Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Probable ATP-dependent RNA helicase DDX17 (EC 3.6.4.13) (DEAD box protein 17) (DEAD box protein p72) (DEAD box protein p82) (RNA-dependent helicase p72)

 DDX17_HUMAN             Reviewed;         729 AA.
Q92841; B1AHM0; H3BLZ8; Q69YT1; Q6ICD6;
15-JUL-1998, integrated into UniProtKB/Swiss-Prot.
21-MAR-2012, sequence version 2.
30-AUG-2017, entry version 184.
RecName: Full=Probable ATP-dependent RNA helicase DDX17;
EC=3.6.4.13;
AltName: Full=DEAD box protein 17;
AltName: Full=DEAD box protein p72;
AltName: Full=DEAD box protein p82 {ECO:0000303|PubMed:19995069};
AltName: Full=RNA-dependent helicase p72;
Name=DDX17;
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), CATALYTIC ACTIVITY,
BIOPHYSICOCHEMICAL PROPERTIES, AND TISSUE SPECIFICITY.
PubMed=8871553; DOI=10.1093/nar/24.19.3739;
Lamm G.M., Nicol S.M., Fuller-Pace F.V., Lamond A.I.;
"p72: a human nuclear DEAD box protein highly related to p68.";
Nucleic Acids Res. 24:3739-3747(1996).
[2]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 4).
PubMed=15461802; DOI=10.1186/gb-2004-5-10-r84;
Collins J.E., Wright C.L., Edwards C.A., Davis M.P., Grinham J.A.,
Cole C.G., Goward M.E., Aguado B., Mallya M., Mokrab Y., Huckle E.J.,
Beare D.M., Dunham I.;
"A genome annotation-driven approach to cloning the human ORFeome.";
Genome Biol. 5:R84.1-R84.11(2004).
[3]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 3).
TISSUE=Amygdala;
PubMed=17974005; DOI=10.1186/1471-2164-8-399;
Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U.,
Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H.,
Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K.,
Ottenwaelder B., Poustka A., Wiemann S., Schupp I.;
"The full-ORF clone resource of the German cDNA consortium.";
BMC Genomics 8:399-399(2007).
[4]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=10591208; DOI=10.1038/990031;
Dunham I., Hunt A.R., Collins J.E., Bruskiewich R., Beare D.M.,
Clamp M., Smink L.J., Ainscough R., Almeida J.P., Babbage A.K.,
Bagguley C., Bailey J., Barlow K.F., Bates K.N., Beasley O.P.,
Bird C.P., Blakey S.E., Bridgeman A.M., Buck D., Burgess J.,
Burrill W.D., Burton J., Carder C., Carter N.P., Chen Y., Clark G.,
Clegg S.M., Cobley V.E., Cole C.G., Collier R.E., Connor R.,
Conroy D., Corby N.R., Coville G.J., Cox A.V., Davis J., Dawson E.,
Dhami P.D., Dockree C., Dodsworth S.J., Durbin R.M., Ellington A.G.,
Evans K.L., Fey J.M., Fleming K., French L., Garner A.A.,
Gilbert J.G.R., Goward M.E., Grafham D.V., Griffiths M.N.D., Hall C.,
Hall R.E., Hall-Tamlyn G., Heathcott R.W., Ho S., Holmes S.,
Hunt S.E., Jones M.C., Kershaw J., Kimberley A.M., King A.,
Laird G.K., Langford C.F., Leversha M.A., Lloyd C., Lloyd D.M.,
Martyn I.D., Mashreghi-Mohammadi M., Matthews L.H., Mccann O.T.,
Mcclay J., Mclaren S., McMurray A.A., Milne S.A., Mortimore B.J.,
Odell C.N., Pavitt R., Pearce A.V., Pearson D., Phillimore B.J.C.T.,
Phillips S.H., Plumb R.W., Ramsay H., Ramsey Y., Rogers L., Ross M.T.,
Scott C.E., Sehra H.K., Skuce C.D., Smalley S., Smith M.L.,
Soderlund C., Spragon L., Steward C.A., Sulston J.E., Swann R.M.,
Vaudin M., Wall M., Wallis J.M., Whiteley M.N., Willey D.L.,
Williams L., Williams S.A., Williamson H., Wilmer T.E., Wilming L.,
Wright C.L., Hubbard T., Bentley D.R., Beck S., Rogers J., Shimizu N.,
Minoshima S., Kawasaki K., Sasaki T., Asakawa S., Kudoh J.,
Shintani A., Shibuya K., Yoshizaki Y., Aoki N., Mitsuyama S.,
Roe B.A., Chen F., Chu L., Crabtree J., Deschamps S., Do A., Do T.,
Dorman A., Fang F., Fu Y., Hu P., Hua A., Kenton S., Lai H., Lao H.I.,
Lewis J., Lewis S., Lin S.-P., Loh P., Malaj E., Nguyen T., Pan H.,
Phan S., Qi S., Qian Y., Ray L., Ren Q., Shaull S., Sloan D., Song L.,
Wang Q., Wang Y., Wang Z., White J., Willingham D., Wu H., Yao Z.,
Zhan M., Zhang G., Chissoe S., Murray J., Miller N., Minx P.,
Fulton R., Johnson D., Bemis G., Bentley D., Bradshaw H., Bourne S.,
Cordes M., Du Z., Fulton L., Goela D., Graves T., Hawkins J.,
Hinds K., Kemp K., Latreille P., Layman D., Ozersky P., Rohlfing T.,
Scheet P., Walker C., Wamsley A., Wohldmann P., Pepin K., Nelson J.,
Korf I., Bedell J.A., Hillier L.W., Mardis E., Waterston R.,
Wilson R., Emanuel B.S., Shaikh T., Kurahashi H., Saitta S.,
Budarf M.L., McDermid H.E., Johnson A., Wong A.C.C., Morrow B.E.,
Edelmann L., Kim U.J., Shizuya H., Simon M.I., Dumanski J.P.,
Peyrard M., Kedra D., Seroussi E., Fransson I., Tapia I., Bruder C.E.,
O'Brien K.P., Wilkinson P., Bodenteich A., Hartman K., Hu X.,
Khan A.S., Lane L., Tilahun Y., Wright H.;
"The DNA sequence of human chromosome 22.";
Nature 402:489-495(1999).
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
Venter J.C.;
Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
[6]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
TISSUE=Skin;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[7]
PROTEIN SEQUENCE OF 36-81; 122-154; 210-241; 255-269; 305-313;
365-372; 406-417; 421-428; 458-480; 489-505; 516-528; 536-547; 569-587
AND 671-684, INTERACTION WITH CDK9, AND FUNCTION IN ALTERNATIVE
SPLICING.
PubMed=26209609; DOI=10.1074/mcp.M115.049221;
Yang J., Zhao Y., Kalita M., Li X., Jamaluddin M., Tian B., Edeh C.B.,
Wiktorowicz J.E., Kudlicki A., Brasier A.R.;
"Systematic determination of human cyclin dependent kinase (CDK)-9
interactome identifies novel functions in RNA splicing mediated by the
DEAD box (DDX)-5/17 RNA helicases.";
Mol. Cell. Proteomics 14:2701-2721(2015).
[8]
PROTEIN SEQUENCE OF 305-314, MASS SPECTROMETRY, FUNCTION, AND
INTERACTION WITH MYOD1.
PubMed=17011493; DOI=10.1016/j.devcel.2006.08.003;
Caretti G., Schiltz R.L., Dilworth F.J., Di Padova M., Zhao P.,
Ogryzko V., Fuller-Pace F.V., Hoffman E.P., Tapscott S.J.,
Sartorelli V.;
"The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators
of MyoD and skeletal muscle differentiation.";
Dev. Cell 11:547-560(2006).
[9]
CAUTION.
PubMed=11250900; DOI=10.1093/emboj/20.6.1341;
Watanabe M., Yanagisawa J., Kitagawa H., Takeyama K., Ogawa S.,
Arao Y., Suzawa M., Kobayashi Y., Yano T., Yoshikawa H., Masuhiro Y.,
Kato S.;
"A subfamily of RNA-binding DEAD-box proteins acts as an estrogen
receptor alpha coactivator through the N-terminal activation domain
(AF-1) with an RNA coactivator, SRA.";
EMBO J. 20:1341-1352(2001).
[10]
ERRATUM, AND RETRACTION.
PubMed=25452582; DOI=10.15252/embj.201470090;
Watanabe M., Yanagisawa J., Kitagawa H., Takeyama K., Ogawa S.,
Arao Y., Suzawa M., Kobayashi Y., Yano T., Yoshikawa H., Masuhiro Y.,
Kato S.;
"Retraction: 'A subfamily of RNA-binding DEAD-box proteins acts as an
estrogen receptor alpha coactivator through the N-terminal activation
domain (AF-1) with an RNA coactivator, SRA'.";
EMBO J. 33:2880-2880(2014).
[11]
ALTERNATIVE INITIATION (ISOFORM 1).
PubMed=11675387; DOI=10.1074/jbc.M107535200;
Uhlmann-Schiffler H., Rossler O.G., Stahl H.;
"The mRNA of DEAD box protein p72 is alternatively translated into an
82-kDa RNA helicase.";
J. Biol. Chem. 277:1066-1075(2002).
[12]
FUNCTION IN ALTERNATIVE SPLICING, MUTAGENESIS OF LYS-221; THR-222;
ASP-328; TRP-355 AND SER-356, AND SUBCELLULAR LOCATION.
PubMed=12138182; DOI=10.1128/MCB.22.16.5698-5707.2002;
Hoenig A., Auboeuf D., Parker M.M., O'Malley B.W., Berget S.M.;
"Regulation of alternative splicing by the ATP-dependent DEAD-box RNA
helicase p72.";
Mol. Cell. Biol. 22:5698-5707(2002).
[13]
INTERACTION WITH DDX5, AND SUBCELLULAR LOCATION.
PubMed=12595555; DOI=10.1093/nar/gkg236;
Ogilvie V.C., Wilson B.J., Nicol S.M., Morrice N.A., Saunders L.R.,
Barber G.N., Fuller-Pace F.V.;
"The highly related DEAD box RNA helicases p68 and p72 exist as
heterodimers in cells.";
Nucleic Acids Res. 31:1470-1480(2003).
[14]
FUNCTION IN TRANSCRIPTIONAL REPRESSION, AND INTERACTION WITH HDAC1.
PubMed=15298701; DOI=10.1186/1471-2199-5-11;
Wilson B.J., Bates G.J., Nicol S.M., Gregory D.J., Perkins N.D.,
Fuller-Pace F.V.;
"The p68 and p72 DEAD box RNA helicases interact with HDAC1 and
repress transcription in a promoter-specific manner.";
BMC Mol. Biol. 5:11-11(2004).
[15]
IDENTIFICATION IN A COMPLEX CONTAINING DROSHA.
PubMed=15531877; DOI=10.1038/nature03120;
Gregory R.I., Yan K.-P., Amuthan G., Chendrimada T., Doratotaj B.,
Cooch N., Shiekhattar R.;
"The microprocessor complex mediates the genesis of microRNAs.";
Nature 432:235-240(2004).
[16]
INTERACTION WITH TP53.
PubMed=15660129; DOI=10.1038/sj.emboj.7600550;
Bates G.J., Nicol S.M., Wilson B.J., Jacobs A.M., Bourdon J.C.,
Wardrop J., Gregory D.J., Lane D.P., Perkins N.D., Fuller-Pace F.V.;
"The DEAD box protein p68: a novel transcriptional coactivator of the
p53 tumour suppressor.";
EMBO J. 24:543-553(2005).
[17]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
Mann M.;
"Global, in vivo, and site-specific phosphorylation dynamics in
signaling networks.";
Cell 127:635-648(2006).
[18]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-523, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=16964243; DOI=10.1038/nbt1240;
Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.;
"A probability-based approach for high-throughput protein
phosphorylation analysis and site localization.";
Nat. Biotechnol. 24:1285-1292(2006).
[19]
FUNCTION AS TRANSCRIPTIONAL COACTIVATOR, INTERACTION WITH CTNNB1,
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=17699760; DOI=10.1158/0008-5472.CAN-06-4652;
Shin S., Rossow K.L., Grande J.P., Janknecht R.;
"Involvement of RNA helicases p68 and p72 in colon cancer.";
Cancer Res. 67:7572-7578(2007).
[20]
FUNCTION AS TRANSCRIPTIONAL COACTIVATOR, INTERACTION WITH EP300;
CREBBP AND KAT2B, SUBCELLULAR LOCATION, AND MUTAGENESIS OF LYS-221.
PubMed=17226766; DOI=10.1002/jcb.21250;
Shin S., Janknecht R.;
"Concerted activation of the Mdm2 promoter by p72 RNA helicase and the
coactivators p300 and P/CAF.";
J. Cell. Biochem. 101:1252-1265(2007).
[21]
FUNCTION.
PubMed=17485482; DOI=10.1093/nar/gkm058;
Jalal C., Uhlmann-Schiffler H., Stahl H.;
"Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in
ribosome biogenesis and cell proliferation.";
Nucleic Acids Res. 35:3590-3601(2007).
[22]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Embryonic kidney;
PubMed=17525332; DOI=10.1126/science.1140321;
Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. III,
Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N.,
Lerenthal Y., Shiloh Y., Gygi S.P., Elledge S.J.;
"ATM and ATR substrate analysis reveals extensive protein networks
responsive to DNA damage.";
Science 316:1160-1166(2007).
[23]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18669648; DOI=10.1073/pnas.0805139105;
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
Elledge S.J., Gygi S.P.;
"A quantitative atlas of mitotic phosphorylation.";
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
[24]
FUNCTION, INTERACTION WITH ZC3HAV1; EXOSC3 AND EXOSC5, AND MUTAGENESIS
OF LYS-221.
PubMed=18334637; DOI=10.1073/pnas.0712276105;
Chen G., Guo X., Lv F., Xu Y., Gao G.;
"p72 DEAD box RNA helicase is required for optimal function of the
zinc-finger antiviral protein.";
Proc. Natl. Acad. Sci. U.S.A. 105:4352-4357(2008).
[25]
FUNCTION, INTERACTION WITH ESR1, AND MUTAGENESIS OF ASP-325.
PubMed=19718048; DOI=10.1038/onc.2009.261;
Wortham N.C., Ahamed E., Nicol S.M., Thomas R.S., Periyasamy M.,
Jiang J., Ochocka A.M., Shousha S., Huson L., Bray S.E., Coombes R.C.,
Ali S., Fuller-Pace F.V.;
"The DEAD-box protein p72 regulates ERalpha-/oestrogen-dependent
transcription and cell growth, and is associated with improved
survival in ERalpha-positive breast cancer.";
Oncogene 28:4053-4064(2009).
[26]
FUNCTION, SUMOYLATION AT LYS-129, MUTAGENESIS OF LYS-129, INTERACTION
WITH DDX5; HDAC1; HDAC2; HDAC3; EP300 AND ESR1, AND SUBCELLULAR
LOCATION.
PubMed=19995069; DOI=10.1021/bi901263m;
Mooney S.M., Grande J.P., Salisbury J.L., Janknecht R.;
"Sumoylation of p68 and p72 RNA helicases affects protein stability
and transactivation potential.";
Biochemistry 49:1-10(2010).
[27]
FUNCTION IN ESTROGEN SIGNALING PATHWAY.
PubMed=20406972; DOI=10.1158/0008-5472.CAN-09-3988;
Dutertre M., Gratadou L., Dardenne E., Germann S., Samaan S.,
Lidereau R., Driouch K., de la Grange P., Auboeuf D.;
"Estrogen regulation and physiopathologic significance of alternative
promoters in breast cancer.";
Cancer Res. 70:3760-3770(2010).
[28]
FUNCTION, INTERACTION WITH ESR1; HDAC1; HDAC2 AND HDAC3, ACETYLATION
AT LYS-108; LYS-109 AND LYS-121, MASS SPECTROMETRY, AND MUTAGENESIS OF
108-LYS-LYS-109 AND LYS-121.
PubMed=20663877; DOI=10.1074/jbc.M110.143792;
Mooney S.M., Goel A., D'Assoro A.B., Salisbury J.L., Janknecht R.;
"Pleiotropic effects of p300-mediated acetylation on p68 and p72 RNA
helicase.";
J. Biol. Chem. 285:30443-30452(2010).
[29]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-64, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=20068231; DOI=10.1126/scisignal.2000475;
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
Mann M.;
"Quantitative phosphoproteomics reveals widespread full
phosphorylation site occupancy during mitosis.";
Sci. Signal. 3:RA3-RA3(2010).
[30]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21269460; DOI=10.1186/1752-0509-5-17;
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
"Initial characterization of the human central proteome.";
BMC Syst. Biol. 5:17-17(2011).
[31]
INTERACTION WITH DCP1A AND DCP2.
PubMed=21876179; DOI=10.1073/pnas.1101676108;
Zhu Y., Chen G., Lv F., Wang X., Ji X., Xu Y., Sun J., Wu L.,
Zheng Y.T., Gao G.;
"Zinc-finger antiviral protein inhibits HIV-1 infection by selectively
targeting multiply spliced viral mRNAs for degradation.";
Proc. Natl. Acad. Sci. U.S.A. 108:15834-15839(2011).
[32]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21406692; DOI=10.1126/scisignal.2001570;
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
Blagoev B.;
"System-wide temporal characterization of the proteome and
phosphoproteome of human embryonic stem cell differentiation.";
Sci. Signal. 4:RS3-RS3(2011).
[33]
SUBCELLULAR LOCATION [LARGE SCALE ANALYSIS].
PubMed=22002106; DOI=10.1074/mcp.M111.013680;
Ahmad Y., Boisvert F.M., Lundberg E., Uhlen M., Lamond A.I.;
"Systematic analysis of protein pools, isoforms, and modifications
affecting turnover and subcellular localization.";
Mol. Cell. Proteomics 11:M111.013680.01-M111.013680.15(2012).
[34]
FUNCTION IN ALTERNATIVE SPLICING.
PubMed=23022728; DOI=10.1038/nsmb.2390;
Dardenne E., Pierredon S., Driouch K., Gratadou L., Lacroix-Triki M.,
Espinoza M.P., Zonta E., Germann S., Mortada H., Villemin J.P.,
Dutertre M., Lidereau R., Vagner S., Auboeuf D.;
"Splicing switch of an epigenetic regulator by RNA helicases promotes
tumor-cell invasiveness.";
Nat. Struct. Mol. Biol. 19:1139-1146(2012).
[35]
FUNCTION, AND INTERACTION WITH NFAT5.
PubMed=22266867; DOI=10.1038/onc.2011.618;
Germann S., Gratadou L., Zonta E., Dardenne E., Gaudineau B.,
Fougere M., Samaan S., Dutertre M., Jauliac S., Auboeuf D.;
"Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-
migratory NFAT5 transcription factor.";
Oncogene 31:4536-4549(2012).
[36]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma, and Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[37]
INTERACTION WITH UPF3B.
PubMed=23788676; DOI=10.1093/nar/gkt538;
Geissler V., Altmeyer S., Stein B., Uhlmann-Schiffler H., Stahl H.;
"The RNA helicase Ddx5/p68 binds to hUpf3 and enhances NMD of
Ddx17/p72 and Smg5 mRNA.";
Nucleic Acids Res. 41:7875-7888(2013).
[38]
INTERACTION WITH DGCR8.
PubMed=24589731; DOI=10.1016/j.bbrc.2014.02.104;
Jung E., Seong Y., Seo J.H., Kwon Y.S., Song H.;
"Cell cycle-dependent regulation of Aurora kinase B mRNA by the
Microprocessor complex.";
Biochem. Biophys. Res. Commun. 446:241-247(2014).
[39]
FUNCTION IN MICRORNA MATURATION, INTERACTION WITH DROSHA; DGCR8 AND
YAP1, SUBCELLULAR LOCATION, AND MUTAGENESIS OF LYS-129.
PubMed=24581491; DOI=10.1016/j.cell.2013.12.043;
Mori M., Triboulet R., Mohseni M., Schlegelmilch K., Shrestha K.,
Camargo F.D., Gregory R.I.;
"Hippo signaling regulates microprocessor and links cell-density-
dependent miRNA biogenesis to cancer.";
Cell 156:893-906(2014).
[40]
FUNCTION IN ANTIVIRAL DEFENSE, AND SUBCELLULAR LOCATION.
PubMed=25126784; DOI=10.1016/j.cell.2014.06.023;
Moy R.H., Cole B.S., Yasunaga A., Gold B., Shankarling G., Varble A.,
Molleston J.M., tenOever B.R., Lynch K.W., Cherry S.;
"Stem-loop recognition by DDX17 facilitates miRNA processing and
antiviral defense.";
Cell 158:764-777(2014).
[41]
FUNCTION, AND INTERACTION WITH HNRNPH1.
PubMed=24910439; DOI=10.1016/j.celrep.2014.05.010;
Dardenne E., Polay Espinoza M., Fattet L., Germann S., Lambert M.P.,
Neil H., Zonta E., Mortada H., Gratadou L., Deygas M., Chakrama F.Z.,
Samaan S., Desmet F.O., Tranchevent L.C., Dutertre M., Rimokh R.,
Bourgeois C.F., Auboeuf D.;
"RNA helicases DDX5 and DDX17 dynamically orchestrate transcription,
miRNA, and splicing programs in cell differentiation.";
Cell Rep. 7:1900-1913(2014).
[42]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-64, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Liver;
PubMed=24275569; DOI=10.1016/j.jprot.2013.11.014;
Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D.,
Wang L., Ye M., Zou H.;
"An enzyme assisted RP-RPLC approach for in-depth analysis of human
liver phosphoproteome.";
J. Proteomics 96:253-262(2014).
[43]
METHYLATION [LARGE SCALE ANALYSIS] AT ARG-684, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Colon carcinoma;
PubMed=24129315; DOI=10.1074/mcp.O113.027870;
Guo A., Gu H., Zhou J., Mulhern D., Wang Y., Lee K.A., Yang V.,
Aguiar M., Kornhauser J., Jia X., Ren J., Beausoleil S.A., Silva J.C.,
Vemulapalli V., Bedford M.T., Comb M.J.;
"Immunoaffinity enrichment and mass spectrometry analysis of protein
methylation.";
Mol. Cell. Proteomics 13:372-387(2014).
[44]
SUMOYLATION [LARGE SCALE ANALYSIS] AT LYS-129, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=25218447; DOI=10.1038/nsmb.2890;
Hendriks I.A., D'Souza R.C., Yang B., Verlaan-de Vries M., Mann M.,
Vertegaal A.C.;
"Uncovering global SUMOylation signaling networks in a site-specific
manner.";
Nat. Struct. Mol. Biol. 21:927-936(2014).
[45]
FUNCTION, AND MUTAGENESIS OF LYS-221.
PubMed=24275493; DOI=10.1093/nar/gkt1216;
Samaan S., Tranchevent L.C., Dardenne E., Polay Espinoza M., Zonta E.,
Germann S., Gratadou L., Dutertre M., Auboeuf D.;
"The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex
regulatory array of steroid hormone-signaling pathways.";
Nucleic Acids Res. 42:2197-2207(2014).
[46]
SUMOYLATION [LARGE SCALE ANALYSIS] AT LYS-129, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=25114211; DOI=10.1073/pnas.1413825111;
Impens F., Radoshevich L., Cossart P., Ribet D.;
"Mapping of SUMO sites and analysis of SUMOylation changes induced by
external stimuli.";
Proc. Natl. Acad. Sci. U.S.A. 111:12432-12437(2014).
[47]
SUMOYLATION [LARGE SCALE ANALYSIS] AT LYS-129, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=25772364; DOI=10.1016/j.celrep.2015.02.033;
Hendriks I.A., Treffers L.W., Verlaan-de Vries M., Olsen J.V.,
Vertegaal A.C.;
"SUMO-2 orchestrates chromatin modifiers in response to DNA damage.";
Cell Rep. 10:1778-1791(2015).
[48]
SUMOYLATION [LARGE SCALE ANALYSIS] AT LYS-129, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=25755297; DOI=10.1074/mcp.O114.044792;
Xiao Z., Chang J.G., Hendriks I.A., Sigurdsson J.O., Olsen J.V.,
Vertegaal A.C.;
"System-wide analysis of SUMOylation dynamics in response to
replication stress reveals novel small ubiquitin-like modified target
proteins and acceptor lysines relevant for genome stability.";
Mol. Cell. Proteomics 14:1419-1434(2015).
[49]
FUNCTION.
PubMed=27478153; DOI=10.1016/j.bbagrm.2016.07.013;
Connerty P., Bajan S., Remenyi J., Fuller-Pace F.V., Hutvagner G.;
"The miRNA biogenesis factors, p72/DDX17 and KHSRP regulate the
protein level of Ago2 in human cells.";
Biochim. Biophys. Acta 1859:1299-1305(2016).
[50]
SUMOYLATION [LARGE SCALE ANALYSIS] AT LYS-129 AND LYS-528, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=28112733; DOI=10.1038/nsmb.3366;
Hendriks I.A., Lyon D., Young C., Jensen L.J., Vertegaal A.C.,
Nielsen M.L.;
"Site-specific mapping of the human SUMO proteome reveals co-
modification with phosphorylation.";
Nat. Struct. Mol. Biol. 24:325-336(2017).
-!- FUNCTION: As an RNA helicase, unwinds RNA and alters RNA
structures through ATP binding and hydrolysis. Involved in
multiple cellular processes, including pre-mRNA splicing,
alternative splicing, ribosomal RNA processing and miRNA
processing, as well as transcription regulation. Regulates the
alternative splicing of exons exhibiting specific features
(PubMed:12138182, PubMed:23022728, PubMed:24910439,
PubMed:22266867). For instance, promotes the inclusion of AC-rich
alternative exons in CD44 transcripts (PubMed:12138182). This
function requires the RNA helicase activity (PubMed:12138182,
PubMed:23022728, PubMed:24910439, PubMed:22266867). Affects NFAT5
and histone macro-H2A.1/H2AFY alternative splicing in a CDK9-
dependent manner (PubMed:26209609, PubMed:22266867). In NFAT5,
promotes the introduction of alternative exon 4, which contains 2
stop codons and may target NFAT5 exon 4-containing transcripts to
nonsense-mediated mRNA decay, leading to the down-regulation of
NFAT5 protein (PubMed:22266867). Affects splicing of mediators of
steroid hormone signaling pathway, including kinases that
phosphorylates ESR1, such as CDK2, MAPK1 and GSK3B, and
transcriptional regulators, such as CREBBP, MED1, NCOR1 and NCOR2.
By affecting GSK3B splicing, participates in ESR1 and AR
stabilization (PubMed:24275493). In myoblasts and epithelial
cells, cooperates with HNRNPH1 to control the splicing of specific
subsets of exons (PubMed:24910439). In addition to binding mature
mRNAs, also interacts with certain pri-microRNAs, including
MIR663/miR-663a, MIR99B/miR-99b, and MIR6087/miR-6087
(PubMed:25126784). Binds pri-microRNAs on the 3' segment flanking
the stem loop via the 5'-[ACG]CAUC[ACU]-3' consensus sequence
(PubMed:24581491). Required for the production of subsets of
microRNAs, including MIR21 and MIR125B1 (PubMed:24581491,
PubMed:27478153). May be involved not only in microRNA primary
transcript processing, but also stabilization (By similarity).
Participates in MYC down-regulation at high cell density through
the production of MYC-targeting microRNAs (PubMed:24581491). Along
with DDX5, may be involved in the processing of the 32S
intermediate into the mature 28S ribosomal RNA (PubMed:17485482).
Promoter-specific transcription regulator, functioning as a
coactivator or corepressor depending on the context of the
promoter and the transcriptional complex in which it exists
(PubMed:15298701). Enhances NFAT5 transcriptional activity
(PubMed:22266867). Synergizes with TP53 in the activation of the
MDM2 promoter; this activity requires acetylation on lysine
residues (PubMed:17226766, PubMed:20663877, PubMed:19995069). May
also coactivate MDM2 transcription through a TP53-independent
pathway (PubMed:17226766). Coactivates MMP7 transcription
(PubMed:17226766). Along with CTNNB1, coactivates MYC, JUN, FOSL1
and cyclin D1/CCND1 transcription (PubMed:17699760). Alone or in
combination with DDX5 and/or SRA1 non-coding RNA, plays a critical
role in promoting the assembly of proteins required for the
formation of the transcription initiation complex and chromatin
remodeling leading to coactivation of MYOD1-dependent
transcription. This helicase-independent activity is required for
skeletal muscle cells to properly differentiate into myotubes
(PubMed:17011493, PubMed:24910439). During epithelial-to-
mesenchymal transition, coregulates SMAD-dependent transcriptional
activity, directly controlling key effectors of differentiation,
including miRNAs which in turn directly repress its expression
(PubMed:24910439). Plays a role in estrogen and testosterone
signaling pathway at several levels. Mediates the use of
alternative promoters in estrogen-responsive genes and regulates
transcription and splicing of a large number of steroid hormone
target genes (PubMed:24275493, PubMed:20406972, PubMed:20663877,
PubMed:19995069). Contrary to splicing regulation activity,
transcriptional coregulation of the estrogen receptor ESR1 is
helicase-independent (PubMed:19718048, PubMed:24275493). Plays a
role in innate immunity. Specifically restricts bunyavirus
infection, including Rift Valley fever virus (RVFV) or La Crosse
virus (LACV), but not vesicular stomatitis virus (VSV), in an
interferon- and DROSHA-independent manner (PubMed:25126784). Binds
to RVFV RNA, likely via structured viral RNA elements
(PubMed:25126784). Promotes mRNA degradation mediated by the
antiviral zinc-finger protein ZC3HAV1, in an ATPase-dependent
manner (PubMed:18334637). {ECO:0000250|UniProtKB:Q501J6,
ECO:0000269|PubMed:12138182, ECO:0000269|PubMed:15298701,
ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17226766,
ECO:0000269|PubMed:17485482, ECO:0000269|PubMed:17699760,
ECO:0000269|PubMed:18334637, ECO:0000269|PubMed:19718048,
ECO:0000269|PubMed:19995069, ECO:0000269|PubMed:20406972,
ECO:0000269|PubMed:20663877, ECO:0000269|PubMed:22266867,
ECO:0000269|PubMed:23022728, ECO:0000269|PubMed:24275493,
ECO:0000269|PubMed:24581491, ECO:0000269|PubMed:24910439,
ECO:0000269|PubMed:25126784, ECO:0000269|PubMed:26209609,
ECO:0000269|PubMed:27478153, ECO:0000305}.
-!- CATALYTIC ACTIVITY: ATP + H(2)O = ADP + phosphate.
{ECO:0000269|PubMed:8871553}.
-!- BIOPHYSICOCHEMICAL PROPERTIES:
Kinetic parameters:
KM=170 uM for ATP {ECO:0000269|PubMed:8871553};
-!- SUBUNIT: Interacts with DDX5 in an RNA-independent manner
(PubMed:12595555, PubMed:19995069). Interacts with CDK9
transcription elongation complex under basal conditions. Following
cell stimulation with poly(I:C), a synthetic double-stranded RNA
mimicking viral infection, the interaction with CDK9 is decreased
(PubMed:26209609). Interacts with ESR1 in an estrogen-independent
manner (PubMed:19718048, PubMed:20663877). Interacts with HNRNPH1;
this interaction is important for the regulation of alternative
splicing on G-quadruplex structures (PubMed:24910439). At high,
but not low, cell density, interacts with DROSHA and DGCR8, the
core components of the microprocessor complex involved in the
maturation of primary microRNAs (pri-miRNAs) into pre-miRNAs. The
interaction with DGCR8 is reduced during mitosis (PubMed:24589731,
PubMed:24581491). At low, but not high, cell density, interacts
with YAP1 and with its paralog, WWTR1/TAZ. Interactions with
DROSHA and YAP1 are mutually exclusive (PubMed:24581491). In
vitro, the pre-miRNA processing activity of the DDX17-containing
microprocessor complex is weaker than that of the DROSHA/DGCR8
microprocessor complex devoid of DDX17 (PubMed:15531877).
Interacts with UPF3B (PubMed:23788676). Interacts with NFAT5; this
interaction leads to DDX17 recruitment to LNC2 and S100A4
promoters and NFAT5-mediated DDX17-enhanced transactivation
(PubMed:22266867). Interacts with HDAC1, HDAC2 and HDAC3; this
interaction with HDAC1 and HDAC3, but not HDAC2, depends upon
DDX17 acetylation (PubMed:15298701, PubMed:20663877). Interacts
with ZC3HAV1 (via N-terminal domain) in an RNA-independent manner.
Interacts with EXOSC3/RRP40 and EXOSC5/RRP46; this interaction may
be indirect and mediated by ZC3HAV1-binding (PubMed:18334637).
Interacts with EP300; this interaction leads to acetylation at
lysine residues (PubMed:17226766, PubMed:19995069). Interacts with
CREBBP/CBP and KAT2B/P/CAF (PubMed:17226766). Directly interacts
with CTNNB1 (PubMed:17699760). Interacts with MYOD1
(PubMed:17011493). Interacts with TP53 (PubMed:15660129).
Interacts with DCP1A in an RNA-independent manner. Interacts with
DCP2 in an RNA-dependent manner (PubMed:21876179).
{ECO:0000269|PubMed:12595555, ECO:0000269|PubMed:15298701,
ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15660129,
ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17226766,
ECO:0000269|PubMed:17699760, ECO:0000269|PubMed:18334637,
ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:19995069,
ECO:0000269|PubMed:20663877, ECO:0000269|PubMed:21876179,
ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:23788676,
ECO:0000269|PubMed:24581491, ECO:0000269|PubMed:24589731,
ECO:0000269|PubMed:24910439, ECO:0000269|PubMed:26209609}.
-!- INTERACTION:
Q13895:BYSL; NbExp=7; IntAct=EBI-746012, EBI-358049;
P17844:DDX5; NbExp=3; IntAct=EBI-746012, EBI-351962;
P03372:ESR1; NbExp=8; IntAct=EBI-746012, EBI-78473;
P62993:GRB2; NbExp=3; IntAct=EBI-746012, EBI-401755;
Q13547:HDAC1; NbExp=3; IntAct=EBI-5280703, EBI-301834;
Q8TBB1:LNX1; NbExp=3; IntAct=EBI-746012, EBI-739832;
Q15596:NCOA2; NbExp=2; IntAct=EBI-746012, EBI-81236;
Q9Y6Q9:NCOA3; NbExp=2; IntAct=EBI-746012, EBI-81196;
O94916:NFAT5; NbExp=3; IntAct=EBI-746012, EBI-308320;
Q96T37:RBM15; NbExp=5; IntAct=EBI-746012, EBI-2514922;
Q15637:SF1; NbExp=4; IntAct=EBI-746012, EBI-744603;
Q9JKL7:Srek1 (xeno); NbExp=3; IntAct=EBI-746012, EBI-6452221;
P04637:TP53; NbExp=3; IntAct=EBI-746012, EBI-366083;
P46937:YAP1; NbExp=7; IntAct=EBI-746012, EBI-1044059;
-!- SUBCELLULAR LOCATION: Nucleus {ECO:0000269|PubMed:12138182,
ECO:0000269|PubMed:12595555, ECO:0000269|PubMed:17226766,
ECO:0000269|PubMed:17699760, ECO:0000269|PubMed:19995069,
ECO:0000269|PubMed:22002106, ECO:0000269|PubMed:24581491,
ECO:0000269|PubMed:25126784}. Nucleus, nucleolus
{ECO:0000269|PubMed:17226766, ECO:0000269|PubMed:22002106}.
Cytoplasm, cytosol {ECO:0000269|PubMed:25126784}. Note=In the
course of bunyavirus infection, relocalizes from the nucleus to
the cytosol where it binds viral RNA to antagonize replication.
{ECO:0000269|PubMed:25126784}.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing, Alternative initiation; Named isoforms=4;
Name=1; Synonyms=p82;
IsoId=Q92841-4; Sequence=Displayed;
Note=Starts at an alternative CUG codon.;
Name=2; Synonyms=p72;
IsoId=Q92841-1; Sequence=VSP_042527;
Note=Produced by alternative initiation at Met-80 of isoform 1.;
Name=3;
IsoId=Q92841-2; Sequence=VSP_042527, VSP_042528;
Note=Produced by alternative splicing of isoform 2. No
experimental confirmation available.;
Name=4;
IsoId=Q92841-3; Sequence=VSP_042527, VSP_042529;
Note=Produced by alternative splicing of isoform 2. No
experimental confirmation available.;
-!- TISSUE SPECIFICITY: Widely expressed (PubMed:8871553). Low
expression, if any, in normal colonic epithelial cells (at protein
level). Levels tend to increase during colon cancer progression,
from very low in benign hyperplastic polyps to very high in
tubular and villous adenomas (PubMed:17699760).
{ECO:0000269|PubMed:17699760, ECO:0000269|PubMed:8871553}.
-!- PTM: Sumoylation significantly increases stability. It also
promotes interaction specifically with HDAC1 (but not HDAC2, nor
HDAC3) and strongly stimulates ESR1 and TP53 coactivation.
{ECO:0000269|PubMed:19995069}.
-!- PTM: Acetylation at lysine residues stabilizes the protein,
stimulates interaction with HDAC1 and HDAC3, but not HDAC2, and
represses ESR1 and TP53 coactivation activity.
{ECO:0000269|PubMed:20663877}.
-!- SIMILARITY: Belongs to the DEAD box helicase family. DDX5/DBP2
subfamily. {ECO:0000305}.
-!- CAUTION: Was reported to act as a transcriptional coactivator for
estrogen receptor ESR1 (PubMed:11250900). Although this
publication was retracted because of aberrations in some figures,
this function was also described in other publications by
different groups and may be real (PubMed:24275493,
PubMed:20406972, PubMed:20663877, PubMed:19995069).
{ECO:0000269|PubMed:11250900, ECO:0000269|PubMed:19995069,
ECO:0000269|PubMed:20406972, ECO:0000269|PubMed:20663877,
ECO:0000269|PubMed:24275493}.
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; U59321; AAC50787.1; -; mRNA.
EMBL; CR456432; CAG30318.1; -; mRNA.
EMBL; AL713763; CAH10627.2; -; mRNA.
EMBL; Z97056; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; CH471095; EAW60243.1; -; Genomic_DNA.
EMBL; BC000595; AAH00595.2; -; mRNA.
CCDS; CCDS33646.1; -. [Q92841-4]
PIR; S72367; S72367.
RefSeq; NP_006377.2; NM_006386.4. [Q92841-4]
UniGene; Hs.528305; -.
UniGene; Hs.706116; -.
ProteinModelPortal; Q92841; -.
SMR; Q92841; -.
BioGrid; 115776; 158.
DIP; DIP-29843N; -.
IntAct; Q92841; 84.
MINT; MINT-4545892; -.
STRING; 9606.ENSP00000380033; -.
iPTMnet; Q92841; -.
PhosphoSitePlus; Q92841; -.
SwissPalm; Q92841; -.
BioMuta; DDX17; -.
REPRODUCTION-2DPAGE; IPI00023785; -.
EPD; Q92841; -.
PaxDb; Q92841; -.
PeptideAtlas; Q92841; -.
PRIDE; Q92841; -.
TopDownProteomics; Q92841-1; -. [Q92841-1]
TopDownProteomics; Q92841-4; -. [Q92841-4]
DNASU; 10521; -.
Ensembl; ENST00000640332; ENSP00000491244; ENSG00000100201. [Q92841-4]
GeneID; 10521; -.
KEGG; hsa:10521; -.
UCSC; uc062efu.1; human. [Q92841-4]
CTD; 10521; -.
DisGeNET; 10521; -.
GeneCards; DDX17; -.
HGNC; HGNC:2740; DDX17.
HPA; CAB024908; -.
HPA; HPA063142; -.
MIM; 608469; gene.
neXtProt; NX_Q92841; -.
OpenTargets; ENSG00000100201; -.
PharmGKB; PA27206; -.
eggNOG; KOG0331; Eukaryota.
eggNOG; COG0513; LUCA.
GeneTree; ENSGT00820000126976; -.
HOGENOM; HOG000268804; -.
HOVERGEN; HBG015893; -.
InParanoid; Q92841; -.
KO; K13178; -.
OMA; CFPDYCM; -.
OrthoDB; EOG091G033A; -.
SIGNOR; Q92841; -.
ChiTaRS; DDX17; human.
GeneWiki; DDX17; -.
GenomeRNAi; 10521; -.
PRO; PR:Q92841; -.
Proteomes; UP000005640; Chromosome 22.
Bgee; ENSG00000100201; -.
CleanEx; HS_DDX17; -.
ExpressionAtlas; Q92841; baseline and differential.
Genevisible; Q92841; HS.
GO; GO:0005737; C:cytoplasm; IBA:GO_Central.
GO; GO:0005829; C:cytosol; IEA:UniProtKB-SubCell.
GO; GO:0016020; C:membrane; IDA:UniProtKB.
GO; GO:0016607; C:nuclear speck; IDA:HPA.
GO; GO:0005730; C:nucleolus; IBA:GO_Central.
GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
GO; GO:0004004; F:ATP-dependent RNA helicase activity; IBA:GO_Central.
GO; GO:0030331; F:estrogen receptor binding; IDA:UniProtKB.
GO; GO:0003723; F:RNA binding; IDA:UniProtKB.
GO; GO:0003724; F:RNA helicase activity; TAS:ProtInc.
GO; GO:0008186; F:RNA-dependent ATPase activity; TAS:ProtInc.
GO; GO:0003713; F:transcription coactivator activity; IDA:UniProtKB.
GO; GO:0000380; P:alternative mRNA splicing, via spliceosome; IMP:UniProtKB.
GO; GO:0030521; P:androgen receptor signaling pathway; IMP:UniProtKB.
GO; GO:0051607; P:defense response to virus; IEA:UniProtKB-KW.
GO; GO:0001837; P:epithelial to mesenchymal transition; IMP:UniProtKB.
GO; GO:0031047; P:gene silencing by RNA; IEA:UniProtKB-KW.
GO; GO:0030520; P:intracellular estrogen receptor signaling pathway; IMP:UniProtKB.
GO; GO:0010586; P:miRNA metabolic process; IMP:UniProtKB.
GO; GO:0045445; P:myoblast differentiation; ISS:UniProtKB.
GO; GO:0033148; P:positive regulation of intracellular estrogen receptor signaling pathway; IDA:UniProtKB.
GO; GO:0045944; P:positive regulation of transcription from RNA polymerase II promoter; IDA:UniProtKB.
GO; GO:0000381; P:regulation of alternative mRNA splicing, via spliceosome; IMP:UniProtKB.
GO; GO:2001014; P:regulation of skeletal muscle cell differentiation; IMP:UniProtKB.
GO; GO:0006357; P:regulation of transcription from RNA polymerase II promoter; IMP:UniProtKB.
GO; GO:0006396; P:RNA processing; TAS:ProtInc.
GO; GO:0010501; P:RNA secondary structure unwinding; IBA:GO_Central.
GO; GO:0006364; P:rRNA processing; IEA:UniProtKB-KW.
GO; GO:0006351; P:transcription, DNA-templated; IEA:UniProtKB-KW.
InterPro; IPR011545; DEAD/DEAH_box_helicase_dom.
InterPro; IPR014001; Helicase_ATP-bd.
InterPro; IPR001650; Helicase_C.
InterPro; IPR027417; P-loop_NTPase.
InterPro; IPR000629; RNA-helicase_DEAD-box_CS.
InterPro; IPR014014; RNA_helicase_DEAD_Q_motif.
Pfam; PF00270; DEAD; 1.
Pfam; PF00271; Helicase_C; 1.
SMART; SM00487; DEXDc; 1.
SMART; SM00490; HELICc; 1.
SUPFAM; SSF52540; SSF52540; 1.
PROSITE; PS00039; DEAD_ATP_HELICASE; 1.
PROSITE; PS51192; HELICASE_ATP_BIND_1; 1.
PROSITE; PS51194; HELICASE_CTER; 1.
PROSITE; PS51195; Q_MOTIF; 1.
1: Evidence at protein level;
Acetylation; Alternative initiation; Alternative splicing;
Antiviral defense; ATP-binding; Complete proteome; Cytoplasm;
Direct protein sequencing; Helicase; Hydrolase; Immunity;
Isopeptide bond; Methylation; mRNA processing; mRNA splicing;
Nucleotide-binding; Nucleus; Phosphoprotein; Reference proteome;
RNA-binding; RNA-mediated gene silencing; rRNA processing;
Transcription; Transcription regulation; Ubl conjugation.
CHAIN 1 729 Probable ATP-dependent RNA helicase
DDX17.
/FTId=PRO_0000054993.
DOMAIN 202 377 Helicase ATP-binding.
{ECO:0000255|PROSITE-ProRule:PRU00541}.
DOMAIN 405 552 Helicase C-terminal.
{ECO:0000255|PROSITE-ProRule:PRU00542}.
NP_BIND 215 222 ATP. {ECO:0000255|PROSITE-
ProRule:PRU00541}.
REGION 547 729 Transactivation domain.
REGION 718 726 Interaction with YAP1.
{ECO:0000269|PubMed:24581491}.
MOTIF 171 199 Q motif.
MOTIF 325 328 DEAD box.
COMPBIAS 101 104 Poly-Gly.
COMPBIAS 556 563 Poly-Gly.
COMPBIAS 718 726 Poly-Pro.
MOD_RES 64 64 Phosphoserine.
{ECO:0000244|PubMed:20068231,
ECO:0000244|PubMed:24275569}.
MOD_RES 108 108 N6-acetyllysine; by EP300.
{ECO:0000269|PubMed:20663877}.
MOD_RES 109 109 N6-acetyllysine; by EP300.
{ECO:0000269|PubMed:20663877}.
MOD_RES 121 121 N6-acetyllysine; by EP300.
{ECO:0000269|PubMed:20663877}.
MOD_RES 523 523 Phosphothreonine.
{ECO:0000244|PubMed:16964243}.
MOD_RES 684 684 Omega-N-methylarginine.
{ECO:0000244|PubMed:24129315}.
CROSSLNK 129 129 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO);
alternate.
CROSSLNK 129 129 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO1);
alternate. {ECO:0000244|PubMed:25114211,
ECO:0000269|PubMed:19995069}.
CROSSLNK 129 129 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO2);
alternate. {ECO:0000244|PubMed:25218447,
ECO:0000244|PubMed:25755297,
ECO:0000244|PubMed:25772364,
ECO:0000244|PubMed:28112733}.
CROSSLNK 528 528 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in SUMO2).
{ECO:0000244|PubMed:28112733}.
VAR_SEQ 1 79 Missing (in isoform 2, isoform 3 and
isoform 4). {ECO:0000303|PubMed:15461802,
ECO:0000303|PubMed:17974005,
ECO:0000303|PubMed:8871553}.
/FTId=VSP_042527.
VAR_SEQ 482 482 L -> LGL (in isoform 3).
{ECO:0000303|PubMed:17974005}.
/FTId=VSP_042528.
VAR_SEQ 562 562 G -> GKG (in isoform 4).
{ECO:0000303|PubMed:15461802}.
/FTId=VSP_042529.
MUTAGEN 108 109 KK->RR: No effect on HDAC1-, HDAC2- nor
HDAC3-binding, small decrease in ESR1
coactivation, decreased TP53
coactivation. Complete loss of lysine
acetylation, decreased stability, loss of
ESR1 and TP53 coactivation and loss of
HDAC1- and HDAC3-binding, no effect on
HDAC2-binding; when associated with R-
121. {ECO:0000269|PubMed:20663877}.
MUTAGEN 121 121 K->R: No effect on HDAC1-, HDAC2- nor
HDAC3-binding, decreased ESR1
coactivation, strongly decreased TP53
coactivation. Complete loss of lysine
acetylation, decreased stability, loss of
ESR1 and TP53 coactivation and loss of
HDAC1- and HDAC3-binding, no effect on
HDAC2-binding; when associated with 108-
R-R-109. {ECO:0000269|PubMed:20663877}.
MUTAGEN 129 129 K->R: Impaired sumoylation and decreased
stability. Impairs interaction with
HDAC1, but not with HDAC2, nor HDAC3. No
effect on EP300-, ESR1-, DDX5- and YAP1-
binding. {ECO:0000269|PubMed:19995069,
ECO:0000269|PubMed:24581491}.
MUTAGEN 221 221 K->N: No effect on transcription
activation, when assayed in luciferase
reporter gene assays using MDM2 or FOS
promoters, either alone or in the
presence of EP300 and KAT2B.
{ECO:0000269|PubMed:17226766}.
MUTAGEN 221 221 K->R: Loss of helicase activity. Loss of
splicing regulation in the estrogen
signaling pathway. Reduced CD44
alternative splicing regulation. Does not
promote ZCH3HAV1-mediated RNA
degradation.
{ECO:0000269|PubMed:12138182,
ECO:0000269|PubMed:18334637,
ECO:0000269|PubMed:24275493}.
MUTAGEN 222 222 T->A: Decreased CD44 alternative
splicing. {ECO:0000269|PubMed:12138182}.
MUTAGEN 325 325 D->N: Loss of helicase activity. No
effect on ESR1 coactivation.
{ECO:0000269|PubMed:19718048}.
MUTAGEN 328 328 D->H: Small decrease in CD44 alternative
splicing. {ECO:0000269|PubMed:12138182}.
MUTAGEN 355 355 W->G: Small decrease in CD44 alternative
splicing. {ECO:0000269|PubMed:12138182}.
MUTAGEN 356 356 S->L: Small decrease in CD44 alternative
splicing. {ECO:0000269|PubMed:12138182}.
SEQUENCE 729 AA; 80272 MW; C819F53515B1BC39 CRC64;
MPTGFVAPIL CVLLPSPTRE AATVASATGD SASERESAAP AAAPTAEAPP PSVVTRPEPQ
ALPSPAIRAP LPDLYPFGTM RGGGFGDRDR DRDRGGFGAR GGGGLPPKKF GNPGERLRKK
KWDLSELPKF EKNFYVEHPE VARLTPYEVD ELRRKKEITV RGGDVCPKPV FAFHHANFPQ
YVMDVLMDQH FTEPTPIQCQ GFPLALSGRD MVGIAQTGSG KTLAYLLPAI VHINHQPYLE
RGDGPICLVL APTRELAQQV QQVADDYGKC SRLKSTCIYG GAPKGPQIRD LERGVEICIA
TPGRLIDFLE SGKTNLRRCT YLVLDEADRM LDMGFEPQIR KIVDQIRPDR QTLMWSATWP
KEVRQLAEDF LRDYTQINVG NLELSANHNI LQIVDVCMES EKDHKLIQLM EEIMAEKENK
TIIFVETKRR CDDLTRRMRR DGWPAMCIHG DKSQPERDWV LNEFRSGKAP ILIATDVASR
GLDVEDVKFV INYDYPNSSE DYVHRIGRTA RSTNKGTAYT FFTPGNLKQA RELIKVLEEA
NQAINPKLMQ LVDHRGGGGG GGGRSRYRTT SSANNPNLMY QDECDRRLRG VKDGGRRDSA
SYRDRSETDR AGYANGSGYG SPNSAFGAQA GQYTYGQGTY GAAAYGTSSY TAQEYGAGTY
GASSTTSTGR SSQSSSQQFS GIGRSGQQPQ PLMSQQFAQP PGATNMIGYM GQTAYQYPPP
PPPPPPSRK


Related products :

Catalog number Product name Quantity
EIAAB10759 DDX17,DEAD box protein 17,DEAD box protein p72,Homo sapiens,Human,Probable ATP-dependent RNA helicase DDX17,RNA-dependent helicase p72
EIAAB10824 ATP-dependent 61 kDa nucleolar RNA helicase,DDX21,DDX56,DEAD box protein 21,DEAD box protein 56,Homo sapiens,Human,NOH61,Probable ATP-dependent RNA helicase DDX56
EIAAB10806 Ddx5,DEAD box protein 5,DEAD box RNA helicase DEAD1,mDEAD1,Mouse,Mus musculus,Probable ATP-dependent RNA helicase DDX5,RNA helicase p68,Tnz2
EIAAB10760 Ddx17,DEAD box protein 17,Mouse,Mus musculus,Probable ATP-dependent RNA helicase DDX17
EIAAB10794 ATP-dependent RNA helicase DDX42,DDX42,DEAD box protein 42,Homo sapiens,Human,RHELP,RNA helicase-like protein,RNA helicase-related protein,RNAHP,SF3b DEAD box protein,SF3b125,Splicing factor 3B-associ
EIAAB10817 ATP-dependent RNA helicase DDX54,ATP-dependent RNA helicase DP97,DDX54,DEAD box protein 54,DEAD box RNA helicase 97 kDa,Homo sapiens,Human
18-003-42773 Probable ATP-dependent RNA helicase DDX6 - EC 3.6.1.-; DEAD box protein 6; ATP-dependent RNA helicase p54; Oncogene RCK Polyclonal 0.1 mg Protein A
EIAAB10764 Component of gems 3,DDX20,DEAD box protein 20,DEAD box protein DP 103,DP103,GEMIN3,Gemin-3,Homo sapiens,Human,Probable ATP-dependent RNA helicase DDX20
EIAAB10791 ABS,DDX41,DEAD box protein 41,DEAD box protein abstrakt homolog,Homo sapiens,Human,Probable ATP-dependent RNA helicase DDX41
EIAAB10782 ATP-dependent RNA helicase DDX3X,DBX,DDX3,DDX3X,DEAD box protein 3, X-chromosomal,DEAD box, X isoform,Helicase-like protein 2,HLP2,Homo sapiens,Human
EIAAB10763 Component of gems 3,Ddx20,DEAD box protein 20,DEAD box protein DP 103,Dp103,Gemin3,Gemin-3,Mouse,Mus musculus,Probable ATP-dependent RNA helicase DDX20,Regulator of steroidogenic factor 1,ROSF-1
EIAAB10697 ATP-dependent RNA helicase DDX19B,DBP5,DDX19,DDX19B,DEAD box protein 19B,DEAD box RNA helicase DEAD5,Homo sapiens,Human,TDBP
EIAAB12133 ATP-dependent RNA helicase DDX39A,Ddx39,Ddx39a,Ddxl,DEAD box protein 39,Nuclear RNA helicase, DECD variant of DEAD box family,Rat,Rattus norvegicus
18-003-42772 Probable ATP-dependent RNA helicase DDX5 - EC 3.6.1.-; DEAD box protein 5; RNA helicase p68 Polyclonal 0.1 mg Protein A
18-003-42771 Probable ATP-dependent RNA helicase DDX5 - EC 3.6.1.-; DEAD box protein 5; RNA helicase p68 Polyclonal 0.1 mg Protein A
EIAAB10696 ATP-dependent RNA helicase DDX19A,Ddx19,Ddx19a,DEAD box protein 19A,DEAD box RNA helicase DEAD5,Eif4a-rs1,Eukaryotic translation initiation factor 4A-related sequence 1,mDEAD5,Mouse,Mus musculus
EIAAB10815 CAGE,Cancer_testis antigen 26,Cancer-associated gene protein,CT26,DDX53,DEAD box protein 53,DEAD box protein CAGE,Homo sapiens,Human,Probable ATP-dependent RNA helicase DDX53
EIAAB10831 ATP-dependent RNA helicase p54,DDX6,DEAD box protein 6,HLR2,Homo sapiens,Human,Oncogene RCK,Probable ATP-dependent RNA helicase DDX6,RCK
EIAAB10832 ATP-dependent RNA helicase p54,Ddx6,DEAD box protein 6,Hlr2,Mouse,Mus musculus,Oncogene RCK homolog,Probable ATP-dependent RNA helicase DDX6,Rck
EIAAB10823 ATP-dependent 61 kDa nucleolar RNA helicase,D11Ertd619e,Ddx56,DEAD box protein 56,Mouse,Mus musculus,Noh61,Probable ATP-dependent RNA helicase DDX56
EIAAB10783 ATP-dependent RNA helicase DDX3X,D1Pas1-related sequence 2,D1Pas1-rs2,Ddx3,Ddx3x,DEAD box protein 3, X-chromosomal,DEAD box RNA helicase DEAD3,Dead3,Embryonic RNA helicase,Erh,mDEAD3,Mouse,Mus musculu
EIAAB10796 Cancer_testis antigen 13,CT13,DDX43,DEAD box protein 43,DEAD box protein HAGE,HAGE,Helical antigen,Homo sapiens,Human,Probable ATP-dependent RNA helicase DDX43
EIAAB10813 ATP-dependent RNA helicase ROK1-like,DDX52,DEAD box protein 52,Homo sapiens,Human,HUSSY-19,Probable ATP-dependent RNA helicase DDX52,ROK1
EIAAB10797 Ddx46,DEAD box protein 46,Hel117,Helicase of 117.4 kDa,Probable ATP-dependent RNA helicase DDX46,Rat,Rattus norvegicus
EIAAB10762 ATP-dependent RNA helicase DDX18,DDX18,DEAD box protein 18,Homo sapiens,Human,MrDb,Myc-regulated DEAD box protein


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur