
[8]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=8463836;
Hwang P.M., Fotuhi M., Bredt D.S., Cunningham A.M., Snyder S.H.;
"Contrasting immunohistochemical localizations in rat brain of two
novel K+ channels of the Shab subfamily.";
J. Neurosci. 13:1569-1576(1993).
[9]
FUNCTION, BIOPHYSICOCHEMICAL PROPERTIES, PHOSPHORYLATION, ENZYME
REGULATION, SUBCELLULAR LOCATION, AND LACK OF GLYCOSYLATION.
PubMed=8083226;
Shi G., Kleinklaus A.K., Marrion N.V., Trimmer J.S.;
"Properties of Kv2.1 K+ channels expressed in transfected mammalian
cells.";
J. Biol. Chem. 269:23204-23211(1994).
[10]
SUBCELLULAR LOCATION, TISSUE SPECIFICITY, AND LACK OF INTERACTION WITH
KCNAB1 AND KCNAB2.
PubMed=7623158;
Rhodes K.J., Keilbaugh S.A., Barrezueta N.X., Lopez K.L.,
Trimmer J.S.;
"Association and colocalization of K+ channel alpha- and beta-subunit
polypeptides in rat brain.";
J. Neurosci. 15:5360-5371(1995).
[11]
ENZYME REGULATION.
PubMed=7576642; DOI=10.1016/0896-6273(95)90184-1;
Swartz K.J., MacKinnon R.;
"An inhibitor of the Kv2.1 potassium channel isolated from the venom
of a Chilean tarantula.";
Neuron 15:941-949(1995).
[12]
FUNCTION, SUBCELLULAR LOCATION, AND DOMAIN.
PubMed=8978827; DOI=10.1083/jcb.135.6.1619;
Scannevin R.H., Murakoshi H., Rhodes K.J., Trimmer J.S.;
"Identification of a cytoplasmic domain important in the polarized
expression and clustering of the Kv2.1 K+ channel.";
J. Cell Biol. 135:1619-1632(1996).
[13]
FUNCTION, SUBUNIT, INTERACTION WITH KCNV1, AND SUBCELLULAR LOCATION.
PubMed=8670833;
Hugnot J.-P., Salinas M., Lesage F., Guillemare E., de Weille J.,
Heurteaux C., Mattei M.-G., Lazdunski M.;
"Kv8.1, a new neuronal potassium channel subunit with specific
inhibitory properties towards Shab and Shaw channels.";
EMBO J. 15:3322-3331(1996).
[14]
FUNCTION, SUBUNIT, INTERACTION WITH KCNG1, AND SUBCELLULAR LOCATION.
PubMed=8980147; DOI=10.1016/S0014-5793(96)01316-6;
Post M.A., Kirsch G.E., Brown A.M.;
"Kv2.1 and electrically silent Kv6.1 potassium channel subunits
combine and express a novel current.";
FEBS Lett. 399:177-182(1996).
[15]
FUNCTION, SUBUNIT, INTERACTION WITH KCNS3, SUBCELLULAR LOCATION,
ENZYME REGULATION, AND TISSUE SPECIFICITY.
PubMed=9362476; DOI=10.1093/emboj/16.22.6615;
Patel A.J., Lazdunski M., Honore E.;
"Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in
oxygen-sensitive pulmonary artery myocytes.";
EMBO J. 16:6615-6625(1997).
[16]
FUNCTION, SUBUNIT, AND SUBCELLULAR LOCATION.
PubMed=9079713; DOI=10.1074/jbc.272.13.8774;
Salinas M., de Weille J., Guillemare E., Lazdunski M., Hugnot J.-P.;
"Modes of regulation of shab K+ channel activity by the Kv8.1
subunit.";
J. Biol. Chem. 272:8774-8780(1997).
[17]
FUNCTION, SUBUNIT, AND SUBCELLULAR LOCATION.
PubMed=9305895; DOI=10.1074/jbc.272.39.24371;
Salinas M., Duprat F., Heurteaux C., Hugnot J.-P., Lazdunski M.;
"New modulatory alpha subunits for mammalian Shab K+ channels.";
J. Biol. Chem. 272:24371-24379(1997).
[18]
PHOSPHORYLATION, FUNCTION, AND MUTAGENESIS OF SER-444 AND SER-496.
PubMed=9351973; DOI=10.1124/mol.52.5.821;
Murakoshi H., Shi G., Scannevin R.H., Trimmer J.S.;
"Phosphorylation of the Kv2.1 K+ channel alters voltage-dependent
activation.";
Mol. Pharmacol. 52:821-828(1997).
[19]
FUNCTION, SUBUNIT, INTERACTION WITH KCNF1 AND KCNG1, AND SUBCELLULAR
LOCATION.
PubMed=9696692;
Kramer J.W., Post M.A., Brown A.M., Kirsch G.E.;
"Modulation of potassium channel gating by coexpression of Kv2.1 with
regulatory Kv5.1 or Kv6.1 alpha-subunits.";
Am. J. Physiol. 274:C1501-C1510(1998).
[20]
FUNCTION, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=9616203; DOI=10.1172/JCI333;
Archer S.L., Souil E., Dinh-Xuan A.T., Schremmer B., Mercier J.C.,
El Yaagoubi A., Nguyen-Huu L., Reeve H.L., Hampl V.;
"Molecular identification of the role of voltage-gated K+ channels,
Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of
resting membrane potential in rat pulmonary artery myocytes.";
J. Clin. Invest. 101:2319-2330(1998).
[21]
FUNCTION, SUBCELLULAR LOCATION, SUBUNIT, AND INTERACTION WITH PIAS3.
PubMed=9565597; DOI=10.1074/jbc.273.19.11745;
Wible B.A., Yang Q., Kuryshev Y.A., Accili E.A., Brown A.M.;
"Cloning and expression of a novel K+ channel regulatory protein,
KChAP.";
J. Biol. Chem. 273:11745-11751(1998).
[22]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=9522360; DOI=10.1016/S0306-4522(97)00519-8;
Du J., Tao-Cheng J.H., Zerfas P., McBain C.J.;
"The K+ channel, Kv2.1, is apposed to astrocytic processes and is
associated with inhibitory postsynaptic membranes in hippocampal and
cortical principal neurons and inhibitory interneurons.";
Neuroscience 84:37-48(1998).
[23]
REVIEW.
PubMed=10414301; DOI=10.1111/j.1749-6632.1999.tb11293.x;
Coetzee W.A., Amarillo Y., Chiu J., Chow A., Lau D., McCormack T.,
Moreno H., Nadal M.S., Ozaita A., Pountney D., Saganich M.,
Vega-Saenz de Miera E., Rudy B.;
"Molecular diversity of K+ channels.";
Ann. N. Y. Acad. Sci. 868:233-285(1999).
[24]
FUNCTION, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=10024359;
Murakoshi H., Trimmer J.S.;
"Identification of the Kv2.1 K+ channel as a major component of the
delayed rectifier K+ current in rat hippocampal neurons.";
J. Neurosci. 19:1728-1735(1999).
[25]
FUNCTION, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=10414968;
Baranauskas G., Tkatch T., Surmeier D.J.;
"Delayed rectifier currents in rat globus pallidus neurons are
attributable to Kv2.1 and Kv3.1/3.2 K(+) channels.";
J. Neurosci. 19:6394-6404(1999).
[26]
FUNCTION, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=10618149; DOI=10.1111/j.1469-7793.2000.t01-2-00019.xm;
Du J., Haak L.L., Phillips-Tansey E., Russell J.T., McBain C.J.;
"Frequency-dependent regulation of rat hippocampal somato-dendritic
excitability by the K+ channel subunit Kv2.1.";
J. Physiol. (Lond.) 522:19-31(2000).
[27]
SUBCELLULAR LOCATION, DOMAIN, AND MUTAGENESIS OF SER-587; SER-590;
PHE-591 AND SER-593.
PubMed=10719893; DOI=10.1016/S0896-6273(00)80902-2;
Lim S.T., Antonucci D.E., Scannevin R.H., Trimmer J.S.;
"A novel targeting signal for proximal clustering of the Kv2.1 K+
channel in hippocampal neurons.";
Neuron 25:385-397(2000).
[28]
FUNCTION, AND TISSUE SPECIFICITY.
PubMed=11463864; DOI=10.1210/mend.15.8.0685;
MacDonald P.E., Ha X.F., Wang J., Smukler S.R., Sun A.M.,
Gaisano H.Y., Salapatek A.M., Backx P.H., Wheeler M.B.;
"Members of the Kv1 and Kv2 voltage-dependent K(+) channel families
regulate insulin secretion.";
Mol. Endocrinol. 15:1423-1435(2001).
[29]
FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, AND MUTAGENESIS OF
TRP-369 AND TYR-384.
PubMed=12451110;
Malin S.A., Nerbonne J.M.;
"Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits
and regulate tonic firing in mammalian sympathetic neurons.";
J. Neurosci. 22:10094-10105(2002).
[30]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=12127166; DOI=10.1016/S0024-3205(02)01922-7;
Lu Y., Hanna S.T., Tang G., Wang R.;
"Contributions of Kv1.2, Kv1.5 and Kv2.1 subunits to the native
delayed rectifier K(+) current in rat mesenteric artery smooth muscle
cells.";
Life Sci. 71:1465-1473(2002).
[31]
FUNCTION, INTERACTION WITH SNAP25, SUBCELLULAR LOCATION, AND TISSUE
SPECIFICITY.
PubMed=12403834; DOI=10.1210/me.2002-0058;
MacDonald P.E., Wang G., Tsuk S., Dodo C., Kang Y., Tang L.,
Wheeler M.B., Cattral M.S., Lakey J.R., Salapatek A.M., Lotan I.,
Gaisano H.Y.;
"Synaptosome-associated protein of 25 kilodaltons modulates Kv2.1
voltage-dependent K(+) channels in neuroendocrine islet beta-cells
through an interaction with the channel N terminus.";
Mol. Endocrinol. 16:2452-2461(2002).
[32]
ENZYME REGULATION.
PubMed=12065754; DOI=10.1124/mol.62.1.48;
Escoubas P., Diochot S., Celerier M.-L., Nakajima T., Lazdunski M.;
"Novel tarantula toxins for subtypes of voltage-dependent potassium
channels in the Kv2 and Kv4 subfamilies.";
Mol. Pharmacol. 62:48-57(2002).
[33]
FUNCTION, SELF-ASSOCIATION, DOMAIN, SUBCELLULAR LOCATION, AND
MUTAGENESIS OF GLN-71 AND GLU-79.
PubMed=12560340; DOI=10.1074/jbc.M212973200;
Ju M., Stevens L., Leadbitter E., Wray D.;
"The Roles of N- and C-terminal determinants in the activation of the
Kv2.1 potassium channel.";
J. Biol. Chem. 278:12769-12778(2003).
[34]
PHOSPHORYLATION AT TYR-128, SUBCELLULAR LOCATION, AND MUTAGENESIS OF
TYR-128.
PubMed=12615930; DOI=10.1074/jbc.M212766200;
Tiran Z., Peretz A., Attali B., Elson A.;
"Phosphorylation-dependent regulation of Kv2.1 Channel activity at
tyrosine 124 by Src and by protein-tyrosine phosphatase epsilon.";
J. Biol. Chem. 278:17509-17514(2003).
[35]
FUNCTION, INTERACTION WITH STX1A, AND SUBCELLULAR LOCATION.
PubMed=12621036; DOI=10.1074/jbc.M213088200;
Leung Y.M., Kang Y., Gao X., Xia F., Xie H., Sheu L., Tsuk S.,
Lotan I., Tsushima R.G., Gaisano H.Y.;
"Syntaxin 1A binds to the cytoplasmic C terminus of Kv2.1 to regulate
channel gating and trafficking.";
J. Biol. Chem. 278:17532-17538(2003).
[36]
FUNCTION, INTERACTION WITH SNP25 AND STX1A, AND SUBCELLULAR LOCATION.
PubMed=12807875; DOI=10.1074/jbc.M304943200;
Michaelevski I., Chikvashvili D., Tsuk S., Singer-Lahat D., Kang Y.,
Linial M., Gaisano H.Y., Fili O., Lotan I.;
"Direct interaction of target SNAREs with the Kv2.1 channel. Modal
regulation of channel activation and inactivation gating.";
J. Biol. Chem. 278:34320-34330(2003).
[37]
FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, AND MUTAGENESIS OF
TRP-369 AND TYR-384.
PubMed=12832499;
Pal S., Hartnett K.A., Nerbonne J.M., Levitan E.S., Aizenman E.;
"Mediation of neuronal apoptosis by Kv2.1-encoded potassium
channels.";
J. Neurosci. 23:4798-4802(2003).
[38]
FUNCTION, SUBUNIT, INTERACTION WITH KCNE3, SUBCELLULAR LOCATION,
DOMAIN, AND TISSUE SPECIFICITY.
PubMed=12954870;
McCrossan Z.A., Lewis A., Panaghie G., Jordan P.N., Christini D.J.,
Lerner D.J., Abbott G.W.;
"MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels
in mammalian brain.";
J. Neurosci. 23:8077-8091(2003).
[39]
FUNCTION, SUBCELLULAR LOCATION, INDUCTION, AND TISSUE SPECIFICITY.
PubMed=15322114; DOI=10.1074/jbc.M408789200;
Amberg G.C., Rossow C.F., Navedo M.F., Santana L.F.;
"NFATc3 regulates Kv2.1 expression in arterial smooth muscle.";
J. Biol. Chem. 279:47326-47334(2004).
[40]
FUNCTION, PHOSPHORYLATION, DEPHOSPHORYLATION, AND SUBCELLULAR
LOCATION.
PubMed=15195093; DOI=10.1038/nn1260;
Misonou H., Mohapatra D.P., Park E.W., Leung V., Zhen D., Misonou K.,
Anderson A.E., Trimmer J.S.;
"Regulation of ion channel localization and phosphorylation by
neuronal activity.";
Nat. Neurosci. 7:711-718(2004).
[41]
REVIEW.
PubMed=15858231; DOI=10.1385/CBB:42:2:167;
Cox R.H.;
"Molecular determinants of voltage-gated potassium currents in
vascular smooth muscle.";
Cell Biochem. Biophys. 42:167-195(2005).
[42]
SUBCELLULAR LOCATION.
PubMed=15855232; DOI=10.1242/jcs.02348;
O'Connell K.M., Tamkun M.M.;
"Targeting of voltage-gated potassium channel isoforms to distinct
cell surface microdomains.";
J. Cell Sci. 118:2155-2166(2005).
[43]
FUNCTION, PHOSPHORYLATION, DEPHOSPHORYLATION, SUBCELLULAR LOCATION,
AND TISSUE SPECIFICITY.
PubMed=16319318; DOI=10.1523/JNEUROSCI.3370-05.2005;
Misonou H., Mohapatra D.P., Menegola M., Trimmer J.S.;
"Calcium- and metabolic state-dependent modulation of the voltage-
dependent Kv2.1 channel regulates neuronal excitability in response to
ischemia.";
J. Neurosci. 25:11184-11193(2005).
[44]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=16273079; DOI=10.1038/sj.cdd.4401792;
Pal S.K., Takimoto K., Aizenman E., Levitan E.S.;
"Apoptotic surface delivery of K+ channels.";
Cell Death Differ. 13:661-667(2006).
[45]
FUNCTION, PHOSPHORYLATION, DEPHOSPHORYLATION, DOMAIN, AND SUBCELLULAR
LOCATION.
PubMed=16407566; DOI=10.1523/JNEUROSCI.4620-05.2006;
Mohapatra D.P., Trimmer J.S.;
"The Kv2.1 C terminus can autonomously transfer Kv2.1-like
phosphorylation-dependent localization, voltage-dependent gating, and
muscarinic modulation to diverse Kv channels.";
J. Neurosci. 26:685-695(2006).
[46]
SUBCELLULAR LOCATION.
PubMed=16988031; DOI=10.1523/JNEUROSCI.1825-06.2006;
O'Connell K.M., Rolig A.S., Whitesell J.D., Tamkun M.M.;
"Kv2.1 potassium channels are retained within dynamic cell surface
microdomains that are defined by a perimeter fence.";
J. Neurosci. 26:9609-9618(2006).
[47]
PHOSPHORYLATION AT SER-457; SER-567; SER-607 AND SER-719, SUBCELLULAR
LOCATION, TISSUE SPECIFICITY, DEVELOPMENTAL STAGE, AND FUNCTION.
PubMed=17192433; DOI=10.1523/JNEUROSCI.3970-06.2006;
Misonou H., Menegola M., Mohapatra D.P., Guy L.K., Park K.-S.,
Trimmer J.S.;
"Bidirectional activity-dependent regulation of neuronal ion channel
phosphorylation.";
J. Neurosci. 26:13505-13514(2006).
[48]
PHOSPHORYLATION AT SER-15; SER-457; SER-484; SER-496; SER-503;
SER-520; SER-541; SER-567; SER-590; SER-607; SER-655; SER-719;
SER-771; SER-799; SER-804 AND THR-836, FUNCTION, IDENTIFICATION BY
MASS SPECTROMETRY, AND MUTAGENESIS OF SER-15; SER-457; SER-484;
SER-541; SER-567; SER-607; SER-655; SER-719; SER-771 AND SER-804.
PubMed=16917065; DOI=10.1126/science.1124254;
Park K.-S., Mohapatra D.P., Misonou H., Trimmer J.S.;
"Graded regulation of the Kv2.1 potassium channel by variable
phosphorylation.";
Science 313:976-979(2006).
[49]
PHOSPHORYLATION AT SER-15; SER-457; SER-541; SER-607; SER-655;
SER-719; SER-799; SER-804 AND THR-836, AND IDENTIFICATION BY MASS
SPECTROMETRY.
PubMed=18690023; DOI=10.4161/chan.4388;
Park K.S., Mohapatra D.P., Trimmer J.S.;
"Proteomic analyses of K(v)2.1 channel phosphorylation sites
determining cell background specific differences in function.";
Channels 1:59-61(2007).
[50]
SUBCELLULAR LOCATION.
PubMed=17606996; DOI=10.1242/jcs.007351;
Tamkun M.M., O'connell K.M., Rolig A.S.;
"A cytoskeletal-based perimeter fence selectively corrals a sub-
population of cell surface Kv2.1 channels.";
J. Cell Sci. 120:2413-2423(2007).
[51]
FUNCTION, INTERACTION WITH STX1A, SUBCELLULAR LOCATION, AND
MUTAGENESIS OF TRP-369 AND TYR-384.
PubMed=17301173; DOI=10.1523/JNEUROSCI.4006-06.2007;
Singer-Lahat D., Sheinin A., Chikvashvili D., Tsuk S., Greitzer D.,
Friedrich R., Feinshreiber L., Ashery U., Benveniste M., Levitan E.S.,
Lotan I.;
"K+ channel facilitation of exocytosis by dynamic interaction with
syntaxin.";
J. Neurosci. 27:1651-1658(2007).
[52]
FUNCTION, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=17379638; DOI=10.1113/jphysiol.2007.128454;
Guan D., Tkatch T., Surmeier D.J., Armstrong W.E., Foehring R.C.;
"Kv2 subunits underlie slowly inactivating potassium current in rat
neocortical pyramidal neurons.";
J. Physiol. (Lond.) 581:941-960(2007).
[53]
PHOSPHORYLATION AT SER-804, MUTAGENESIS OF TRP-369; TYR-384 AND
SER-804, FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=17360683; DOI=10.1073/pnas.0610159104;
Redman P.T., He K., Hartnett K.A., Jefferson B.S., Hu L.,
Rosenberg P.A., Levitan E.S., Aizenman E.;
"Apoptotic surge of potassium currents is mediated by p38
phosphorylation of Kv2.1.";
Proc. Natl. Acad. Sci. U.S.A. 104:3568-3573(2007).
[54]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=17965280; DOI=10.1152/ajpheart.01038.2007;
O'Connell K.M., Whitesell J.D., Tamkun M.M.;
"Localization and mobility of the delayed-rectifer K+ channel Kv2.1 in
adult cardiomyocytes.";
Am. J. Physiol. 294:H229-H237(2008).
[55]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=19014551; DOI=10.1186/1471-2202-9-112;
Sarmiere P.D., Weigle C.M., Tamkun M.M.;
"The Kv2.1 K+ channel targets to the axon initial segment of
hippocampal and cortical neurons in culture and in situ.";
BMC Neurosci. 9:112-112(2008).
[56]
FUNCTION, SELF-ASSOCIATION, SUBCELLULAR LOCATION, PHOSPHORYLATION, AND
DOMAIN.
PubMed=18463252; DOI=10.1523/JNEUROSCI.0186-08.2008;
Mohapatra D.P., Siino D.F., Trimmer J.S.;
"Interdomain cytoplasmic interactions govern the intracellular
trafficking, gating, and modulation of the Kv2.1 channel.";
J. Neurosci. 28:4982-4994(2008).
[57]
INTERACTION WITH VAMP2, AND SUBCELLULAR LOCATION.
PubMed=18542995; DOI=10.1007/s00424-008-0468-7;
Lvov A., Chikvashvili D., Michaelevski I., Lotan I.;
"VAMP2 interacts directly with the N terminus of Kv2.1 to enhance
channel inactivation.";
Pflugers Arch. 456:1121-1136(2008).
[58]
FUNCTION, INTERACTION WITH STX1A, AND SUBCELLULAR LOCATION.
PubMed=18167541; DOI=10.1371/journal.pone.0001381;
Singer-Lahat D., Chikvashvili D., Lotan I.;
"Direct interaction of endogenous Kv channels with syntaxin enhances
exocytosis by neuroendocrine cells.";
PLoS ONE 3:E1381-E1381(2008).
[59]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=19276663; DOI=10.4161/chan.3.1.7655;
Mohapatra D.P., Misonou H., Pan S.J., Held J.E., Surmeier D.J.,
Trimmer J.S.;
"Regulation of intrinsic excitability in hippocampal neurons by
activity-dependent modulation of the KV2.1 potassium channel.";
Channels 3:46-56(2009).
[60]
TISSUE SPECIFICITY.
PubMed=19074135; DOI=10.1074/jbc.M808786200;
Mederos y Schnitzler M., Rinne S., Skrobek L., Renigunta V.,
Schlichthorl G., Derst C., Gudermann T., Daut J., Preisig-Muller R.;
"Mutation of histidine 105 in the T1 domain of the potassium channel
Kv2.1 disrupts heteromerization with Kv6.3 and Kv6.4.";
J. Biol. Chem. 284:4695-4704(2009).
[61]
INTERACTION WITH VAMP2, SELF-ASSOCIATION, DOMAIN, AND SUBCELLULAR
LOCATION.
PubMed=19690160; DOI=10.1074/jbc.M109.028761;
Lvov A., Greitzer D., Berlin S., Chikvashvili D., Tsuk S., Lotan I.,
Michaelevski I.;
"Rearrangements in the relative orientation of cytoplasmic domains
induced by a membrane-anchored protein mediate modulations in Kv
channel gating.";
J. Biol. Chem. 284:28276-28291(2009).
[62]
FUNCTION, SUBUNIT, INTERACTION WITH KCNE1 AND KCNE2, SUBCELLULAR
LOCATION, DOMAIN, AND TISSUE SPECIFICITY.
PubMed=19219384; DOI=10.1007/s00232-009-9154-8;
McCrossan Z.A., Roepke T.K., Lewis A., Panaghie G., Abbott G.W.;
"Regulation of the Kv2.1 potassium channel by MinK and MiRP1.";
J. Membr. Biol. 228:1-14(2009).
[63]
FUNCTION, SUBCELLULAR LOCATION, AND INTERACTION WITH SNAP25; STX1A AND
VAMP2.
PubMed=19077057; DOI=10.1111/j.1471-4159.2008.05834.x;
Yao H., Zhou K., Yan D., Li M., Wang Y.;
"The Kv2.1 channels mediate neuronal apoptosis induced by
excitotoxicity.";
J. Neurochem. 108:909-919(2009).
[64]
FUNCTION, PHOSPHORYLATION AT TYR-128, DEPHOSPHORYLATION, AND
MUTAGENESIS OF TYR-128 AND SER-804.
PubMed=19622611; DOI=10.1113/jphysiol.2009.176321;
Redman P.T., Hartnett K.A., Aras M.A., Levitan E.S., Aizenman E.;
"Regulation of apoptotic potassium currents by coordinated zinc-
dependent signalling.";
J. Physiol. (Lond.) 587:4393-4404(2009).
[65]
FUNCTION, SUBUNIT, INTERACTION WITH KCNB2, SUBCELLULAR LOCATION,
MUTAGENESIS OF TRP-369 AND TYR-384, TISSUE SPECIFICITY, AND
IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=20202934; DOI=10.1074/jbc.M109.074260;
Kihira Y., Hermanstyne T.O., Misonou H.;
"Formation of heteromeric Kv2 channels in mammalian brain neurons.";
J. Biol. Chem. 285:15048-15055(2010).
[66]
FUNCTION, INTERACTION WITH STX1A, SUBCELLULAR LOCATION, AND
MUTAGENESIS OF TRP-369 AND TYR-384.
PubMed=20484665; DOI=10.1242/jcs.063719;
Feinshreiber L., Singer-Lahat D., Friedrich R., Matti U., Sheinin A.,
Yizhar O., Nachman R., Chikvashvili D., Rettig J., Ashery U.,
Lotan I.;
"Non-conducting function of the Kv2.1 channel enables it to recruit
vesicles for release in neuroendocrine and nerve cells.";
J. Cell Sci. 123:1940-1947(2010).
[67]
PHOSPHORYLATION AT SER-520; SER-655; SER-607 AND SER-804,
DEPHOSPHORYLATION AT SER-607, AND SUBCELLULAR LOCATION.
PubMed=21712386; DOI=10.1074/jbc.M111.251942;
Cerda O., Trimmer J.S.;
"Activity-dependent phosphorylation of neuronal Kv2.1 potassium
channels by CDK5.";
J. Biol. Chem. 286:28738-28748(2011).
[68]
FUNCTION, SUMOYLATION AT LYS-474, DESUMOYLATION, SUBCELLULAR LOCATION,
MUTAGENESIS OF LYS-149; LYS-259 AND LYS-474, AND IDENTIFICATION BY
MASS SPECTROMETRY.
PubMed=21518833; DOI=10.1085/jgp.201110604;
Plant L.D., Dowdell E.J., Dementieva I.S., Marks J.D., Goldstein S.A.;
"SUMO modification of cell surface Kv2.1 potassium channels regulates
the activity of rat hippocampal neurons.";
J. Gen. Physiol. 137:441-454(2011).
[69]
PHOSPHORYLATION, ACETYLATION, AND INTERACTION WITH CREB1.
PubMed=21818121; DOI=10.1038/cdd.2011.102;
Kim S.J., Widenmaier S.B., Choi W.S., Nian C., Ao Z., Warnock G.,
McIntosh C.H.;
"Pancreatic beta-cell prosurvival effects of the incretin hormones
involve post-translational modification of Kv2.1 delayed rectifier
channels.";
Cell Death Differ. 19:333-344(2012).
[70]
FUNCTION, INTERACTION WITH STX1A, SUBCELLULAR LOCATION, TISSUE
SPECIFICITY, AND MUTAGENESIS OF TRP-369 AND TYR-384.
PubMed=22411134; DOI=10.1007/s00125-012-2512-6;
Dai X.Q., Manning Fox J.E., Chikvashvili D., Casimir M., Plummer G.,
Hajmrle C., Spigelman A.F., Kin T., Singer-Lahat D., Kang Y.,
Shapiro A.M., Gaisano H.Y., Lotan I., Macdonald P.E.;
"The voltage-dependent potassium channel subunit Kv2.1 regulates
insulin secretion from rodent and human islets independently of its
electrical function.";
Diabetologia 55:1709-1720(2012).
[71]
SUBCELLULAR LOCATION.
PubMed=22648171; DOI=10.1091/mbc.E12-01-0047;
Deutsch E., Weigel A.V., Akin E.J., Fox P., Hansen G., Haberkorn C.J.,
Loftus R., Krapf D., Tamkun M.M.;
"Kv2.1 cell surface clusters are insertion platforms for ion channel
delivery to the plasma membrane.";
Mol. Biol. Cell 23:2917-2929(2012).
[72]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-484; SER-519; SER-520
AND SER-655, AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE
ANALYSIS].
PubMed=22673903; DOI=10.1038/ncomms1871;
Lundby A., Secher A., Lage K., Nordsborg N.B., Dmytriyev A.,
Lundby C., Olsen J.V.;
"Quantitative maps of protein phosphorylation sites across 14
different rat organs and tissues.";
Nat. Commun. 3:876-876(2012).
[73]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=23878373; DOI=10.1113/jphysiol.2013.257253;
Guan D., Armstrong W.E., Foehring R.C.;
"Kv2 channels regulate firing rate in pyramidal neurons from rat
sensorimotor cortex.";
J. Physiol. (Lond.) 591:4807-4825(2013).
[74]
INTERACTION WITH MYL12B, SUBCELLULAR LOCATION, AND MUTAGENESIS OF
SER-590.
PubMed=24569993; DOI=10.1074/jbc.M113.534495;
Jensen C.S., Watanabe S., Rasmussen H.B., Schmitt N., Olesen S.P.,
Frost N.A., Blanpied T.A., Misonou H.;
"Specific sorting and post-Golgi trafficking of dendritic potassium
channels in living neurons.";
J. Biol. Chem. 289:10566-10581(2014).
[75]
PHOSPHORYLATION AT SER-607, SUBCELLULAR LOCATION, AND TISSUE
SPECIFICITY.
PubMed=24477962; DOI=10.1002/cne.23551;
King A.N., Manning C.F., Trimmer J.S.;
"A unique ion channel clustering domain on the axon initial segment of
mammalian neurons.";
J. Comp. Neurol. 522:2594-2608(2014).
[76]
FUNCTION, INTERACTION WITH STX1A, AND SUBCELLULAR LOCATION.
PubMed=24928958; DOI=10.1113/jphysiol.2014.276964;
McCord M.C., Kullmann P.H., He K., Hartnett K.A., Horn J.P., Lotan I.,
Aizenman E.;
"Syntaxin-binding domain of Kv2.1 is essential for the expression of
apoptotic K+ currents.";
J. Physiol. (Lond.) 592:3511-3521(2014).
[77]
X-RAY CRYSTALLOGRAPHY (2.40 ANGSTROMS) OF 272-304.
PubMed=18004376; DOI=10.1038/nature06265;
Long S.B., Tao X., Campbell E.B., MacKinnon R.;
"Atomic structure of a voltage-dependent K+ channel in a lipid
membrane-like environment.";
Nature 450:376-382(2007).
[78]
X-RAY CRYSTALLOGRAPHY (2.90 ANGSTROMS) OF 272-304.
PubMed=20360102; DOI=10.1126/science.1185954;
Tao X., Lee A., Limapichat W., Dougherty D.A., MacKinnon R.;
"A gating charge transfer center in voltage sensors.";
Science 328:67-73(2010).
[79]
X-RAY CRYSTALLOGRAPHY (2.50 ANGSTROMS) OF 272-304.
PubMed=23705070; DOI=10.7554/eLife.00594;
Banerjee A., Lee A., Campbell E., Mackinnon R.;
"Structure of a pore-blocking toxin in complex with a eukaryotic
voltage-dependent K(+) channel.";
Elife 2:E00594-E00594(2013).
-!- FUNCTION: Voltage-gated potassium channel that mediates
transmembrane potassium transport in excitable membranes,
primarily in the brain, but also in the pancreas and
cardiovascular system. Contributes to the regulation of the action
potential (AP) repolarization, duration and frequency of
repetitive AP firing in neurons, muscle cells and endocrine cells
and plays a role in homeostatic attenuation of electrical
excitability throughout the brain (PubMed:10024359,
PubMed:10618149, PubMed:12451110, PubMed:17379638,
PubMed:19276663, PubMed:23878373). Plays also a role in the
regulation of exocytosis independently of its electrical function
(PubMed:20484665). Forms tetrameric potassium-selective channels
through which potassium ions pass in accordance with their
electrochemical gradient. The channel alternates between opened
and closed conformations in response to the voltage difference
across the membrane. Homotetrameric channels mediate a delayed-
rectifier voltage-dependent outward potassium current that display
rapid activation and slow inactivation in response to membrane
depolarization (PubMed:2770868, PubMed:2206531, PubMed:1875913,
PubMed:8083226, PubMed:8978827, PubMed:9351973, PubMed:9565597,
PubMed:12560340). Can form functional homotetrameric and
heterotetrameric channels that contain variable proportions of
KCNB2; channel properties depend on the type of alpha subunits
that are part of the channel (PubMed:20202934). Can also form
functional heterotetrameric channels with other alpha subunits
that are non-conducting when expressed alone, such as KCNF1,
KCNG1, KCNG3, KCNG4, KCNH1, KCNH2, KCNS1, KCNS2, KCNS3 and KCNV1,
creating a functionally diverse range of channel complexes
(PubMed:8670833, PubMed:8980147, PubMed:9362476, PubMed:9079713,
PubMed:9305895, PubMed:9696692). Heterotetrameric channel activity
formed with KCNS3 show increased current amplitude with the
threshold for action potential activation shifted towards more
negative values in hypoxic-treated pulmonary artery smooth muscle
cells (PubMed:9362476). Channel properties are also modulated by
cytoplasmic ancillary beta subunits such as AMIGO1, KCNE1, KCNE2
and KCNE3, slowing activation and inactivation rate of the delayed
rectifier potassium channels (PubMed:12954870, PubMed:19219384).
In vivo, membranes probably contain a mixture of heteromeric
potassium channel complexes, making it difficult to assign
currents observed in intact tissues to any particular potassium
channel family member. Major contributor to the slowly
inactivating delayed-rectifier voltage-gated potassium current in
neurons of the central nervous system, sympathetic ganglion
neurons, neuroendocrine cells, pancreatic beta cells,
cardiomyocytes and smooth muscle cells (PubMed:9362476,
PubMed:9616203, PubMed:10024359, PubMed:10414968, PubMed:10618149,
PubMed:11463864, PubMed:12451110, PubMed:12127166,
PubMed:12403834, PubMed:12621036, PubMed:12807875,
PubMed:12832499, PubMed:12954870, PubMed:15322114,
PubMed:15195093, PubMed:16407566, PubMed:17301173,
PubMed:17379638, PubMed:18463252, PubMed:18167541,
PubMed:19276663, PubMed:20484665, PubMed:21518833,
PubMed:22411134, PubMed:23878373). Mediates the major part of the
somatodendritic delayed-rectifier potassium current in hippocampal
and cortical pyramidal neurons and sympathetic superior cervical
ganglion (CGC) neurons that acts to slow down periods of firing,
especially during high frequency stimulation (PubMed:10618149,
PubMed:12451110, PubMed:16319318, PubMed:17379638,
PubMed:19276663, PubMed:23878373, PubMed:16917065). Plays a role
in the induction of long-term potentiation (LTP) of neuron
excitability in the CA3 layer of the hippocampus (By similarity).
Contributes to the regulation of glucose-induced action potential
amplitude and duration in pancreatic beta cells, hence limiting
calcium influx and insulin secretion (PubMed:11463864). Plays a
role in the regulation of resting membrane potential and
contraction in hypoxia-treated pulmonary artery smooth muscle
cells (PubMed:9616203). May contribute to the regulation of the
duration of both the action potential of cardiomyocytes and the
heart ventricular repolarization QT interval (By similarity).
Contributes to the pronounced pro-apoptotic potassium current
surge during neuronal apoptotic cell death in response to
oxidative injury (PubMed:12832499, PubMed:16273079,
PubMed:17360683, PubMed:19077057, PubMed:19622611,
PubMed:24928958). May confer neuroprotection in response to
hypoxia/ischemic insults by suppressing pyramidal neurons
hyperexcitability in hippocampal and cortical regions
(PubMed:16319318). Promotes trafficking of KCNG3, KCNH1 and KCNH2
to the cell surface membrane, presumably by forming
heterotetrameric channels with these subunits (By similarity).
Plays a role in the calcium-dependent recruitment and release of
fusion-competent vesicles from the soma of neurons, neuroendocrine
and glucose-induced pancreatic beta cells by binding key
components of the fusion machinery in a pore-independent manner
(PubMed:11463864, PubMed:17301173, PubMed:18167541,
PubMed:20484665, PubMed:22411134). {ECO:0000250|UniProtKB:Q03717,
ECO:0000269|PubMed:10024359, ECO:0000269|PubMed:10414968,
ECO:0000269|PubMed:10618149, ECO:0000269|PubMed:11463864,
ECO:0000269|PubMed:12127166, ECO:0000269|PubMed:12403834,
ECO:0000269|PubMed:12451110, ECO:0000269|PubMed:12560340,
ECO:0000269|PubMed:12621036, ECO:0000269|PubMed:12807875,
ECO:0000269|PubMed:12832499, ECO:0000269|PubMed:12954870,
ECO:0000269|PubMed:15195093, ECO:0000269|PubMed:15322114,
ECO:0000269|PubMed:16273079, ECO:0000269|PubMed:16319318,
ECO:0000269|PubMed:16407566, ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17301173, ECO:0000269|PubMed:17360683,
ECO:0000269|PubMed:17379638, ECO:0000269|PubMed:18167541,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:1875913,
ECO:0000269|PubMed:19077057, ECO:0000269|PubMed:19219384,
ECO:0000269|PubMed:19276663, ECO:0000269|PubMed:19622611,
ECO:0000269|PubMed:20202934, ECO:0000269|PubMed:20484665,
ECO:0000269|PubMed:21518833, ECO:0000269|PubMed:2206531,
ECO:0000269|PubMed:22411134, ECO:0000269|PubMed:23878373,
ECO:0000269|PubMed:24928958, ECO:0000269|PubMed:2770868,
ECO:0000269|PubMed:8083226, ECO:0000269|PubMed:8670833,
ECO:0000269|PubMed:8978827, ECO:0000269|PubMed:8980147,
ECO:0000269|PubMed:9079713, ECO:0000269|PubMed:9305895,
ECO:0000269|PubMed:9351973, ECO:0000269|PubMed:9362476,
ECO:0000269|PubMed:9565597, ECO:0000269|PubMed:9616203,
ECO:0000269|PubMed:9696692}.
-!- ENZYME REGULATION: Inhibited by 42 nM hanatoxin 1 (HaTx1), a
spider venom toxin of the tarantula G. spatulata (PubMed:7576642).
Inhibited by 100 nM stromatoxin 1 (ScTx1), a spider venom toxin of
the tarantula S. calceata (PubMed:12065754). Modestly sensitive to
millimolar levels of tetraethylammonium (TEA) and 4-aminopyridine
(4-AP) (PubMed:2770868, PubMed:1875913, PubMed:8083226,
PubMed:9362476). Completely insensitive to toxins such as
dendrotoxin (DTX) and charybdotoxin (CTX) (PubMed:9362476).
{ECO:0000269|PubMed:12065754, ECO:0000269|PubMed:1875913,
ECO:0000269|PubMed:2770868, ECO:0000269|PubMed:7576642,
ECO:0000269|PubMed:8083226, ECO:0000269|PubMed:9362476,
ECO:0000305|PubMed:10414301, ECO:0000305|PubMed:15858231}.
-!- BIOPHYSICOCHEMICAL PROPERTIES:
Kinetic parameters:
Note=Homotetrameric channels expressed in xenopus oocytes or in
mammalian non-neuronal cells display delayed-rectifier voltage-
dependent potassium currents which are activated during membrane
depolarization, i.e within a risetime of about 20 msec
(PubMed:2770868). After that, inactivate very slowly, i.e within
more than 5 sec (PubMed:2206531, PubMed:8083226). Their
activation requires low threshold potentials of about -20 to -30
mV, with a midpoint activation at about 10 mV (PubMed:2770868,
PubMed:2206531, PubMed:8083226). For inactivation, the voltage
at half-maximal amplitude is about -20 mV (PubMed:2206531,
PubMed:8083226). The time constant for recovery after
inactivation is about 1.6 sec. Channels have an unitary
conductance of about 8 pS (PubMed:10414301, PubMed:15858231).
The voltage-dependence of activation and inactivation and other
channel characteristics vary depending on the experimental
conditions, the expression system, the presence or absence of
ancillary subunits and post-translational modifications.
{ECO:0000269|PubMed:2206531, ECO:0000269|PubMed:2770868,
ECO:0000269|PubMed:8083226, ECO:0000305|PubMed:10414301,
ECO:0000305|PubMed:15858231};
-!- SUBUNIT: Homotetramer or heterotetramer with KCNB2
(PubMed:20202934). Heterotetramer with non-conducting channel-
forming alpha subunits such as KCNF1, KCNG1, KCNG3, KCNG4, KCNH1,
KCNH2, KCNS1, KCNS2, KCNS3 and KCNV1 (PubMed:8670833,
PubMed:8980147, PubMed:9362476, PubMed:9079713, PubMed:9305895,
PubMed:9696692). Channel activity is regulated by association with
ancillary beta subunits such as AMIGO1, KCNE1, KCNE2 and KCNE3
(PubMed:12954870, PubMed:19219384). Self-associates (via N-
terminus and C-terminus); self-association is required to regulate
trafficking, gating and C-terminal phosphorylation-dependent
modulation of the channel (PubMed:12560340, PubMed:18463252,
PubMed:19690160). Interacts (via C-terminus) with STX1A (via C-
terminus); this decreases the rate of channel activation and
increases the rate of channel inactivation in pancreatic beta
cells, induces also neuronal apoptosis in response to oxidative
injury as well as pore-independent enhancement of exocytosis in
neuroendocrine cells, chromaffin cells, pancreatic beta cells and
from the soma of dorsal root ganglia (DRG) neurons
(PubMed:12621036, PubMed:12807875, PubMed:17301173,
PubMed:18167541, PubMed:19077057, PubMed:20484665,
PubMed:22411134, PubMed:24928958). Interacts (via N-terminus) with
SNAP25; this decreases the rate of channel inactivation in
pancreatic beta cells and also increases interaction during
neuronal apoptosis in a N-methyl-D-aspartate receptor (NMDAR)-
dependent manner (PubMed:12403834, PubMed:12807875,
PubMed:19077057). Interacts (via N-terminus and C-terminus) with
VAMP2 (via N-terminus); stimulates channel inactivation rate
(PubMed:18542995, PubMed:19690160, PubMed:19077057). Interacts
with CREB1; this promotes channel acetylation in response to
stimulation by incretin hormones (PubMed:21818121). Interacts (via
N-terminus and C-terminus) with MYL12B (PubMed:24569993).
Interacts (via N-terminus) with PIAS3; this increases the number
of functional channels at the cell surface (PubMed:9565597).
Interacts with SUMO1. Interacts (via phosphorylated form) with
PTPRE; this reduces phosphorylation and channel activity in
heterologous cells (By similarity). {ECO:0000250|UniProtKB:Q03717,
ECO:0000250|UniProtKB:Q14721, ECO:0000269|PubMed:12403834,
ECO:0000269|PubMed:12560340, ECO:0000269|PubMed:12621036,
ECO:0000269|PubMed:12807875, ECO:0000269|PubMed:12954870,
ECO:0000269|PubMed:17301173, ECO:0000269|PubMed:18167541,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:18542995,
ECO:0000269|PubMed:19077057, ECO:0000269|PubMed:19219384,
ECO:0000269|PubMed:19690160, ECO:0000269|PubMed:20202934,
ECO:0000269|PubMed:20484665, ECO:0000269|PubMed:21818121,
ECO:0000269|PubMed:22411134, ECO:0000269|PubMed:24569993,
ECO:0000269|PubMed:24928958, ECO:0000269|PubMed:8670833,
ECO:0000269|PubMed:8980147, ECO:0000269|PubMed:9079713,
ECO:0000269|PubMed:9305895, ECO:0000269|PubMed:9362476,
ECO:0000269|PubMed:9565597, ECO:0000269|PubMed:9696692}.
-!- SUBCELLULAR LOCATION: Cell membrane {ECO:0000269|PubMed:10024359,
ECO:0000269|PubMed:10414968, ECO:0000269|PubMed:10618149,
ECO:0000269|PubMed:10719893, ECO:0000269|PubMed:12127166,
ECO:0000269|PubMed:12403834, ECO:0000269|PubMed:12451110,
ECO:0000269|PubMed:12560340, ECO:0000269|PubMed:12615930,
ECO:0000269|PubMed:12621036, ECO:0000269|PubMed:12807875,
ECO:0000269|PubMed:12832499, ECO:0000269|PubMed:12954870,
ECO:0000269|PubMed:15195093, ECO:0000269|PubMed:15322114,
ECO:0000269|PubMed:15855232, ECO:0000269|PubMed:16273079,
ECO:0000269|PubMed:16319318, ECO:0000269|PubMed:16407566,
ECO:0000269|PubMed:16988031, ECO:0000269|PubMed:17192433,
ECO:0000269|PubMed:17301173, ECO:0000269|PubMed:17360683,
ECO:0000269|PubMed:17379638, ECO:0000269|PubMed:17606996,
ECO:0000269|PubMed:17965280, ECO:0000269|PubMed:18167541,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:18542995,
ECO:0000269|PubMed:19014551, ECO:0000269|PubMed:19077057,
ECO:0000269|PubMed:19219384, ECO:0000269|PubMed:19276663,
ECO:0000269|PubMed:19690160, ECO:0000269|PubMed:20202934,
ECO:0000269|PubMed:20484665, ECO:0000269|PubMed:21518833,
ECO:0000269|PubMed:21712386, ECO:0000269|PubMed:22411134,
ECO:0000269|PubMed:23878373, ECO:0000269|PubMed:24477962,
ECO:0000269|PubMed:24569993, ECO:0000269|PubMed:24928958,
ECO:0000269|PubMed:7623158, ECO:0000269|PubMed:8083226,
ECO:0000269|PubMed:8463836, ECO:0000269|PubMed:8508921,
ECO:0000269|PubMed:8670833, ECO:0000269|PubMed:8978827,
ECO:0000269|PubMed:8980147, ECO:0000269|PubMed:9079713,
ECO:0000269|PubMed:9305895, ECO:0000269|PubMed:9362476,
ECO:0000269|PubMed:9522360, ECO:0000269|PubMed:9565597,
ECO:0000269|PubMed:9616203, ECO:0000269|PubMed:9696692}.
Perikaryon {ECO:0000269|PubMed:10024359,
ECO:0000269|PubMed:10618149, ECO:0000269|PubMed:10719893,
ECO:0000269|PubMed:12954870, ECO:0000269|PubMed:15195093,
ECO:0000269|PubMed:16319318, ECO:0000269|PubMed:16407566,
ECO:0000269|PubMed:16988031, ECO:0000269|PubMed:17379638,
ECO:0000269|PubMed:17965280, ECO:0000269|PubMed:18463252,
ECO:0000269|PubMed:19014551, ECO:0000269|PubMed:19077057,
ECO:0000269|PubMed:1961744, ECO:0000269|PubMed:20202934,
ECO:0000269|PubMed:21518833, ECO:0000269|PubMed:21712386,
ECO:0000269|PubMed:22648171, ECO:0000269|PubMed:23878373,
ECO:0000269|PubMed:24477962, ECO:0000269|PubMed:24569993,
ECO:0000269|PubMed:7623158, ECO:0000269|PubMed:8463836,
ECO:0000269|PubMed:8978827, ECO:0000269|PubMed:9522360}. Cell
projection, dendrite {ECO:0000269|PubMed:10024359,
ECO:0000269|PubMed:10618149, ECO:0000269|PubMed:10719893,
ECO:0000269|PubMed:12954870, ECO:0000269|PubMed:15195093,
ECO:0000269|PubMed:16319318, ECO:0000269|PubMed:16407566,
ECO:0000269|PubMed:17379638, ECO:0000269|PubMed:17965280,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:19014551,
ECO:0000269|PubMed:19077057, ECO:0000269|PubMed:20202934,
ECO:0000269|PubMed:21518833, ECO:0000269|PubMed:21712386,
ECO:0000269|PubMed:22648171, ECO:0000269|PubMed:23878373,
ECO:0000269|PubMed:24477962, ECO:0000269|PubMed:24569993,
ECO:0000269|PubMed:7623158, ECO:0000269|PubMed:8463836,
ECO:0000269|PubMed:9522360}. Cell projection, axon
{ECO:0000269|PubMed:19014551, ECO:0000269|PubMed:22648171,
ECO:0000269|PubMed:24477962}. Cell junction, synapse, postsynaptic
cell membrane {ECO:0000269|PubMed:9522360}. Cell junction, synapse
{ECO:0000269|PubMed:9522360}. Cell junction, synapse, synaptosome
{ECO:0000269|PubMed:8508921}. Membrane
{ECO:0000269|PubMed:8508921}; Multi-pass membrane protein. Lateral
cell membrane {ECO:0000269|PubMed:8978827}. Cell membrane,
sarcolemma {ECO:0000269|PubMed:17965280}. Note=Localizes to high-
density somatodendritic clusters and non-clustered sites on the
surface of neocortical and hippocampal pyramidal neurons in a
cortical actin cytoskeleton-dependent manner (PubMed:1961744,
PubMed:8978827, PubMed:9522360, PubMed:10024359, PubMed:10719893,
PubMed:15195093, PubMed:16319318, PubMed:16407566,
PubMed:16988031, PubMed:17606996, PubMed:17379638,
PubMed:19014551, PubMed:18463252, PubMed:22648171,
PubMed:23878373, PubMed:24569993, PubMed:24477962). Localizes also
to high-density clusters in the axon initial segment (AIS), at
ankyrin-G-deficient sites, on the surface of neocortical and
hippocampal pyramidal neurons (PubMed:17379638, PubMed:19014551,
PubMed:22648171, PubMed:24477962). KCNB1-containing AIS clusters
localize either in close apposition to smooth endoplasmic
reticulum cisternal organelles or with GABA-A receptor-containing
synapses of hippocampal and cortical pyramidal neurons,
respectively (PubMed:24477962). Localizes to high-density clusters
on the cell surface of atrial and ventricular myocytes and at the
lateral plasma membrane in epithelial cells (PubMed:8978827,
PubMed:17965280). Localizes both to the axial and transverse
tubules (T tubule) and sarcolemma in ventricular myocytes
(PubMed:17965280). Associated with lipid raft domains
(PubMed:15855232). In cortical neurons, apoptotic injuries induce
de novo plasma membrane insertion in a SNARE-dependent manner
causing an apoptotic potassium current surge (PubMed:16273079,
PubMed:19077057). {ECO:0000250|UniProtKB:Q03717,
ECO:0000250|UniProtKB:Q14721, ECO:0000269|PubMed:10024359,
ECO:0000269|PubMed:10719893, ECO:0000269|PubMed:12615930,
ECO:0000269|PubMed:12807875, ECO:0000269|PubMed:12954870,
ECO:0000269|PubMed:15195093, ECO:0000269|PubMed:15855232,
ECO:0000269|PubMed:16273079, ECO:0000269|PubMed:16319318,
ECO:0000269|PubMed:16407566, ECO:0000269|PubMed:16988031,
ECO:0000269|PubMed:17301173, ECO:0000269|PubMed:17379638,
ECO:0000269|PubMed:17606996, ECO:0000269|PubMed:17965280,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:19014551,
ECO:0000269|PubMed:19077057, ECO:0000269|PubMed:19219384,
ECO:0000269|PubMed:1961744, ECO:0000269|PubMed:20202934,
ECO:0000269|PubMed:21518833, ECO:0000269|PubMed:22648171,
ECO:0000269|PubMed:23878373, ECO:0000269|PubMed:24477962,
ECO:0000269|PubMed:24569993, ECO:0000269|PubMed:8508921,
ECO:0000269|PubMed:8978827, ECO:0000269|PubMed:9522360}.
-!- TISSUE SPECIFICITY: Expressed in brain (PubMed:1740690,
PubMed:1961744, PubMed:8508921, PubMed:7623158, PubMed:12954870).
Expressed in the hippocampus, cerebral cortex, cerebellum,
thalamus, hypothalamus, olfactory bulb, corpus striatum and medial
hebenula (PubMed:8463836, PubMed:10414301, PubMed:16319318).
Expressed in pancreatic islets (PubMed:12403834). Expressed in
heart and skeletal muscle (PubMed:1740690, PubMed:19219384,
PubMed:10414301). Levels remain constant throughout postnatal
development (PubMed:17192433). Expressed in neocortical pyramidal
neurons and inhibitory interneurons (PubMed:1961744,
PubMed:9522360, PubMed:10618149, PubMed:12832499, PubMed:17192433,
PubMed:17379638, PubMed:19014551, PubMed:20202934,
PubMed:24477962). Expressed in the superior cervical ganglion
(SCG) neurons (PubMed:12451110). Expressed in globus pallidus
neurons (PubMed:10414968). Expressed in pancreatic beta cells
(PubMed:11463864, PubMed:22411134). Expressed in cardiomyocytes
(PubMed:17965280). Expressed in arterial smooth muscle, alveolar
epithelium and parenchyma (at protein level) (PubMed:9362476,
PubMed:9616203, PubMed:15322114). Expressed in brain, heart, lung,
liver, colon, kidney and adrenal gland (PubMed:8508921,
PubMed:9362476, PubMed:19074135). Expressed in pyramidal cells of
the cerebral cortex, in Purkinje and granule cells of the
cerebellum (PubMed:8463836). Expressed in CA1-CA3 pyramidal cells,
dentate granule cells and interneurons of the hippocampus
(PubMed:7623158, PubMed:10024359). Expressed in pulmonary artery
(PA) smooth muscle cells (PubMed:9362476).
{ECO:0000269|PubMed:10024359, ECO:0000269|PubMed:10414968,
ECO:0000269|PubMed:10618149, ECO:0000269|PubMed:11463864,
ECO:0000269|PubMed:12403834, ECO:0000269|PubMed:12451110,
ECO:0000269|PubMed:12832499, ECO:0000269|PubMed:12954870,
ECO:0000269|PubMed:15322114, ECO:0000269|PubMed:16319318,
ECO:0000269|PubMed:17192433, ECO:0000269|PubMed:17379638,
ECO:0000269|PubMed:1740690, ECO:0000269|PubMed:17965280,
ECO:0000269|PubMed:19014551, ECO:0000269|PubMed:19074135,
ECO:0000269|PubMed:19219384, ECO:0000269|PubMed:1961744,
ECO:0000269|PubMed:20202934, ECO:0000269|PubMed:22411134,
ECO:0000269|PubMed:24477962, ECO:0000269|PubMed:7623158,
ECO:0000269|PubMed:8463836, ECO:0000269|PubMed:8508921,
ECO:0000269|PubMed:9362476, ECO:0000269|PubMed:9522360,
ECO:0000269|PubMed:9616203}.
-!- DEVELOPMENTAL STAGE: Expressed in embryonic brain at 14 dpc, and
thereafter (at protein level) (PubMed:8508921). Expressed in
embryonic brain at 14 dpc, and thereafter (PubMed:8508921).
{ECO:0000269|PubMed:8508921}.
-!- INDUCTION: Down-regulated by angiotensin II in a NFATC3-dependent
manner (PubMed:15322114). {ECO:0000269|PubMed:15322114}.
-!- DOMAIN: The transmembrane segment S4 functions as voltage-sensor
and is characterized by a series of positively charged amino acids
at every third position. Channel opening and closing is effected
by a conformation change that affects the position and orientation
of the voltage-sensor paddle formed by S3 and S4 within the
membrane. A transmembrane electric field that is positive inside
would push the positively charged S4 segment outwards, thereby
opening the pore, while a field that is negative inside would pull
the S4 segment inwards and close the pore. Changes in the position
and orientation of S4 are then transmitted to the activation gate
formed by the inner helix bundle via the S4-S5 linker region.
{ECO:0000250|UniProtKB:P63142}.
-!- DOMAIN: The N-terminal and C-terminal cytoplasmic regions mediate
homooligomerization; self-association is required to regulate
trafficking, gating and C-terminal phosphorylation-dependent
modulation of the channel (PubMed:12560340, PubMed:18463252,
PubMed:19690160). The N-terminal cytoplasmic region is important
for interaction with other channel-forming alpha subunits and with
ancillary beta subunits (PubMed:12954870, PubMed:19219384). The C-
terminus is necessary and sufficient for the restricted
localization to, and clustering within, both in soma and proximal
portions of dendrite of neurons and in lateral membrane of non-
neuronal polarized cells (PubMed:8978827, PubMed:10719893). The C-
terminus is both necessary and sufficient as a mediator of
cholinergic and calcium-stimulated modulation of channel cell
membrane clustering localization and activity in hippocampal
neurons (PubMed:16407566). {ECO:0000250|UniProtKB:Q14721,
ECO:0000269|PubMed:10719893, ECO:0000269|PubMed:12560340,
ECO:0000269|PubMed:12954870, ECO:0000269|PubMed:16407566,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:19219384,
ECO:0000269|PubMed:19690160, ECO:0000269|PubMed:8978827}.
-!- PTM: Phosphorylated (PubMed:8083226, PubMed:15195093,
PubMed:16319318, PubMed:16407566, PubMed:18463252). Differential
C-terminal phosphorylation on a subset of serines allows graded
activity-dependent regulation of channel gating in hippocampal
neurons (PubMed:9351973, PubMed:17192433, PubMed:16917065). Ser-
607 and Tyr-128 are significant sites of voltage-gated regulation
through phosphorylation/dephosphorylation activities
(PubMed:12615930, PubMed:17192433). Tyr-128 can be phosphorylated
by Src and dephosphorylated by cytoplasmic form of the phosphatase
PTPRE isoform 2 (PubMed:12615930). CDK5-induced Ser-607
phosphorylation increases in response to acute blockade of
neuronal activity (PubMed:21712386). Phosphorylated on Tyr-128 by
Src and on Ser-804 by MAPK14/P38MAPK; phosphorylations are
necessary and sufficient for an increase in plasma membrane
insertion, apoptotic potassium current surge and completion of the
neuronal cell death program (PubMed:17360683, PubMed:19622611).
Phosphorylated on Ser-520, Ser-607, Ser-655 and Ser-804 by CDK5;
phosphorylation is necessary for KCNB1 channel clustering
formation (PubMed:21712386). The Ser-607 phosphorylation state
differs between KCNB1-containing clusters on the proximal and
distal portions of the axon initial segment (AIS)
(PubMed:24477962). Highly phosphorylated on serine residues in the
C-terminal cytoplasmic tail in resting neurons (PubMed:9351973,
PubMed:16917065). Phosphorylated in pancreatic beta cells in
response to incretin hormones stimulation in a PKA- and
RPS6KA5/MSK1-dependent signaling pathway, promoting beta cell
survival (PubMed:21818121). Phosphorylation on Ser-567 is reduced
during postnatal development with low levels at P2 and P5; levels
then increase to reach adult levels by P14 (PubMed:17192433).
Phosphorylation on Ser-457, Ser-541, Ser-567, Ser-607, Ser-655 and
Ser-719 as well as the N-terminal Ser-15 are sensitive to
calcineurin-mediated dephosphorylation contributing to the
modulation of the voltage-dependent gating properties
(PubMed:17192433, PubMed:16917065). Dephosphorylation by
phosphatase PTPRE isoform 2 confers neuroprotection by its
inhibitory influence on the neuronal apoptotic potassium current
surge in a Zn(2+)-dependent manner (PubMed:19622611).
Dephosphorylated at Ser-607 by protein phosphatase PPP1CA
(PubMed:21712386). Hypoxia-, seizure- or glutamate-induced
neuronal activities promote calcium/calcineurin-dependent
dephosphorylation resulting in a loss of KCNB1-containing
clustering and enhanced channel activity (PubMed:15195093,
PubMed:16319318, PubMed:16407566, PubMed:17192433,
PubMed:16917065). In response to brain ischemia, Ser-567 and Ser-
607 are strongly dephosphorylated while Ser-457 and Ser-719 are
less dephosphorylated (PubMed:17192433). In response to brain
seizures, phosphorylation levels on Ser-567 and Ser-607 are
greatly reduced (PubMed:17192433). Phosphorylated/dephosphorylated
by Src or FYN tyrosine-protein kinases and tyrosine phosphatase
PTPRE in primary Schwann cells and sciatic nerve tissue (By
similarity). {ECO:0000250|UniProtKB:Q03717,
ECO:0000269|PubMed:12615930, ECO:0000269|PubMed:15195093,
ECO:0000269|PubMed:16319318, ECO:0000269|PubMed:16407566,
ECO:0000269|PubMed:16917065, ECO:0000269|PubMed:17192433,
ECO:0000269|PubMed:17360683, ECO:0000269|PubMed:18463252,
ECO:0000269|PubMed:18690023, ECO:0000269|PubMed:19622611,
ECO:0000269|PubMed:21712386, ECO:0000269|PubMed:21818121,
ECO:0000269|PubMed:24477962, ECO:0000269|PubMed:8083226,
ECO:0000269|PubMed:9351973}.
-!- PTM: Acetylated. Acetylation occurs in pancreatic beta cells in
response to stimulation by incretin hormones in a histone
acetyltransferase (HAT)/histone deacetylase (HDAC)-dependent
signaling pathway, promoting beta cell survival (PubMed:21818121).
{ECO:0000269|PubMed:21818121}.
-!- PTM: Sumoylated on Lys-474, preferentially with SUMO1; sumoylation
induces a positive shift in the voltage-dependence of activation
and inhibits channel activity (PubMed:21518833). Sumoylation
increases the frequency of repetitive action potential firing at
the cell surface of hippocampal neurons and decreases its
frequency in pancreatic beta cells (PubMed:21518833). Desumoylated
by SENP1 (PubMed:21518833). {ECO:0000269|PubMed:21518833}.
-!- PTM: Not glycosylated (PubMed:8083226).
{ECO:0000269|PubMed:8083226}.
-!- SIMILARITY: Belongs to the potassium channel family. B (Shab) (TC
1.A.1.2) subfamily. Kv2.1/KCNB1 sub-subfamily. {ECO:0000305}.
-!- SEQUENCE CAUTION:
Sequence=CAA34497.1; Type=Erroneous initiation; Evidence={ECO:0000305};
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; X16476; CAA34497.1; ALT_INIT; mRNA.
PIR; S05448; CHRTD1.
RefSeq; NP_037318.1; NM_013186.1.
UniGene; Rn.26724; -.
PDB; 2R9R; X-ray; 2.40 A; B/H=272-304.
PDB; 3LNM; X-ray; 2.90 A; B/D=272-304.
PDB; 4JTA; X-ray; 2.50 A; B/Q=274-306.
PDB; 4JTC; X-ray; 2.56 A; B/H=274-306.
PDB; 4JTD; X-ray; 2.54 A; B/H=274-306.
PDBsum; 2R9R; -.
PDBsum; 3LNM; -.
PDBsum; 4JTA; -.
PDBsum; 4JTC; -.
PDBsum; 4JTD; -.
ProteinModelPortal; P15387; -.
SMR; P15387; -.
BioGrid; 247764; 5.
IntAct; P15387; 4.
MINT; MINT-8283237; -.
STRING; 10116.ENSRNOP00000065961; -.
BindingDB; P15387; -.
ChEMBL; CHEMBL1075226; -.
GuidetoPHARMACOLOGY; 546; -.
iPTMnet; P15387; -.
PhosphoSitePlus; P15387; -.
PaxDb; P15387; -.
PRIDE; P15387; -.
GeneID; 25736; -.
KEGG; rno:25736; -.
UCSC; RGD:2954; rat.
CTD; 3745; -.
RGD; 2954; Kcnb1.
eggNOG; KOG3713; Eukaryota.
eggNOG; COG1226; LUCA.
HOVERGEN; HBG052225; -.
InParanoid; P15387; -.
KO; K04885; -.
OrthoDB; EOG091G0FP3; -.
PhylomeDB; P15387; -.
EvolutionaryTrace; P15387; -.
PRO; PR:P15387; -.
Proteomes; UP000002494; Unplaced.
Genevisible; P15387; RN.
GO; GO:0030424; C:axon; IDA:UniProtKB.
GO; GO:0030054; C:cell junction; IEA:UniProtKB-KW.
GO; GO:0009986; C:cell surface; IDA:RGD.
GO; GO:0030425; C:dendrite; IDA:UniProtKB.
GO; GO:0032590; C:dendrite membrane; IDA:RGD.
GO; GO:0005783; C:endoplasmic reticulum; IDA:RGD.
GO; GO:0016328; C:lateral plasma membrane; IEA:UniProtKB-SubCell.
GO; GO:0016020; C:membrane; IDA:RGD.
GO; GO:0043025; C:neuronal cell body; IDA:RGD.
GO; GO:0032809; C:neuronal cell body membrane; IDA:UniProtKB.
GO; GO:0043204; C:perikaryon; IDA:UniProtKB.
GO; GO:0005886; C:plasma membrane; IDA:UniProtKB.
GO; GO:0045211; C:postsynaptic membrane; IDA:RGD.
GO; GO:0042383; C:sarcolemma; IEA:UniProtKB-SubCell.
GO; GO:0008076; C:voltage-gated potassium channel complex; IDA:UniProtKB.
GO; GO:0005251; F:delayed rectifier potassium channel activity; IDA:UniProtKB.
GO; GO:0044325; F:ion channel binding; IPI:UniProtKB.
GO; GO:0015271; F:outward rectifier potassium channel activity; IMP:RGD.
GO; GO:0046982; F:protein heterodimerization activity; IDA:UniProtKB.
GO; GO:0047485; F:protein N-terminus binding; IPI:RGD.
GO; GO:0000149; F:SNARE binding; IPI:UniProtKB.
GO; GO:0005249; F:voltage-gated potassium channel activity; IDA:MGI.
GO; GO:0001508; P:action potential; IDA:UniProtKB.
GO; GO:0071333; P:cellular response to glucose stimulus; ISS:UniProtKB.
GO; GO:0031669; P:cellular response to nutrient levels; IDA:UniProtKB.
GO; GO:0042593; P:glucose homeostasis; ISS:UniProtKB.
GO; GO:0007215; P:glutamate receptor signaling pathway; IDA:UniProtKB.
GO; GO:0046676; P:negative regulation of insulin secretion; ISS:UniProtKB.
GO; GO:0045956; P:positive regulation of calcium ion-dependent exocytosis; IDA:UniProtKB.
GO; GO:0033605; P:positive regulation of catecholamine secretion; IDA:UniProtKB.
GO; GO:1900454; P:positive regulation of long term synaptic depression; ISS:UniProtKB.
GO; GO:0010701; P:positive regulation of norepinephrine secretion; IDA:UniProtKB.
GO; GO:0090314; P:positive regulation of protein targeting to membrane; IDA:UniProtKB.
GO; GO:0071805; P:potassium ion transmembrane transport; IDA:UniProtKB.
GO; GO:0006813; P:potassium ion transport; IDA:UniProtKB.
GO; GO:0051260; P:protein homooligomerization; IEA:InterPro.
GO; GO:0072659; P:protein localization to plasma membrane; IDA:UniProtKB.
GO; GO:0051259; P:protein oligomerization; IMP:RGD.
GO; GO:0098900; P:regulation of action potential; ISS:UniProtKB.
GO; GO:2000671; P:regulation of motor neuron apoptotic process; IDA:UniProtKB.
GO; GO:0006904; P:vesicle docking involved in exocytosis; IDA:UniProtKB.
InterPro; IPR000210; BTB/POZ_dom.
InterPro; IPR005821; Ion_trans_dom.
InterPro; IPR003968; K_chnl_volt-dep_Kv.
InterPro; IPR003973; K_chnl_volt-dep_Kv2.
InterPro; IPR004350; K_chnl_volt-dep_Kv2.1.
InterPro; IPR011333; SKP1/BTB/POZ_sf.
InterPro; IPR003131; T1-type_BTB.
InterPro; IPR028325; VG_K_chnl.
PANTHER; PTHR11537; PTHR11537; 1.
Pfam; PF02214; BTB_2; 1.
Pfam; PF00520; Ion_trans; 1.
Pfam; PF03521; Kv2channel; 2.
PRINTS; PR00169; KCHANNEL.
PRINTS; PR01514; KV21CHANNEL.
PRINTS; PR01491; KVCHANNEL.
PRINTS; PR01495; SHABCHANNEL.
SMART; SM00225; BTB; 1.
SUPFAM; SSF54695; SSF54695; 1.
1: Evidence at protein level;
3D-structure; Cell junction; Cell membrane; Cell projection;
Complete proteome; Exocytosis; Ion channel; Ion transport;
Isopeptide bond; Membrane; Phosphoprotein; Postsynaptic cell membrane;
Potassium; Potassium channel; Potassium transport; Reference proteome;
Synapse; Synaptosome; Transmembrane; Transmembrane helix; Transport;
Ubl conjugation; Voltage-gated channel.
CHAIN 1 857 Potassium voltage-gated channel subfamily
B member 1.
/FTId=PRO_0000054046.
TOPO_DOM 1 186 Cytoplasmic.
{ECO:0000250|UniProtKB:P63142}.
TRANSMEM 187 208 Helical; Name=Segment S1. {ECO:0000255}.
TOPO_DOM 209 228 Extracellular.
{ECO:0000250|UniProtKB:P63142}.
TRANSMEM 229 250 Helical; Name=Segment S2. {ECO:0000255}.
TOPO_DOM 251 259 Cytoplasmic.
{ECO:0000250|UniProtKB:P63142}.
TRANSMEM 260 280 Helical; Name=Segment S3.
{ECO:0000250|UniProtKB:P63142}.
TOPO_DOM 281 294 Extracellular.
{ECO:0000250|UniProtKB:P63142}.
TRANSMEM 295 316 Helical; Voltage-sensor; Name=Segment S4.
{ECO:0000250|UniProtKB:P63142}.
TOPO_DOM 317 330 Cytoplasmic.
{ECO:0000250|UniProtKB:P63142}.
TRANSMEM 331 351 Helical; Name=Segment S5.
{ECO:0000250|UniProtKB:P63142}.
TOPO_DOM 352 364 Extracellular.
{ECO:0000250|UniProtKB:P63142}.
INTRAMEM 365 376 Helical; Name=Pore helix.
{ECO:0000250|UniProtKB:P63142}.
INTRAMEM 377 384 {ECO:0000250|UniProtKB:P63142}.
TOPO_DOM 385 391 Extracellular.
{ECO:0000250|UniProtKB:P63142}.
TRANSMEM 392 420 Helical; Name=Segment S6.
{ECO:0000250|UniProtKB:P63142}.
TOPO_DOM 421 857 Cytoplasmic.
{ECO:0000250|UniProtKB:P63142}.
REGION 59 75 Self-association.
{ECO:0000269|PubMed:18463252,
ECO:0000269|PubMed:19690160}.
REGION 448 481 Self-association.
{ECO:0000269|PubMed:18463252,
ECO:0000269|PubMed:19690160}.
MOTIF 377 382 Selectivity filter.
{ECO:0000250|UniProtKB:P63142}.
COMPBIAS 517 520 Poly-Ser.
COMPBIAS 700 705 Poly-Ala.
MOD_RES 15 15 Phosphoserine.
{ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:18690023}.
MOD_RES 128 128 Phosphotyrosine; by Src.
{ECO:0000269|PubMed:12615930,
ECO:0000269|PubMed:19622611}.
MOD_RES 444 444 Phosphoserine.
{ECO:0000250|UniProtKB:Q03717}.
MOD_RES 457 457 Phosphoserine.
{ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17192433,
ECO:0000269|PubMed:18690023}.
MOD_RES 484 484 Phosphoserine.
{ECO:0000244|PubMed:22673903,
ECO:0000269|PubMed:16917065}.
MOD_RES 496 496 Phosphoserine.
{ECO:0000269|PubMed:16917065}.
MOD_RES 503 503 Phosphoserine.
{ECO:0000269|PubMed:16917065}.
MOD_RES 519 519 Phosphoserine.
{ECO:0000244|PubMed:22673903}.
MOD_RES 520 520 Phosphoserine; by CDK5; in vitro.
{ECO:0000244|PubMed:22673903,
ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:21712386}.
MOD_RES 541 541 Phosphoserine.
{ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:18690023}.
MOD_RES 567 567 Phosphoserine.
{ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17192433}.
MOD_RES 590 590 Phosphoserine.
{ECO:0000269|PubMed:16917065}.
MOD_RES 607 607 Phosphoserine; by CDK5.
{ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17192433,
ECO:0000269|PubMed:18690023,
ECO:0000269|PubMed:21712386,
ECO:0000269|PubMed:24477962}.
MOD_RES 655 655 Phosphoserine; by CDK5; in vitro.
{ECO:0000244|PubMed:22673903,
ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:18690023,
ECO:0000269|PubMed:21712386}.
MOD_RES 719 719 Phosphoserine.
{ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17192433,
ECO:0000269|PubMed:18690023}.
MOD_RES 771 771 Phosphoserine.
{ECO:0000269|PubMed:16917065}.
MOD_RES 799 799 Phosphoserine.
{ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:18690023}.
MOD_RES 804 804 Phosphoserine; by CDK5, MAPK14; in vitro.
{ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17360683,
ECO:0000269|PubMed:18690023,
ECO:0000269|PubMed:21712386}.
MOD_RES 836 836 Phosphothreonine.
{ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:18690023}.
CROSSLNK 474 474 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO).
{ECO:0000269|PubMed:21518833}.
MUTAGEN 15 15 S->A: Shift in voltage-dependent gating
on calcineurin-dependent activation and
steady-state inactivation. Additive
effect on activation and steady-state
inactivation; when associated with A-457.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 15 15 S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 71 71 Q->E: Reduces channel activity.
{ECO:0000269|PubMed:12560340}.
MUTAGEN 79 79 E->D: No effect on channel activity.
{ECO:0000269|PubMed:12560340}.
MUTAGEN 128 128 Y->F: Reduces the increase of plasma
membrane insertion and apoptotic
enhancement of potassium current during
cell death program. Significant loss of
Src-mediated phosphorylation and channel
activity. Reduces interaction with PTPRE.
Increases cell viability against
apoptotic insults. Abolishes the increase
of plasma membrane insertion and
apoptotic enhancement of potassium
current during cell death program; when
associated with D-804.
{ECO:0000269|PubMed:12615930,
ECO:0000269|PubMed:19622611}.
MUTAGEN 149 149 K->Q: No loss of SUMO-dependent channel
activity modulation in hippocampal
neurons. {ECO:0000269|PubMed:21518833}.
MUTAGEN 259 259 K->Q: No loss of SUMO-dependent channel
activity modulation in hippocampal
neurons. {ECO:0000269|PubMed:21518833}.
MUTAGEN 369 369 W->C: Reduces channel activity. Does not
inhibit membrane plasma subcellular
localization, interaction with STX1A,
pore-independent exocytosis activity and
apoptotic enhancement of potassium
current during cell death program; when
associated with T-384.
{ECO:0000269|PubMed:12451110,
ECO:0000269|PubMed:12832499,
ECO:0000269|PubMed:17301173,
ECO:0000269|PubMed:17360683,
ECO:0000269|PubMed:20202934,
ECO:0000269|PubMed:20484665,
ECO:0000269|PubMed:22411134}.
MUTAGEN 384 384 Y->T: Reduces channel activity. Does not
inhibit membrane plasma subcellular
localization, interaction with STX1A,
pore-independent exocytosis activity and
apoptotic enhancement of potassium
current during cell death program; when
associated with C-369.
{ECO:0000269|PubMed:12451110,
ECO:0000269|PubMed:12832499,
ECO:0000269|PubMed:17301173,
ECO:0000269|PubMed:20202934,
ECO:0000269|PubMed:20484665,
ECO:0000269|PubMed:22411134}.
MUTAGEN 444 444 S->A: No effect on Src-mediated
phosphorylation.
{ECO:0000269|PubMed:9351973}.
MUTAGEN 457 457 S->A: Shift in voltage-dependent gating
on calcineurin-dependent activation and
steady-state inactivation. Additive
effect on activation and steady-state
inactivation; when associated with A-15.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 457 457 S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 474 474 K->Q: Loss of SUMO-dependent channel
activity modulation in hippocampal
neurons. {ECO:0000269|PubMed:21518833}.
MUTAGEN 484 484 S->A: Shift in voltage-dependent gating
on calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 484 484 S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 496 496 S->A: No effect on Src-mediated
phosphorylation.
{ECO:0000269|PubMed:9351973}.
MUTAGEN 541 541 S->A: Shift in voltage-dependent gating
on calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 541 541 S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 567 567 S->A: Shift in voltage-dependent gating
on calcineurin-dependent activation and
steady-state inactivation. Larger effect
on activation and steady-state
inactivation; when associated with A-607.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 567 567 S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 587 587 S->A: Abolishes clustered subcellular
distribution in neurons.
{ECO:0000269|PubMed:10719893}.
MUTAGEN 590 590 S->A: Abolishes clustered subcellular
distribution in neurons. Does not affect
KCNB1-containing vesicles motility.
{ECO:0000269|PubMed:10719893,
ECO:0000269|PubMed:24569993}.
MUTAGEN 591 591 F->A: Abolishes clustered subcellular
distribution in neurons.
{ECO:0000269|PubMed:10719893}.
MUTAGEN 593 593 S->A: Abolishes clustered subcellular
distribution in neurons.
{ECO:0000269|PubMed:10719893}.
MUTAGEN 607 607 S->A: Shift in voltage-dependent gating
on calcineurin-dependent activation and
steady-state inactivation. Larger effect
on activation and steady-state
inactivation; when associated with A-567.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 607 607 S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 655 655 S->A: Shift in voltage-dependent gating
on calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 655 655 S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 719 719 S->A: Shift in voltage-dependent gating
on calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 719 719 S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 771 771 S->A: Shift in voltage-dependent gating
on calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 771 771 S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and
steady-state inactivation.
{ECO:0000269|PubMed:16917065}.
MUTAGEN 804 804 S->A: Reduces the increase of plasma
membrane insertion and apoptotic
enhancement of potassium current during
cell death program. No change in
calcineurin-dependent regulation of
voltage-dependent gating. Abolishes the
increase of plasma membrane insertion and
apoptotic enhancement of potassium
current during cell death program; when
associated with F-128.
{ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17360683,
ECO:0000269|PubMed:19622611}.
MUTAGEN 804 804 S->D: Does not reduce apoptotic
enhancement of potassium current during
the cell death program.
{ECO:0000269|PubMed:17360683}.
HELIX 274 281 {ECO:0000244|PDB:4JTA}.
HELIX 286 302 {ECO:0000244|PDB:4JTA}.
HELIX 303 307 {ECO:0000244|PDB:4JTA}.
SEQUENCE 857 AA; 95637 MW; B3C5B0839AB15FD0 CRC64;
MPAGMTKHGS RSTSSLPPEP MEIVRSKACS RRVRLNVGGL AHEVLWRTLD RLPRTRLGKL
RDCNTHDSLL QVCDDYSLED NEYFFDRHPG AFTSILNFYR TGRLHMMEEM CALSFSQELD
YWGIDEIYLE SCCQARYHQK KEQMNEELKR EAETLREREG EEFDNTCCAE KRKKLWDLLE
KPNSSVAAKI LAIISIMFIV LSTIALSLNT LPELQSLDEF GQSTDNPQLA HVEAVCIAWF
TMEYLLRFLS SPKKWKFFKG PLNAIDLLAI LPYYVTIFLT ESNKSVLQFQ NVRRVVQIFR
IMRILRILKL ARHSTGLQSL GFTLRRSYNE LGLLILFLAM GIMIFSSLVF FAEKDEDDTK
FKSIPASFWW ATITMTTVGY GDIYPKTLLG KIVGGLCCIA GVLVIALPIP IIVNNFSEFY
KEQKRQEKAI KRREALERAK RNGSIVSMNM KDAFARSIEM MDIVVEKNGE SIAKKDKVQD
NHLSPNKWKW TKRALSETSS SKSFETKEQG SPEKARSSSS PQHLNVQQLE DMYSKMAKTQ
SQPILNTKEM APQSKPPEEL EMSSMPSPVA PLPARTEGVI DMRSMSSIDS FISCATDFPE
ATRFSHSPLA SLSSKAGSST APEVGWRGAL GASGGRLTET NPIPETSRSG FFVESPRSSM
KTNNPLKLRA LKVNFVEGDP TPLLPSLGLY HDPLRNRGGA AAAVAGLECA SLLDKPVLSP
ESSIYTTASA RTPPRSPEKH TAIAFNFEAG VHHYIDTDTD DEGQLLYSVD SSPPKSLHGS
TSPKFSTGAR TEKNHFESSP LPTSPKFLRP NCVYSSEGLT GKGPGAQEKC KLENHTPPDV
HMLPGGGAHG STRDQSI


Related products :

Catalog number Product name Quantity
28-297 This gene encodes a member of the potassium channel, voltage-gated, subfamily H. This member is a pore-forming (alpha) subunit of a voltage-gated non-inactivating delayed rectifier potassium channel. 0.1 mg
18-003-42663 Potassium voltage-gated channel subfamily KQT member 2 - Voltage-gated potassium channel subunit Kv7.2; Neuroblastoma-specific potassium channel subunit alpha KvLQT2; KQT-like 2 Polyclonal 0.05 mg Aff Pur
18-003-42664 Potassium voltage-gated channel subfamily KQT member 2 - Voltage-gated potassium channel subunit Kv7.2; Neuroblastoma-specific potassium channel subunit alpha KvLQT2; KQT-like 2 Polyclonal 0.1 mg Protein A
18-662-20074 Potassium voltage-gated channel subfamily C member 1 - Voltage-gated potassium channel subunit Kv3.1; Kv4; NGK2; RAW2 Polyclonal 0.1 ml
18-662-20009 Potassium voltage-gated channel subfamily B member 2 - Voltage-gated potassium channel subunit Kv2.2; CDRK Polyclonal 0.1 ml
18-003-43133 Potassium voltage-gated channel subfamily G member 1 - Voltage-gated potassium channel subunit Kv6.1; kH2 Polyclonal 0.05 mg Aff Pur
18-003-42629 Potassium voltage-gated channel subfamily D member 3 - Voltage-gated potassium channel subunit Kv4.3 Polyclonal 0.1 mg Protein A
Y062354 Anti-Potassium Channel Kv<_SUB>1.6 (Voltage-gated, Delayed-Rectifier Potassium Channel; RCK2; KV2) produced in rabbit Antibody 100ul
KCNT2 KCNS3 Gene potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3
201-20-2921 KCNS2{potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2}rabbit.pAb 0.2ml
KCNS3 KCNS1 Gene potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1
KCNT1 KCNS2 Gene potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2
18-003-42631 Cyclic GMP gated potassium channel - Potassium voltage-gated channel. shaker-related subfamily. member 10 Polyclonal 0.1 mg Protein A
CSB-EL012097RA Rat potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3 (KCNS3) ELISA kit, Species Rat, Sample Type serum, plasma 96T
CSB-EL012095RA Rat potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1 (KCNS1) ELISA kit, Species Rat, Sample Type serum, plasma 96T
CSB-EL012096RA Rat potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2 (KCNS2) ELISA kit, Species Rat, Sample Type serum, plasma 96T
CSB-EL012097HU Human potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3 (KCNS3) ELISA kit, Species Human, Sample Type serum, plasma 96T
CSB-EL012097RB Rabbit potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3 (KCNS3) ELISA kit, Species Rabbit, Sample Type serum, plasma 96T
CSB-EL012095HU Human potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1 (KCNS1) ELISA kit, Species Human, Sample Type serum, plasma 96T
CSB-EL012096HU Human potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2 (KCNS2) ELISA kit, Species Human, Sample Type serum, plasma 96T
CSB-EL012095MO Mouse potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1 (KCNS1) ELISA kit, Species Mouse, Sample Type serum, plasma 96T
CSB-EL012096MO Mouse potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2 (KCNS2) ELISA kit, Species Mouse, Sample Type serum, plasma 96T
CSB-EL012095RH Monkey potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1 (KCNS1) ELISA kit, Species Monkey, Sample Type serum, plasma 96T
CSB-EL012097MO Mouse potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3 (KCNS3) ELISA kit, Species Mouse, Sample Type serum, plasma 96T
CSB-PA012096GA01HU Rabbit anti-human potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2 polyclonal Antibody Primary antibody Host:Rabbit IgG 150ul


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur