Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Serine/threonine-protein kinase Chk1 (EC 2.7.11.1) (CHK1 checkpoint homolog) (Cell cycle checkpoint kinase) (Checkpoint kinase-1)

 CHK1_HUMAN              Reviewed;         476 AA.
O14757; A8K934; B4DDD0; B4DSK3; B5BTY6; F5H7S4; H2BI51;
30-MAY-2000, integrated into UniProtKB/Swiss-Prot.
11-JAN-2011, sequence version 2.
12-SEP-2018, entry version 214.
RecName: Full=Serine/threonine-protein kinase Chk1;
EC=2.7.11.1;
AltName: Full=CHK1 checkpoint homolog;
AltName: Full=Cell cycle checkpoint kinase;
AltName: Full=Checkpoint kinase-1;
Name=CHEK1; Synonyms=CHK1;
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), FUNCTION IN PHOSPHORYLATION OF
CDC25A; CDC25B AND CDC25C, INTERACTION WITH CDC25A; CDC25B AND CDC25C,
SUBCELLULAR LOCATION, TISSUE SPECIFICITY, MUTAGENESIS OF ASP-130, AND
VARIANT VAL-471.
PubMed=9278511; DOI=10.1126/science.277.5331.1497;
Sanchez Y., Wong C., Thoma R.S., Richman R., Wu Z., Piwnica-Worms H.,
Elledge S.J.;
"Conservation of the Chk1 checkpoint pathway in mammals: linkage of
DNA damage to Cdk regulation through Cdc25.";
Science 277:1497-1501(1997).
[2]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), TISSUE SPECIFICITY,
SUBCELLULAR LOCATION, AND VARIANT VAL-471.
PubMed=9382850; DOI=10.1016/S0960-9822(06)00417-9;
Flaggs G., Plug A.W., Dunks K.M., Mundt K.E., Ford J.C.,
Quiggle M.R.E., Taylor E.M., Westphal C.H., Ashley T., Hoekstra M.F.,
Carr A.M.;
"Atm-dependent interactions of a mammalian chk1 homolog with meiotic
chromosomes.";
Curr. Biol. 7:977-986(1997).
[3]
NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT VAL-471.
PubMed=10717241;
Semba S., Ouyang H., Han S.-Y., Kato Y., Horii A.;
"Analysis of the candidate target genes for mutation in microsatellite
instability-positive cancers of the colorectum, stomach, and
endometrium.";
Int. J. Oncol. 16:731-737(2000).
[4]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), AND ALTERNATIVE SPLICING.
TISSUE=Fetal thymus;
PubMed=22184239; DOI=10.1073/pnas.1104767109;
Pabla N., Bhatt K., Dong Z.;
"Checkpoint kinase 1 (Chk1)-short is a splice variant and endogenous
inhibitor of Chk1 that regulates cell cycle and DNA damage
checkpoints.";
Proc. Natl. Acad. Sci. U.S.A. 109:197-202(2012).
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1; 2 AND 3), AND
VARIANT VAL-471.
TISSUE=Brain, and Testis;
PubMed=14702039; DOI=10.1038/ng1285;
Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
"Complete sequencing and characterization of 21,243 full-length human
cDNAs.";
Nat. Genet. 36:40-45(2004).
[6]
NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANTS GLN-156 AND VAL-471.
NIEHS SNPs program;
Submitted (JUL-2002) to the EMBL/GenBank/DDBJ databases.
[7]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), AND VARIANT
VAL-471.
PubMed=19054851; DOI=10.1038/nmeth.1273;
Goshima N., Kawamura Y., Fukumoto A., Miura A., Honma R., Satoh R.,
Wakamatsu A., Yamamoto J., Kimura K., Nishikawa T., Andoh T., Iida Y.,
Ishikawa K., Ito E., Kagawa N., Kaminaga C., Kanehori K., Kawakami B.,
Kenmochi K., Kimura R., Kobayashi M., Kuroita T., Kuwayama H.,
Maruyama Y., Matsuo K., Minami K., Mitsubori M., Mori M.,
Morishita R., Murase A., Nishikawa A., Nishikawa S., Okamoto T.,
Sakagami N., Sakamoto Y., Sasaki Y., Seki T., Sono S., Sugiyama A.,
Sumiya T., Takayama T., Takayama Y., Takeda H., Togashi T., Yahata K.,
Yamada H., Yanagisawa Y., Endo Y., Imamoto F., Kisu Y., Tanaka S.,
Isogai T., Imai J., Watanabe S., Nomura N.;
"Human protein factory for converting the transcriptome into an in
vitro-expressed proteome.";
Nat. Methods 5:1011-1017(2008).
[8]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=16554811; DOI=10.1038/nature04632;
Taylor T.D., Noguchi H., Totoki Y., Toyoda A., Kuroki Y., Dewar K.,
Lloyd C., Itoh T., Takeda T., Kim D.-W., She X., Barlow K.F.,
Bloom T., Bruford E., Chang J.L., Cuomo C.A., Eichler E.,
FitzGerald M.G., Jaffe D.B., LaButti K., Nicol R., Park H.-S.,
Seaman C., Sougnez C., Yang X., Zimmer A.R., Zody M.C., Birren B.W.,
Nusbaum C., Fujiyama A., Hattori M., Rogers J., Lander E.S.,
Sakaki Y.;
"Human chromosome 11 DNA sequence and analysis including novel gene
identification.";
Nature 440:497-500(2006).
[9]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA], AND VARIANT VAL-471.
Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
Venter J.C.;
Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
[10]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), AND VARIANT
VAL-471.
TISSUE=Bone marrow, and Muscle;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[11]
FUNCTION IN PHOSPHORYLATION OF TP53, AND MUTAGENESIS OF ASP-130.
PubMed=10673501;
Shieh S.-Y., Ahn J., Tamai K., Taya Y., Prives C.;
"The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2)
phosphorylate p53 at multiple DNA damage-inducible sites.";
Genes Dev. 14:289-300(2000).
[12]
ERRATUM.
Shieh S.-Y., Ahn J., Tamai K., Taya Y., Prives C.;
Genes Dev. 14:750-750(2000).
[13]
PHOSPHORYLATION AT SER-345 BY ATR.
PubMed=10859164;
Liu Q., Guntuku S., Cui X.-S., Matsuoka S., Cortez D., Tamai K.,
Luo G., Carattini-Rivera S., DeMayo F., Bradley A., Donehower L.A.,
Elledge S.J.;
"Chk1 is an essential kinase that is regulated by Atr and required for
the G(2)/M DNA damage checkpoint.";
Genes Dev. 14:1448-1459(2000).
[14]
FUNCTION IN DNA REPLICATION, PHOSPHORYLATION BY ATR, AND MUTAGENESIS
OF ASP-130.
PubMed=11535615; DOI=10.1083/jcb.200104099;
Feijoo C., Hall-Jackson C., Wu R., Jenkins D., Leitch J.,
Gilbert D.M., Smythe C.;
"Activation of mammalian Chk1 during DNA replication arrest: a role
for Chk1 in the intra-S phase checkpoint monitoring replication origin
firing.";
J. Cell Biol. 154:913-923(2001).
[15]
PHOSPHORYLATION AT SER-317 AND SER-345, AND MUTAGENESIS OF ASP-130;
SER-317; SER-345; SER-357; SER-366 AND SER-468.
PubMed=11390642; DOI=10.1128/MCB.21.13.4129-4139.2001;
Zhao H., Piwnica-Worms H.;
"ATR-mediated checkpoint pathways regulate phosphorylation and
activation of human Chk1.";
Mol. Cell. Biol. 21:4129-4139(2001).
[16]
SUBSTRATE SPECIFICITY, AND MUTAGENESIS OF ASP-130.
PubMed=11821419; DOI=10.1074/jbc.M111705200;
O'Neill T., Giarratani L., Chen P., Iyer L., Lee C.-H., Bobiak M.,
Kanai F., Zhou B.-B., Chung J.H., Rathbun G.A.;
"Determination of substrate motifs for human Chk1 and hCds1/Chk2 by
the oriented peptide library approach.";
J. Biol. Chem. 277:16102-16115(2002).
[17]
ERRATUM.
O'Neill T., Giarratani L., Chen P., Iyer L., Lee C.-H., Bobiak M.,
Kanai F., Zhou B.-B., Chung J.H., Rathbun G.A.;
J. Biol. Chem. 277:35776-35777(2002).
[18]
FUNCTION IN DNA DAMAGE RESPONSE, PHOSPHORYLATION AT SER-317 AND
SER-345, AND MUTAGENESIS OF LYS-38.
PubMed=12446774; DOI=10.1128/MCB.22.24.8552-8561.2002;
Heffernan T.P., Simpson D.A., Frank A.R., Heinloth A.N., Paules R.S.,
Cordeiro-Stone M., Kaufmann W.K.;
"An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation
following UVC-induced DNA damage.";
Mol. Cell. Biol. 22:8552-8561(2002).
[19]
SUBCELLULAR LOCATION, AND INTERACTION WITH BRCA1.
PubMed=11836499; DOI=10.1038/ng837;
Yarden R.I., Pardo-Reoyo S., Sgagias M., Cowan K.H., Brody L.C.;
"BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon
DNA damage.";
Nat. Genet. 30:285-289(2002).
[20]
FUNCTION IN DNA DAMAGE RESPONSE.
PubMed=12399544; DOI=10.1073/pnas.182557299;
Zhao H., Watkins J.L., Piwnica-Worms H.;
"Disruption of the checkpoint kinase 1/cell division cycle 25A pathway
abrogates ionizing radiation-induced S and G2 checkpoints.";
Proc. Natl. Acad. Sci. U.S.A. 99:14795-14800(2002).
[21]
FUNCTION IN CDC25A TURNOVER, PHOSPHORYLATION AT SER-317 AND SER-345,
AND MUTAGENESIS OF SER-317 AND SER-345.
PubMed=12676583; DOI=10.1016/S1535-6108(03)00048-5;
Soerensen C.S., Syljuaesen R.G., Falck J., Schroeder T.,
Roennstrand L., Khanna K.K., Zhou B.-B., Bartek J., Lukas J.;
"Chk1 regulates the S phase checkpoint by coupling the physiological
turnover and ionizing radiation-induced accelerated proteolysis of
Cdc25A.";
Cancer Cell 3:247-258(2003).
[22]
FUNCTION IN PHOSPHORYLATION OF TLK1, AND PHOSPHORYLATION AT SER-317.
PubMed=12660173; DOI=10.1093/emboj/cdg151;
Groth A., Lukas J., Nigg E.A., Sillje H.H.W., Wernstedt C., Bartek J.,
Hansen K.;
"Human tousled like kinases are targeted by an ATM- and Chk1-dependent
DNA damage checkpoint.";
EMBO J. 22:1676-1687(2003).
[23]
FUNCTION IN CDC25A TURNOVER, AND MUTAGENESIS OF ASP-130.
PubMed=14681206; DOI=10.1101/gad.1157503;
Jin J., Shirogane T., Xu L., Nalepa G., Qin J., Elledge S.J.,
Harper J.W.;
"SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A
protein phosphatase.";
Genes Dev. 17:3062-3074(2003).
[24]
PHOSPHORYLATION AT SER-317, AND MUTAGENESIS OF ASP-130; SER-317 AND
SER-345.
PubMed=12588868; DOI=10.1074/jbc.M210862200;
Gatei M., Sloper K., Soerensen C., Syljuaesen R., Falck J., Hobson K.,
Savage K., Lukas J., Zhou B.-B., Bartek J., Khanna K.K.;
"Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent
phosphorylation of Chk1 on ser-317 in response to ionizing
radiation.";
J. Biol. Chem. 278:14806-14811(2003).
[25]
FUNCTION IN CDC25A TURNOVER, AND PHOSPHORYLATION AT SER-345.
PubMed=12676925; DOI=10.1074/jbc.M300229200;
Xiao Z., Chen Z., Gunasekera A.H., Sowin T.J., Rosenberg S.H.,
Fesik S., Zhang H.;
"Chk1 mediates S and G2 arrests through Cdc25A degradation in response
to DNA-damaging agents.";
J. Biol. Chem. 278:21767-21773(2003).
[26]
INTERACTION WITH YWHAZ AND XPO1, SUBCELLULAR LOCATION, ASSOCIATION
WITH CHROMATIN, PHOSPHORYLATION AT SER-317 AND SER-345, AND
MUTAGENESIS OF SER-317; PHE-344; SER-345 AND MET-353.
PubMed=12676962; DOI=10.1074/jbc.M300070200;
Jiang K., Pereira E., Maxfield M., Russell B., Goudelock D.M.,
Sanchez Y.;
"Regulation of Chk1 includes chromatin association and 14-3-3 binding
following phosphorylation on ser-345.";
J. Biol. Chem. 278:25207-25217(2003).
[27]
FUNCTION IN CDC25A TURNOVER.
PubMed=12759351; DOI=10.1074/jbc.M302704200;
Hassepass I., Voit R., Hoffmann I.;
"Phosphorylation at serine 75 is required for UV-mediated degradation
of human Cdc25A phosphatase at the S-phase checkpoint.";
J. Biol. Chem. 278:29824-29829(2003).
[28]
INTERACTION WITH CLSPN.
PubMed=12766152; DOI=10.1074/jbc.M301136200;
Chini C.C.S., Chen J.;
"Human claspin is required for replication checkpoint control.";
J. Biol. Chem. 278:30057-30062(2003).
[29]
FUNCTION IN MITOSIS, AND FUNCTION IN PHOSPHORYLATION OF CDC25A.
PubMed=14559997; DOI=10.1128/MCB.23.21.7488-7497.2003;
Chen M.-S., Ryan C.E., Piwnica-Worms H.;
"Chk1 kinase negatively regulates mitotic function of Cdc25A
phosphatase through 14-3-3 binding.";
Mol. Cell. Biol. 23:7488-7497(2003).
[30]
REGULATION OF TLK1.
PubMed=12955071; DOI=10.1038/sj.onc.1206691;
Krause D.R., Jonnalagadda J.C., Gatei M.H., Sillje H.H.W., Zhou B.-B.,
Nigg E.A., Khanna K.;
"Suppression of tousled-like kinase activity after DNA damage or
replication block requires ATM, NBS1 and Chk1.";
Oncogene 22:5927-5937(2003).
[31]
PHOSPHORYLATION AT SER-317.
PubMed=14657349; DOI=10.1073/pnas.2536810100;
Wang Y., Qin J.;
"MSH2 and ATR form a signaling module and regulate two branches of the
damage response to DNA methylation.";
Proc. Natl. Acad. Sci. U.S.A. 100:15387-15392(2003).
[32]
FUNCTION, AND PHOSPHORYLATION AT SER-345.
PubMed=14988723; DOI=10.1038/sj.emboj.7600113;
Pichierri P., Rosselli F.;
"The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and
ATR-NBS1-FANCD2 pathways.";
EMBO J. 23:1178-1187(2004).
[33]
DOMAIN, MITOTIC PHOSPHORYLATION, PHOSPHORYLATION AT SER-345, AND
MUTAGENESIS OF LYS-38.
PubMed=14681223; DOI=10.1074/jbc.M312215200;
Ng C.-P., Lee H.C., Ho C.W., Arooz T., Siu W.Y., Lau A., Poon R.Y.C.;
"Differential mode of regulation of the checkpoint kinases CHK1 and
CHK2 by their regulatory domains.";
J. Biol. Chem. 279:8808-8819(2004).
[34]
FUNCTION IN MITOSIS, SUBCELLULAR LOCATION, AND MUTAGENESIS OF ASP-130.
PubMed=15311285; DOI=10.1038/ncb1165;
Kraemer A., Mailand N., Lukas C., Syljuaesen R.G., Wilkinson C.J.,
Nigg E.A., Bartek J., Lukas J.;
"Centrosome-associated Chk1 prevents premature activation of cyclin-B-
Cdk1 kinase.";
Nat. Cell Biol. 6:884-891(2004).
[35]
INTERACTION WITH CLSPN, AND PHOSPHORYLATION AT SER-296; SER-317 AND
SER-345.
PubMed=15707391; DOI=10.1042/BJ20041966;
Clarke C.A.L., Clarke P.R.;
"DNA-dependent phosphorylation of Chk1 and claspin in a human cell-
free system.";
Biochem. J. 388:705-712(2005).
[36]
SUBCELLULAR LOCATION.
PubMed=15710331; DOI=10.1016/j.ccr.2005.01.009;
Puc J., Keniry M., Li H.S., Pandita T.K., Choudhury A.D., Memeo L.,
Mansukhani M., Murty V.V.V.S., Gaciong Z., Meek S.E.M.,
Piwnica-Worms H., Hibshoosh H., Parsons R.;
"Lack of PTEN sequesters CHK1 and initiates genetic instability.";
Cancer Cell 7:193-204(2005).
[37]
INTERACTION WITH PPM1D, PHOSPHORYLATION AT SER-317 AND SER-345, AND
DEPHOSPHORYLATION BY PPM1D.
PubMed=15870257; DOI=10.1101/gad.1291305;
Lu X., Nannenga B., Donehower L.A.;
"PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle
checkpoints.";
Genes Dev. 19:1162-1174(2005).
[38]
FUNCTION IN PHOSPHORYLATION OF TP53, AND FUNCTION IN TP53-DEPENDENT
TRANSCRIPTION.
PubMed=15659650; DOI=10.1091/mbc.E04-08-0689;
Ou Y.-H., Chung P.-H., Sun T.-P., Shieh S.-Y.;
"p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the
regulation of DNA-damage-induced C-terminal acetylation.";
Mol. Biol. Cell 16:1684-1695(2005).
[39]
INTERACTION WITH TIMELESS.
PubMed=15798197; DOI=10.1128/MCB.25.8.3109-3116.2005;
Uensal-Kacmaz K., Mullen T.E., Kaufmann W.K., Sancar A.;
"Coupling of human circadian and cell cycles by the timeless
protein.";
Mol. Cell. Biol. 25:3109-3116(2005).
[40]
FUNCTION IN HOMOLOGOUS RECOMBINATION REPAIR, FUNCTION IN
PHOSPHORYLATION OF RAD51, INTERACTION WITH RAD51, AND MUTAGENESIS OF
SER-317 AND SER-345.
PubMed=15665856; DOI=10.1038/ncb1212;
Soerensen C.S., Hansen L.T., Dziegielewski J., Syljuaesen R.G.,
Lundin C., Bartek J., Helleday T.;
"The cell-cycle checkpoint kinase Chk1 is required for mammalian
homologous recombination repair.";
Nat. Cell Biol. 7:195-201(2005).
[41]
FUNCTION IN MITOTIC EXIT, AND PHOSPHORYLATION AT SER-345.
PubMed=15650047; DOI=10.1073/pnas.0409130102;
Huang X., Tran T., Zhang L., Hatcher R., Zhang P.;
"DNA damage-induced mitotic catastrophe is mediated by the Chk1-
dependent mitotic exit DNA damage checkpoint.";
Proc. Natl. Acad. Sci. U.S.A. 102:1065-1070(2005).
[42]
FUNCTION IN TP53 ACTIVATION, AND FUNCTION IN PHOSPHORYLATION OF MDM4.
PubMed=16511572; DOI=10.1038/sj.emboj.7601010;
Jin Y., Dai M.S., Lu S.Z., Xu Y., Luo Z., Zhao Y., Lu H.;
"14-3-3gamma binds to MDMX that is phosphorylated by UV-activated
Chk1, resulting in p53 activation.";
EMBO J. 25:1207-1218(2006).
[43]
FUNCTION IN PHOSPHORYLATION OF CLSPN, AND INTERACTION WITH CLSPN.
PubMed=16963448; DOI=10.1074/jbc.M604373200;
Chini C.C., Chen J.;
"Repeated phosphopeptide motifs in human Claspin are phosphorylated by
Chk1 and mediate Claspin function.";
J. Biol. Chem. 281:33276-33282(2006).
[44]
FUNCTION IN PHOSPHORYLATION OF RB1.
PubMed=17380128; DOI=10.1038/sj.emboj.7601652;
Inoue Y., Kitagawa M., Taya Y.;
"Phosphorylation of pRB at Ser612 by Chk1/2 leads to a complex between
pRB and E2F-1 after DNA damage.";
EMBO J. 26:2083-2093(2007).
[45]
FUNCTION IN DNA CROSS-LINKS REPAIR, AND FUNCTION IN PHOSPHORYLATION OF
FANCE.
PubMed=17296736; DOI=10.1128/MCB.02357-06;
Wang X., Kennedy R.D., Ray K., Stuckert P., Ellenberger T.,
D'Andrea A.D.;
"Chk1-mediated phosphorylation of FANCE is required for the Fanconi
anemia/BRCA pathway.";
Mol. Cell. Biol. 27:3098-3108(2007).
[46]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Embryonic kidney;
PubMed=17525332; DOI=10.1126/science.1140321;
Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. III,
Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N.,
Lerenthal Y., Shiloh Y., Gygi S.P., Elledge S.J.;
"ATM and ATR substrate analysis reveals extensive protein networks
responsive to DNA damage.";
Science 316:1160-1166(2007).
[47]
FUNCTION IN APOPTOSIS.
PubMed=18510930; DOI=10.1016/j.cell.2008.03.037;
Sidi S., Sanda T., Kennedy R.D., Hagen A.T., Jette C.A., Hoffmans R.,
Pascual J., Imamura S., Kishi S., Amatruda J.F., Kanki J.P.,
Green D.R., D'Andrea A.A., Look A.T.;
"Chk1 suppresses a caspase-2 apoptotic response to DNA damage that
bypasses p53, Bcl-2, and caspase-3.";
Cell 133:864-877(2008).
[48]
FUNCTION IN PHOSPHORYLATION OF NEK6.
PubMed=18728393; DOI=10.4161/cc.7.17.6551;
Lee M.Y., Kim H.J., Kim M.A., Jee H.J., Kim A.J., Bae Y.S., Park J.I.,
Chung J.H., Yun J.;
"Nek6 is involved in G2/M phase cell cycle arrest through DNA damage-
induced phosphorylation.";
Cell Cycle 7:2705-2709(2008).
[49]
FUNCTION IN REPLICATION FORK MAINTENANCE, AND FUNCTION IN PCNA
UBIQUITINATION.
PubMed=18451105; DOI=10.1101/gad.1632808;
Yang X.H., Shiotani B., Classon M., Zou L.;
"Chk1 and Claspin potentiate PCNA ubiquitination.";
Genes Dev. 22:1147-1152(2008).
[50]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-301, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18691976; DOI=10.1016/j.molcel.2008.07.007;
Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,
Greff Z., Keri G., Stemmann O., Mann M.;
"Kinase-selective enrichment enables quantitative phosphoproteomics of
the kinome across the cell cycle.";
Mol. Cell 31:438-448(2008).
[51]
FUNCTION IN RAD51-MEDIATED DNA REPAIR, AND FUNCTION IN PHOSPHORYLATION
OF BRCA2 AND RAD51.
PubMed=18317453; DOI=10.1038/onc.2008.17;
Bahassi E.M., Ovesen J.L., Riesenberg A.L., Bernstein W.Z.,
Hasty P.E., Stambrook P.J.;
"The checkpoint kinases Chk1 and Chk2 regulate the functional
associations between hBRCA2 and Rad51 in response to DNA damage.";
Oncogene 27:3977-3985(2008).
[52]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-286; SER-296 AND
SER-301, AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE
ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18669648; DOI=10.1073/pnas.0805139105;
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
Elledge S.J., Gygi S.P.;
"A quantitative atlas of mitotic phosphorylation.";
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
[53]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19413330; DOI=10.1021/ac9004309;
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
Mohammed S.;
"Lys-N and trypsin cover complementary parts of the phosphoproteome in
a refined SCX-based approach.";
Anal. Chem. 81:4493-4501(2009).
[54]
INTERACTION WITH CDK5RAP3.
PubMed=19223857; DOI=10.1038/cr.2009.14;
Jiang H., Wu J., He C., Yang W., Li H.;
"Tumor suppressor protein C53 antagonizes checkpoint kinases to
promote cyclin-dependent kinase 1 activation.";
Cell Res. 19:458-468(2009).
[55]
PHOSPHORYLATION AT SER-345, UBIQUITINATION AT LYS-436, INTERACTION
WITH FBXO6, AND MUTAGENESIS OF SER-345; ARG-372; ARG-376; ARG-379 AND
LYS-436.
PubMed=19716789; DOI=10.1016/j.molcel.2009.06.030;
Zhang Y.-W., Brognard J., Coughlin C., You Z., Dolled-Filhart M.,
Aslanian A., Manning G., Abraham R.T., Hunter T.;
"The F box protein Fbx6 regulates Chk1 stability and cellular
sensitivity to replication stress.";
Mol. Cell 35:442-453(2009).
[56]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-296, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19369195; DOI=10.1074/mcp.M800588-MCP200;
Oppermann F.S., Gnad F., Olsen J.V., Hornberger R., Greff Z., Keri G.,
Mann M., Daub H.;
"Large-scale proteomics analysis of the human kinome.";
Mol. Cell. Proteomics 8:1751-1764(2009).
[57]
FUNCTION IN NEK11 PHOSPHORYLATION.
PubMed=19734889; DOI=10.1038/ncb1969;
Melixetian M., Klein D.K., Soerensen C.S., Helin K.;
"NEK11 regulates CDC25A degradation and the IR-induced G2/M
checkpoint.";
Nat. Cell Biol. 11:1247-1253(2009).
[58]
INTERACTION WITH FEM1B.
PubMed=19330022; DOI=10.1038/onc.2009.58;
Sun T.P., Shieh S.Y.;
"Human FEM1B is required for Rad9 recruitment and CHK1 activation in
response to replication stress.";
Oncogene 28:1971-1981(2009).
[59]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-301, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Leukemic T-cell;
PubMed=19690332; DOI=10.1126/scisignal.2000007;
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
Rodionov V., Han D.K.;
"Quantitative phosphoproteomic analysis of T cell receptor signaling
reveals system-wide modulation of protein-protein interactions.";
Sci. Signal. 2:RA46-RA46(2009).
[60]
FUNCTION IN CDC25A DEGRADATION.
PubMed=20090422; DOI=10.4161/cc.9.3.10513;
Soerensen C.S., Melixetian M., Klein D.K., Helin K.;
"NEK11: linking CHK1 and CDC25A in DNA damage checkpoint signaling.";
Cell Cycle 9:450-455(2010).
[61]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-286; SER-296 AND
SER-301, AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE
ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=20068231; DOI=10.1126/scisignal.2000475;
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
Mann M.;
"Quantitative phosphoproteomics reveals widespread full
phosphorylation site occupancy during mitosis.";
Sci. Signal. 3:RA3-RA3(2010).
[62]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21269460; DOI=10.1186/1752-0509-5-17;
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
"Initial characterization of the human central proteome.";
BMC Syst. Biol. 5:17-17(2011).
[63]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21406692; DOI=10.1126/scisignal.2001570;
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
Blagoev B.;
"System-wide temporal characterization of the proteome and
phosphoproteome of human embryonic stem cell differentiation.";
Sci. Signal. 4:RS3-RS3(2011).
[64]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-280; SER-296; SER-301;
SER-331; SER-467 AND SER-468, AND IDENTIFICATION BY MASS SPECTROMETRY
[LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma, and Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[65]
X-RAY CRYSTALLOGRAPHY (1.7 ANGSTROMS) OF 1-289.
PubMed=10761933; DOI=10.1016/S0092-8674(00)80704-7;
Chen P., Luo C., Deng Y., Ryan K., Register J., Margosiak S.,
Tempczyk-Russell A., Nguyen B., Myers P., Lundgren K., Kan C.-C.,
O'Connor P.M.;
"The 1.7 A crystal structure of human cell cycle checkpoint kinase
Chk1: implications for Chk1 regulation.";
Cell 100:681-692(2000).
[66]
X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 1-289.
PubMed=12244092; DOI=10.1074/jbc.M201233200;
Zhao B., Bower M.J., McDevitt P.J., Zhao H., Davis S.T.,
Johanson K.O., Green S.M., Concha N.O., Zhou B.-B.S.;
"Structural basis for Chk1 inhibition by UCN-01.";
J. Biol. Chem. 277:46609-46615(2002).
[67]
X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 1-289.
PubMed=15974586; DOI=10.1021/jm049022c;
Foloppe N., Fisher L.M., Howes R., Kierstan P., Potter A.,
Robertson A.G.S., Surgenor A.E.;
"Structure-based design of novel Chk1 inhibitors: insights into
hydrogen bonding and protein-ligand affinity.";
J. Med. Chem. 48:4332-4345(2005).
[68]
VARIANTS [LARGE SCALE ANALYSIS] VAL-223 AND MET-312.
PubMed=17344846; DOI=10.1038/nature05610;
Greenman C., Stephens P., Smith R., Dalgliesh G.L., Hunter C.,
Bignell G., Davies H., Teague J., Butler A., Stevens C., Edkins S.,
O'Meara S., Vastrik I., Schmidt E.E., Avis T., Barthorpe S.,
Bhamra G., Buck G., Choudhury B., Clements J., Cole J., Dicks E.,
Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J.,
Jenkinson A., Jones D., Menzies A., Mironenko T., Perry J., Raine K.,
Richardson D., Shepherd R., Small A., Tofts C., Varian J., Webb T.,
West S., Widaa S., Yates A., Cahill D.P., Louis D.N., Goldstraw P.,
Nicholson A.G., Brasseur F., Looijenga L., Weber B.L., Chiew Y.-E.,
DeFazio A., Greaves M.F., Green A.R., Campbell P., Birney E.,
Easton D.F., Chenevix-Trench G., Tan M.-H., Khoo S.K., Teh B.T.,
Yuen S.T., Leung S.Y., Wooster R., Futreal P.A., Stratton M.R.;
"Patterns of somatic mutation in human cancer genomes.";
Nature 446:153-158(2007).
-!- FUNCTION: Serine/threonine-protein kinase which is required for
checkpoint-mediated cell cycle arrest and activation of DNA repair
in response to the presence of DNA damage or unreplicated DNA. May
also negatively regulate cell cycle progression during unperturbed
cell cycles. This regulation is achieved by a number of mechanisms
that together help to preserve the integrity of the genome.
Recognizes the substrate consensus sequence [R-X-X-S/T]. Binds to
and phosphorylates CDC25A, CDC25B and CDC25C. Phosphorylation of
CDC25A at 'Ser-178' and 'Thr-507' and phosphorylation of CDC25C at
'Ser-216' creates binding sites for 14-3-3 proteins which inhibit
CDC25A and CDC25C. Phosphorylation of CDC25A at 'Ser-76', 'Ser-
124', 'Ser-178', 'Ser-279' and 'Ser-293' promotes proteolysis of
CDC25A. Phosphorylation of CDC25A at 'Ser-76' primes the protein
for subsequent phosphorylation at 'Ser-79', 'Ser-82' and 'Ser-88'
by NEK11, which is required for polyubiquitination and degradation
of CDCD25A. Inhibition of CDC25 leads to increased inhibitory
tyrosine phosphorylation of CDK-cyclin complexes and blocks cell
cycle progression. Also phosphorylates NEK6. Binds to and
phosphorylates RAD51 at 'Thr-309', which promotes the release of
RAD51 from BRCA2 and enhances the association of RAD51 with
chromatin, thereby promoting DNA repair by homologous
recombination. Phosphorylates multiple sites within the C-terminus
of TP53, which promotes activation of TP53 by acetylation and
promotes cell cycle arrest and suppression of cellular
proliferation. Also promotes repair of DNA cross-links through
phosphorylation of FANCE. Binds to and phosphorylates TLK1 at
'Ser-743', which prevents the TLK1-dependent phosphorylation of
the chromatin assembly factor ASF1A. This may enhance chromatin
assembly both in the presence or absence of DNA damage. May also
play a role in replication fork maintenance through regulation of
PCNA. May regulate the transcription of genes that regulate cell-
cycle progression through the phosphorylation of histones.
Phosphorylates histone H3.1 (to form H3T11ph), which leads to
epigenetic inhibition of a subset of genes. May also phosphorylate
RB1 to promote its interaction with the E2F family of
transcription factors and subsequent cell cycle arrest.
-!- FUNCTION: Isoform 2: Endogenous repressor of isoform 1, interacts
with, and antagonizes CHK1 to promote the S to G2/M phase
transition.
-!- CATALYTIC ACTIVITY: ATP + a protein = ADP + a phosphoprotein.
-!- ACTIVITY REGULATION: Activated through phosphorylation
predominantly by ATR but also by ATM in response to DNA damage or
inhibition of DNA replication. Activation is modulated by several
mediators including CLSPN, BRCA1 and FEM1B.
-!- SUBUNIT: Interacts (phosphorylated by ATR) with RAD51. Interacts
with and phosphorylates CLSPN, an adapter protein that regulates
the ATR-dependent phosphorylation of CHEK1. Interacts with BRCA1.
Interacts with and phosphorylates CDC25A, CDC25B and CDC25C.
Interacts with FBXO6, which regulates CHEK1. Interacts with PPM1D,
which regulates CHEK1 through dephosphorylation. Interacts with
TIMELESS; DNA damage-dependent. Interacts with FEM1B; activates
CHEK1 in response to stress. Interacts with TLK1. Interacts with
XPO1 and YWHAZ. Isoform 1 associates with isoform 2, the
interaction is disrupted upon phosphorylation by ATR. Interacts
with CDK5RAP3; antagonizes CHEK1 (PubMed:19223857).
{ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12676962,
ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15665856,
ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:15798197,
ECO:0000269|PubMed:15870257, ECO:0000269|PubMed:16963448,
ECO:0000269|PubMed:19223857, ECO:0000269|PubMed:19330022,
ECO:0000269|PubMed:19716789, ECO:0000269|PubMed:9278511}.
-!- INTERACTION:
P38398:BRCA1; NbExp=3; IntAct=EBI-974488, EBI-349905;
P30307:CDC25C; NbExp=2; IntAct=EBI-974488, EBI-974439;
Q9HAW4:CLSPN; NbExp=5; IntAct=EBI-974488, EBI-1369377;
Q9UJM3:ERRFI1; NbExp=2; IntAct=EBI-974488, EBI-2941912;
P08238:HSP90AB1; NbExp=3; IntAct=EBI-974488, EBI-352572;
O00255:MEN1; NbExp=2; IntAct=EBI-974488, EBI-592789;
Q06609:RAD51; NbExp=3; IntAct=EBI-974488, EBI-297202;
P06400:RB1; NbExp=3; IntAct=EBI-974488, EBI-491274;
Q9HCE7-2:SMURF1; NbExp=4; IntAct=EBI-974488, EBI-9845742;
Q9UNS1:TIMELESS; NbExp=2; IntAct=EBI-974488, EBI-2212315;
P61981:YWHAG; NbExp=7; IntAct=EBI-974488, EBI-359832;
-!- SUBCELLULAR LOCATION: Nucleus. Cytoplasm. Cytoplasm, cytoskeleton,
microtubule organizing center, centrosome. Note=Nuclear export is
mediated at least in part by XPO1/CRM1. Also localizes to the
centrosome specifically during interphase, where it may protect
centrosomal CDC2 kinase from inappropriate activation by
cytoplasmic CDC25B.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing; Named isoforms=3;
Name=1;
IsoId=O14757-1; Sequence=Displayed;
Name=2; Synonyms=Chk1-short, Chk1-S;
IsoId=O14757-2; Sequence=VSP_044008, VSP_044009;
Name=3;
IsoId=O14757-3; Sequence=VSP_045075;
Note=No experimental confirmation available.;
-!- TISSUE SPECIFICITY: Expressed ubiquitously with the most abundant
expression in thymus, testis, small intestine and colon.
{ECO:0000269|PubMed:9278511, ECO:0000269|PubMed:9382850}.
-!- DOMAIN: The autoinhibitory region (AIR) inhibits the activity of
the kinase domain. {ECO:0000269|PubMed:14681223}.
-!- PTM: Phosphorylated by ATR in a RAD17-dependent manner in response
to ultraviolet irradiation and inhibition of DNA replication.
Phosphorylated by ATM in response to ionizing irradiation. ATM and
ATR can both phosphorylate Ser-317 and Ser-345 and this results in
enhanced kinase activity. Phosphorylation at Ser-345 induces a
change in the conformation of the protein, activates the kinase
activity and is a prerequisite for interaction with FBXO6 and
subsequent ubiquitination at Lys-436. Phosphorylation at Ser-345
also increases binding to 14-3-3 proteins and promotes nuclear
retention. Conversely, dephosphorylation at Ser-345 by PPM1D may
contribute to exit from checkpoint mediated cell cycle arrest.
Phosphorylation at Ser-280 by AKT1/PKB, may promote mono and/or
diubiquitination. Also phosphorylated at undefined residues during
mitotic arrest, resulting in decreased activity.
{ECO:0000269|PubMed:10859164, ECO:0000269|PubMed:11390642,
ECO:0000269|PubMed:12446774, ECO:0000269|PubMed:12588868,
ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:12676583,
ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:12676962,
ECO:0000269|PubMed:14657349, ECO:0000269|PubMed:14681223,
ECO:0000269|PubMed:14988723, ECO:0000269|PubMed:15650047,
ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:15870257,
ECO:0000269|PubMed:19716789}.
-!- PTM: Ubiquitinated. Mono or diubiquitination promotes nuclear
exclusion (By similarity). The activated form (phosphorylated on
Ser-345) is polyubiquitinated at Lys-436 by some SCF-type E3
ubiquitin ligase complex containing FBXO6 promoting its
degradation. Ubiquitination and degradation are required to
terminate the checkpoint and ensure that activated CHEK1 does not
accumulate as cells progress through S phase, when replication
forks encounter transient impediments during normal DNA
replication. {ECO:0000250, ECO:0000269|PubMed:10859164,
ECO:0000269|PubMed:11390642, ECO:0000269|PubMed:12446774,
ECO:0000269|PubMed:12676583, ECO:0000269|PubMed:12676925,
ECO:0000269|PubMed:12676962, ECO:0000269|PubMed:14681223,
ECO:0000269|PubMed:14988723, ECO:0000269|PubMed:15650047,
ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:15870257,
ECO:0000269|PubMed:19716789}.
-!- SIMILARITY: Belongs to the protein kinase superfamily. CAMK
Ser/Thr protein kinase family. NIM1 subfamily. {ECO:0000305}.
-!- WEB RESOURCE: Name=NIEHS-SNPs;
URL="http://egp.gs.washington.edu/data/chek1/";
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
Distributed under the Creative Commons Attribution (CC BY 4.0) License
-----------------------------------------------------------------------
EMBL; AF016582; AAC51736.1; -; mRNA.
EMBL; AF032874; AAB88852.1; -; mRNA.
EMBL; AB032387; BAA84577.1; -; Genomic_DNA.
EMBL; JF289264; AEB71796.1; -; mRNA.
EMBL; AK292549; BAF85238.1; -; mRNA.
EMBL; AK293143; BAG56691.1; -; mRNA.
EMBL; AK299783; BAG61665.1; -; mRNA.
EMBL; AF527555; AAM78553.1; -; Genomic_DNA.
EMBL; AB451222; BAG70036.1; -; mRNA.
EMBL; AB451345; BAG70159.1; -; mRNA.
EMBL; AP001132; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; CH471065; EAW67644.1; -; Genomic_DNA.
EMBL; BC004202; AAH04202.1; -; mRNA.
EMBL; BC017575; AAH17575.1; -; mRNA.
CCDS; CCDS58191.1; -. [O14757-3]
CCDS; CCDS81645.1; -. [O14757-2]
CCDS; CCDS8459.1; -. [O14757-1]
RefSeq; NP_001107593.1; NM_001114121.2. [O14757-1]
RefSeq; NP_001107594.1; NM_001114122.2. [O14757-1]
RefSeq; NP_001231775.1; NM_001244846.1. [O14757-3]
RefSeq; NP_001265.2; NM_001274.5. [O14757-1]
RefSeq; NP_001317357.1; NM_001330428.1. [O14757-2]
RefSeq; XP_016872635.1; XM_017017146.1. [O14757-1]
UniGene; Hs.24529; -.
UniGene; Hs.595920; -.
PDB; 1IA8; X-ray; 1.70 A; A=1-289.
PDB; 1NVQ; X-ray; 2.00 A; A=1-289.
PDB; 1NVR; X-ray; 1.80 A; A=1-289.
PDB; 1NVS; X-ray; 1.80 A; A=1-289.
PDB; 1ZLT; X-ray; 1.74 A; A=1-289.
PDB; 1ZYS; X-ray; 1.70 A; A=1-273.
PDB; 2AYP; X-ray; 2.90 A; A=1-269.
PDB; 2BR1; X-ray; 2.00 A; A=1-289.
PDB; 2BRB; X-ray; 2.10 A; A=1-289.
PDB; 2BRG; X-ray; 2.10 A; A=1-289.
PDB; 2BRH; X-ray; 2.10 A; A=1-289.
PDB; 2BRM; X-ray; 2.20 A; A=1-289.
PDB; 2BRN; X-ray; 2.80 A; A=1-289.
PDB; 2BRO; X-ray; 2.20 A; A=1-289.
PDB; 2C3J; X-ray; 2.10 A; A=1-289.
PDB; 2C3K; X-ray; 2.60 A; A=1-289.
PDB; 2C3L; X-ray; 2.35 A; A=1-289.
PDB; 2CGU; X-ray; 2.50 A; A=1-289.
PDB; 2CGV; X-ray; 2.60 A; A=1-289.
PDB; 2CGW; X-ray; 2.20 A; A=1-289.
PDB; 2CGX; X-ray; 2.20 A; A=1-289.
PDB; 2E9N; X-ray; 2.50 A; A=2-270.
PDB; 2E9O; X-ray; 2.10 A; A=2-270.
PDB; 2E9P; X-ray; 2.60 A; A=2-270.
PDB; 2E9U; X-ray; 2.00 A; A=2-270.
PDB; 2E9V; X-ray; 2.00 A; A/B=2-269.
PDB; 2GDO; X-ray; 3.00 A; A=1-289.
PDB; 2GHG; X-ray; 3.50 A; A=2-270.
PDB; 2HOG; X-ray; 1.90 A; A=2-307.
PDB; 2HXL; X-ray; 1.80 A; A=2-307.
PDB; 2HXQ; X-ray; 2.00 A; A=2-307.
PDB; 2HY0; X-ray; 1.70 A; A=2-307.
PDB; 2QHM; X-ray; 2.00 A; A=1-307.
PDB; 2QHN; X-ray; 1.70 A; A=1-307.
PDB; 2R0U; X-ray; 1.90 A; A=1-307.
PDB; 2WMQ; X-ray; 2.48 A; A=1-289.
PDB; 2WMR; X-ray; 2.43 A; A=1-289.
PDB; 2WMS; X-ray; 2.70 A; A=1-289.
PDB; 2WMT; X-ray; 2.55 A; A=1-289.
PDB; 2WMU; X-ray; 2.60 A; A=1-289.
PDB; 2WMV; X-ray; 2.01 A; A=1-289.
PDB; 2WMW; X-ray; 2.43 A; A=1-289.
PDB; 2WMX; X-ray; 2.45 A; A=1-289.
PDB; 2X8D; X-ray; 1.90 A; A=1-289.
PDB; 2X8E; X-ray; 2.50 A; A=1-276.
PDB; 2X8I; X-ray; 1.92 A; A=1-289.
PDB; 2XEY; X-ray; 2.70 A; A=1-289.
PDB; 2XEZ; X-ray; 2.25 A; A=1-289.
PDB; 2XF0; X-ray; 2.40 A; A=1-289.
PDB; 2YDI; X-ray; 1.60 A; A=1-289.
PDB; 2YDJ; X-ray; 1.85 A; A/B=1-276.
PDB; 2YDK; X-ray; 1.90 A; A=1-276.
PDB; 2YER; X-ray; 1.83 A; A=1-276.
PDB; 2YEX; X-ray; 1.30 A; A=1-276.
PDB; 2YM3; X-ray; 2.01 A; A=1-289.
PDB; 2YM4; X-ray; 2.35 A; A=1-289.
PDB; 2YM5; X-ray; 2.03 A; A=1-289.
PDB; 2YM6; X-ray; 2.01 A; A=1-289.
PDB; 2YM7; X-ray; 1.81 A; A=1-289.
PDB; 2YM8; X-ray; 2.07 A; A=1-289.
PDB; 2YWP; X-ray; 2.90 A; A=2-270.
PDB; 3F9N; X-ray; 1.90 A; A=2-307.
PDB; 3JVR; X-ray; 1.76 A; A=2-272.
PDB; 3JVS; X-ray; 1.90 A; A=2-272.
PDB; 3NLB; X-ray; 1.90 A; A=1-289.
PDB; 3OT3; X-ray; 1.44 A; A=2-274.
PDB; 3OT8; X-ray; 1.65 A; A=2-274.
PDB; 3PA3; X-ray; 1.40 A; A=2-274.
PDB; 3PA4; X-ray; 1.59 A; A=2-274.
PDB; 3PA5; X-ray; 1.70 A; A=2-274.
PDB; 3TKH; X-ray; 1.79 A; A=1-307.
PDB; 3TKI; X-ray; 1.60 A; A=1-307.
PDB; 3U9N; X-ray; 1.85 A; A=2-274.
PDB; 4FSM; X-ray; 2.30 A; A=2-280.
PDB; 4FSN; X-ray; 2.10 A; A=4-280.
PDB; 4FSQ; X-ray; 2.40 A; A=2-280.
PDB; 4FSR; X-ray; 2.50 A; A=2-280.
PDB; 4FST; X-ray; 1.90 A; A=2-270.
PDB; 4FSU; X-ray; 2.10 A; A=2-280.
PDB; 4FSW; X-ray; 2.30 A; A=2-280.
PDB; 4FSY; X-ray; 2.30 A; A=2-280.
PDB; 4FSZ; X-ray; 2.30 A; A=2-280.
PDB; 4FT0; X-ray; 2.30 A; A=2-280.
PDB; 4FT3; X-ray; 2.50 A; A=2-280.
PDB; 4FT5; X-ray; 2.40 A; A=2-280.
PDB; 4FT7; X-ray; 2.20 A; A=2-280.
PDB; 4FT9; X-ray; 2.20 A; A=2-280.
PDB; 4FTA; X-ray; 2.40 A; A=2-280.
PDB; 4FTC; X-ray; 2.00 A; A=2-280.
PDB; 4FTI; X-ray; 2.20 A; A=2-280.
PDB; 4FTJ; X-ray; 2.20 A; A=2-280.
PDB; 4FTK; X-ray; 2.30 A; A=2-280.
PDB; 4FTL; X-ray; 2.50 A; A=2-280.
PDB; 4FTM; X-ray; 1.90 A; A=2-280.
PDB; 4FTN; X-ray; 2.02 A; A=2-280.
PDB; 4FTO; X-ray; 2.10 A; A=2-280.
PDB; 4FTQ; X-ray; 2.00 A; A=2-280.
PDB; 4FTR; X-ray; 2.25 A; A=2-280.
PDB; 4FTT; X-ray; 2.30 A; A=2-280.
PDB; 4FTU; X-ray; 2.10 A; A=2-280.
PDB; 4GH2; X-ray; 2.03 A; A=2-280.
PDB; 4HYH; X-ray; 1.70 A; A=1-289.
PDB; 4HYI; X-ray; 1.40 A; A=1-289.
PDB; 4JIK; X-ray; 1.90 A; A=2-274.
PDB; 4QYE; X-ray; 2.05 A; A=1-289.
PDB; 4QYF; X-ray; 2.15 A; A=1-289.
PDB; 4QYG; X-ray; 1.75 A; A/B=1-289.
PDB; 4QYH; X-ray; 1.90 A; A/B=1-289.
PDB; 4RVK; X-ray; 1.85 A; A=1-289.
PDB; 4RVL; X-ray; 1.85 A; A=1-289.
PDB; 4RVM; X-ray; 1.86 A; A=1-289.
PDB; 5DLS; X-ray; 2.15 A; A=1-289.
PDB; 5F4N; X-ray; 1.91 A; A=1-273.
PDB; 5OOP; X-ray; 1.70 A; A=1-289.
PDB; 5OOR; X-ray; 1.90 A; A=1-289.
PDB; 5OOT; X-ray; 2.10 A; A=1-289.
PDB; 5OP2; X-ray; 1.90 A; A=1-289.
PDB; 5OP4; X-ray; 2.00 A; A=1-289.
PDB; 5OP5; X-ray; 1.90 A; A=1-289.
PDB; 5OP7; X-ray; 1.80 A; A=1-289.
PDB; 5OPB; X-ray; 1.55 A; A=1-289.
PDB; 5OPR; X-ray; 1.95 A; A=1-289.
PDB; 5OPS; X-ray; 2.00 A; A=1-289.
PDB; 5OPU; X-ray; 1.55 A; A=1-289.
PDB; 5OPV; X-ray; 1.90 A; A=1-289.
PDB; 5OQ5; X-ray; 1.40 A; A=1-289.
PDB; 5OQ6; X-ray; 1.95 A; A=1-289.
PDB; 5OQ7; X-ray; 2.10 A; A/B=1-289.
PDB; 5OQ8; X-ray; 2.00 A; A=1-289.
PDB; 5WI2; X-ray; 2.50 A; A/B=377-476.
PDB; 6FC8; X-ray; 1.61 A; A=1-276.
PDB; 6FCF; X-ray; 1.85 A; A=1-276.
PDB; 6FCK; X-ray; 1.90 A; A=1-276.
PDBsum; 1IA8; -.
PDBsum; 1NVQ; -.
PDBsum; 1NVR; -.
PDBsum; 1NVS; -.
PDBsum; 1ZLT; -.
PDBsum; 1ZYS; -.
PDBsum; 2AYP; -.
PDBsum; 2BR1; -.
PDBsum; 2BRB; -.
PDBsum; 2BRG; -.
PDBsum; 2BRH; -.
PDBsum; 2BRM; -.
PDBsum; 2BRN; -.
PDBsum; 2BRO; -.
PDBsum; 2C3J; -.
PDBsum; 2C3K; -.
PDBsum; 2C3L; -.
PDBsum; 2CGU; -.
PDBsum; 2CGV; -.
PDBsum; 2CGW; -.
PDBsum; 2CGX; -.
PDBsum; 2E9N; -.
PDBsum; 2E9O; -.
PDBsum; 2E9P; -.
PDBsum; 2E9U; -.
PDBsum; 2E9V; -.
PDBsum; 2GDO; -.
PDBsum; 2GHG; -.
PDBsum; 2HOG; -.
PDBsum; 2HXL; -.
PDBsum; 2HXQ; -.
PDBsum; 2HY0; -.
PDBsum; 2QHM; -.
PDBsum; 2QHN; -.
PDBsum; 2R0U; -.
PDBsum; 2WMQ; -.
PDBsum; 2WMR; -.
PDBsum; 2WMS; -.
PDBsum; 2WMT; -.
PDBsum; 2WMU; -.
PDBsum; 2WMV; -.
PDBsum; 2WMW; -.
PDBsum; 2WMX; -.
PDBsum; 2X8D; -.
PDBsum; 2X8E; -.
PDBsum; 2X8I; -.
PDBsum; 2XEY; -.
PDBsum; 2XEZ; -.
PDBsum; 2XF0; -.
PDBsum; 2YDI; -.
PDBsum; 2YDJ; -.
PDBsum; 2YDK; -.
PDBsum; 2YER; -.
PDBsum; 2YEX; -.
PDBsum; 2YM3; -.
PDBsum; 2YM4; -.
PDBsum; 2YM5; -.
PDBsum; 2YM6; -.
PDBsum; 2YM7; -.
PDBsum; 2YM8; -.
PDBsum; 2YWP; -.
PDBsum; 3F9N; -.
PDBsum; 3JVR; -.
PDBsum; 3JVS; -.
PDBsum; 3NLB; -.
PDBsum; 3OT3; -.
PDBsum; 3OT8; -.
PDBsum; 3PA3; -.
PDBsum; 3PA4; -.
PDBsum; 3PA5; -.
PDBsum; 3TKH; -.
PDBsum; 3TKI; -.
PDBsum; 3U9N; -.
PDBsum; 4FSM; -.
PDBsum; 4FSN; -.
PDBsum; 4FSQ; -.
PDBsum; 4FSR; -.
PDBsum; 4FST; -.
PDBsum; 4FSU; -.
PDBsum; 4FSW; -.
PDBsum; 4FSY; -.
PDBsum; 4FSZ; -.
PDBsum; 4FT0; -.
PDBsum; 4FT3; -.
PDBsum; 4FT5; -.
PDBsum; 4FT7; -.
PDBsum; 4FT9; -.
PDBsum; 4FTA; -.
PDBsum; 4FTC; -.
PDBsum; 4FTI; -.
PDBsum; 4FTJ; -.
PDBsum; 4FTK; -.
PDBsum; 4FTL; -.
PDBsum; 4FTM; -.
PDBsum; 4FTN; -.
PDBsum; 4FTO; -.
PDBsum; 4FTQ; -.
PDBsum; 4FTR; -.
PDBsum; 4FTT; -.
PDBsum; 4FTU; -.
PDBsum; 4GH2; -.
PDBsum; 4HYH; -.
PDBsum; 4HYI; -.
PDBsum; 4JIK; -.
PDBsum; 4QYE; -.
PDBsum; 4QYF; -.
PDBsum; 4QYG; -.
PDBsum; 4QYH; -.
PDBsum; 4RVK; -.
PDBsum; 4RVL; -.
PDBsum; 4RVM; -.
PDBsum; 5DLS; -.
PDBsum; 5F4N; -.
PDBsum; 5OOP; -.
PDBsum; 5OOR; -.
PDBsum; 5OOT; -.
PDBsum; 5OP2; -.
PDBsum; 5OP4; -.
PDBsum; 5OP5; -.
PDBsum; 5OP7; -.
PDBsum; 5OPB; -.
PDBsum; 5OPR; -.
PDBsum; 5OPS; -.
PDBsum; 5OPU; -.
PDBsum; 5OPV; -.
PDBsum; 5OQ5; -.
PDBsum; 5OQ6; -.
PDBsum; 5OQ7; -.
PDBsum; 5OQ8; -.
PDBsum; 5WI2; -.
PDBsum; 6FC8; -.
PDBsum; 6FCF; -.
PDBsum; 6FCK; -.
ProteinModelPortal; O14757; -.
SMR; O14757; -.
BioGrid; 107536; 157.
CORUM; O14757; -.
DIP; DIP-24182N; -.
ELM; O14757; -.
IntAct; O14757; 37.
MINT; O14757; -.
STRING; 9606.ENSP00000388648; -.
BindingDB; O14757; -.
ChEMBL; CHEMBL4630; -.
DrugBank; DB07037; (2S)-1-AMINO-3-[(5-NITROQUINOLIN-8-YL)AMINO]PROPAN-2-OL.
DrugBank; DB07228; 1-(5-CHLORO-2-METHOXYPHENYL)-3-{6-[2-(DIMETHYLAMINO)-1-METHYLETHOXY]PYRAZIN-2-YL}UREA.
DrugBank; DB07038; 2-(cyclohexylamino)benzoic acid.
DrugBank; DB08779; 2-(methylsulfanyl)-5-(thiophen-2-ylmethyl)-1H-imidazol-4-ol.
DrugBank; DB07959; 3-(1H-BENZIMIDAZOL-2-YL)-1H-INDAZOLE.
DrugBank; DB07075; 3-(5-{[4-(AMINOMETHYL)PIPERIDIN-1-YL]METHYL}-1H-INDOL-2-YL)-1H-INDAZOLE-6-CARBONITRILE.
DrugBank; DB07025; 3-(5-{[4-(AMINOMETHYL)PIPERIDIN-1-YL]METHYL}-1H-INDOL-2-YL)QUINOLIN-2(1H)-ONE.
DrugBank; DB06852; 4-[(3S)-1-AZABICYCLO[2.2.2]OCT-3-YLAMINO]-3-(1H-BENZIMIDAZOL-2-YL)-6-CHLOROQUINOLIN-2(1H)-ONE.
DrugBank; DB07336; 4-[3-(1H-BENZIMIDAZOL-2-YL)-1H-INDAZOL-6-YL]-2-METHOXYPHENOL.
DrugBank; DB08780; 6-MORPHOLIN-4-YL-9H-PURINE.
DrugBank; DB05149; XL844.
GuidetoPHARMACOLOGY; 1987; -.
iPTMnet; O14757; -.
PhosphoSitePlus; O14757; -.
BioMuta; CHEK1; -.
EPD; O14757; -.
MaxQB; O14757; -.
PaxDb; O14757; -.
PeptideAtlas; O14757; -.
PRIDE; O14757; -.
ProteomicsDB; 48208; -.
ProteomicsDB; 48209; -. [O14757-2]
DNASU; 1111; -.
Ensembl; ENST00000428830; ENSP00000412504; ENSG00000149554. [O14757-1]
Ensembl; ENST00000438015; ENSP00000388648; ENSG00000149554. [O14757-1]
Ensembl; ENST00000524737; ENSP00000432890; ENSG00000149554. [O14757-1]
Ensembl; ENST00000532449; ENSP00000481616; ENSG00000149554. [O14757-3]
Ensembl; ENST00000534070; ENSP00000435371; ENSG00000149554. [O14757-1]
Ensembl; ENST00000544373; ENSP00000442317; ENSG00000149554. [O14757-2]
GeneID; 1111; -.
KEGG; hsa:1111; -.
UCSC; uc001qcf.5; human. [O14757-1]
CTD; 1111; -.
DisGeNET; 1111; -.
EuPathDB; HostDB:ENSG00000149554.12; -.
GeneCards; CHEK1; -.
H-InvDB; HIX0201657; -.
HGNC; HGNC:1925; CHEK1.
HPA; HPA044364; -.
MIM; 603078; gene.
neXtProt; NX_O14757; -.
OpenTargets; ENSG00000149554; -.
PharmGKB; PA110; -.
eggNOG; KOG0590; Eukaryota.
eggNOG; ENOG410XQ0D; LUCA.
GeneTree; ENSGT00680000099954; -.
HOGENOM; HOG000216658; -.
HOVERGEN; HBG002590; -.
InParanoid; O14757; -.
KO; K02216; -.
OMA; AQPADIW; -.
PhylomeDB; O14757; -.
TreeFam; TF351441; -.
BRENDA; 2.7.11.1; 2681.
Reactome; R-HSA-1433557; Signaling by SCF-KIT.
Reactome; R-HSA-176187; Activation of ATR in response to replication stress.
Reactome; R-HSA-5693607; Processing of DNA double-strand break ends.
Reactome; R-HSA-5693616; Presynaptic phase of homologous DNA pairing and strand exchange.
Reactome; R-HSA-6796648; TP53 Regulates Transcription of DNA Repair Genes.
Reactome; R-HSA-6804756; Regulation of TP53 Activity through Phosphorylation.
Reactome; R-HSA-69473; G2/M DNA damage checkpoint.
Reactome; R-HSA-69601; Ubiquitin Mediated Degradation of Phosphorylated Cdc25A.
Reactome; R-HSA-75035; Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex.
Reactome; R-HSA-8953750; Transcriptional Regulation by E2F6.
SignaLink; O14757; -.
SIGNOR; O14757; -.
ChiTaRS; CHEK1; human.
EvolutionaryTrace; O14757; -.
GeneWiki; CHEK1; -.
GenomeRNAi; 1111; -.
PRO; PR:O14757; -.
Proteomes; UP000005640; Chromosome 11.
Bgee; ENSG00000149554; Expressed in 152 organ(s), highest expression level in secondary oocyte.
CleanEx; HS_CHEK1; -.
ExpressionAtlas; O14757; baseline and differential.
Genevisible; O14757; HS.
GO; GO:0005813; C:centrosome; IDA:UniProtKB.
GO; GO:0000785; C:chromatin; ISS:UniProtKB.
GO; GO:0000794; C:condensed nuclear chromosome; IDA:UniProtKB.
GO; GO:0005737; C:cytoplasm; IDA:CAFA.
GO; GO:0005829; C:cytosol; TAS:Reactome.
GO; GO:0005615; C:extracellular space; HDA:UniProtKB.
GO; GO:0043231; C:intracellular membrane-bounded organelle; IDA:HPA.
GO; GO:0005654; C:nucleoplasm; IDA:HPA.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0032991; C:protein-containing complex; IDA:CAFA.
GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
GO; GO:0035402; F:histone kinase activity (H3-T11 specific); IDA:UniProtKB.
GO; GO:0016301; F:kinase activity; TAS:Reactome.
GO; GO:0019904; F:protein domain specific binding; IPI:CAFA.
GO; GO:0004672; F:protein kinase activity; IMP:CACAO.
GO; GO:0004674; F:protein serine/threonine kinase activity; IDA:UniProtKB.
GO; GO:0006915; P:apoptotic process; IDA:UniProtKB.
GO; GO:0007049; P:cell cycle; IEA:UniProtKB-KW.
GO; GO:0006974; P:cellular response to DNA damage stimulus; IMP:UniProtKB.
GO; GO:0071260; P:cellular response to mechanical stimulus; IEP:UniProtKB.
GO; GO:0048096; P:chromatin-mediated maintenance of transcription; ISS:UniProtKB.
GO; GO:0000077; P:DNA damage checkpoint; IDA:UniProtKB.
GO; GO:0006975; P:DNA damage induced protein phosphorylation; IDA:UniProtKB.
GO; GO:0006281; P:DNA repair; IMP:UniProtKB.
GO; GO:0006260; P:DNA replication; TAS:Reactome.
GO; GO:0035556; P:intracellular signal transduction; IBA:GO_Central.
GO; GO:0070317; P:negative regulation of G0 to G1 transition; TAS:Reactome.
GO; GO:0045839; P:negative regulation of mitotic nuclear division; IDA:UniProtKB.
GO; GO:0018107; P:peptidyl-threonine phosphorylation; IDA:UniProtKB.
GO; GO:0045787; P:positive regulation of cell cycle; IDA:CAFA.
GO; GO:0010569; P:regulation of double-strand break repair via homologous recombination; IDA:UniProtKB.
GO; GO:2000615; P:regulation of histone H3-K9 acetylation; ISS:UniProtKB.
GO; GO:0046602; P:regulation of mitotic centrosome separation; IDA:UniProtKB.
GO; GO:1901796; P:regulation of signal transduction by p53 class mediator; TAS:Reactome.
GO; GO:0010767; P:regulation of transcription from RNA polymerase II promoter in response to UV-induced DNA damage; ISS:UniProtKB.
GO; GO:0090399; P:replicative senescence; NAS:BHF-UCL.
GO; GO:0072425; P:signal transduction involved in G2 DNA damage checkpoint; IMP:UniProtKB.
CDD; cd14069; STKc_Chk1; 1.
InterPro; IPR034670; Chk1_catalytic_dom.
InterPro; IPR011009; Kinase-like_dom_sf.
InterPro; IPR000719; Prot_kinase_dom.
InterPro; IPR017441; Protein_kinase_ATP_BS.
InterPro; IPR008271; Ser/Thr_kinase_AS.
Pfam; PF00069; Pkinase; 1.
SMART; SM00220; S_TKc; 1.
SUPFAM; SSF56112; SSF56112; 2.
PROSITE; PS00107; PROTEIN_KINASE_ATP; 1.
PROSITE; PS50011; PROTEIN_KINASE_DOM; 1.
PROSITE; PS00108; PROTEIN_KINASE_ST; 1.
1: Evidence at protein level;
3D-structure; Alternative splicing; ATP-binding; Cell cycle;
Complete proteome; Cytoplasm; Cytoskeleton; DNA damage; DNA repair;
Isopeptide bond; Kinase; Nucleotide-binding; Nucleus; Phosphoprotein;
Polymorphism; Reference proteome; Serine/threonine-protein kinase;
Transferase; Ubl conjugation.
CHAIN 1 476 Serine/threonine-protein kinase Chk1.
/FTId=PRO_0000085848.
DOMAIN 9 265 Protein kinase. {ECO:0000255|PROSITE-
ProRule:PRU00159}.
NP_BIND 15 23 ATP. {ECO:0000255|PROSITE-
ProRule:PRU00159}.
REGION 1 265 Interaction with CLSPN. {ECO:0000250}.
REGION 391 476 Autoinhibitory region.
ACT_SITE 130 130 Proton acceptor.
BINDING 38 38 ATP. {ECO:0000255|PROSITE-
ProRule:PRU00159}.
MOD_RES 280 280 Phosphoserine.
{ECO:0000244|PubMed:23186163}.
MOD_RES 286 286 Phosphoserine.
{ECO:0000244|PubMed:18669648,
ECO:0000244|PubMed:20068231}.
MOD_RES 296 296 Phosphoserine.
{ECO:0000244|PubMed:18669648,
ECO:0000244|PubMed:19369195,
ECO:0000244|PubMed:20068231,
ECO:0000244|PubMed:23186163,
ECO:0000269|PubMed:15707391}.
MOD_RES 301 301 Phosphoserine.
{ECO:0000244|PubMed:18669648,
ECO:0000244|PubMed:18691976,
ECO:0000244|PubMed:19690332,
ECO:0000244|PubMed:20068231,
ECO:0000244|PubMed:23186163}.
MOD_RES 317 317 Phosphoserine; by ATM and ATR.
{ECO:0000269|PubMed:11390642,
ECO:0000269|PubMed:12446774,
ECO:0000269|PubMed:12588868,
ECO:0000269|PubMed:12660173,
ECO:0000269|PubMed:12676583,
ECO:0000269|PubMed:12676962,
ECO:0000269|PubMed:14657349,
ECO:0000269|PubMed:15707391,
ECO:0000269|PubMed:15870257}.
MOD_RES 331 331 Phosphoserine.
{ECO:0000244|PubMed:23186163}.
MOD_RES 345 345 Phosphoserine; by ATM and ATR.
{ECO:0000269|PubMed:10859164,
ECO:0000269|PubMed:11390642,
ECO:0000269|PubMed:12446774,
ECO:0000269|PubMed:12676583,
ECO:0000269|PubMed:12676925,
ECO:0000269|PubMed:12676962,
ECO:0000269|PubMed:14681223,
ECO:0000269|PubMed:14988723,
ECO:0000269|PubMed:15650047,
ECO:0000269|PubMed:15707391,
ECO:0000269|PubMed:15870257,
ECO:0000269|PubMed:19716789}.
MOD_RES 467 467 Phosphoserine.
{ECO:0000244|PubMed:23186163}.
MOD_RES 468 468 Phosphoserine.
{ECO:0000244|PubMed:23186163}.
CROSSLNK 436 436 Glycyl lysine isopeptide (Lys-Gly)
(interchain with G-Cter in ubiquitin).
{ECO:0000269|PubMed:19716789}.
VAR_SEQ 1 94 Missing (in isoform 2).
{ECO:0000303|PubMed:14702039,
ECO:0000303|PubMed:22184239}.
/FTId=VSP_044008.
VAR_SEQ 95 97 RIE -> MEK (in isoform 2).
{ECO:0000303|PubMed:14702039,
ECO:0000303|PubMed:22184239}.
/FTId=VSP_044009.
VAR_SEQ 412 445 Missing (in isoform 3).
{ECO:0000303|PubMed:14702039}.
/FTId=VSP_045075.
VARIANT 156 156 R -> Q (in dbSNP:rs3731410).
{ECO:0000269|Ref.6}.
/FTId=VAR_021123.
VARIANT 223 223 E -> V (in dbSNP:rs35817404).
{ECO:0000269|PubMed:17344846}.
/FTId=VAR_040407.
VARIANT 312 312 V -> M (in dbSNP:rs34097480).
{ECO:0000269|PubMed:17344846}.
/FTId=VAR_040408.
VARIANT 471 471 I -> V (in dbSNP:rs506504).
{ECO:0000269|PubMed:10717241,
ECO:0000269|PubMed:14702039,
ECO:0000269|PubMed:15489334,
ECO:0000269|PubMed:19054851,
ECO:0000269|PubMed:9278511,
ECO:0000269|PubMed:9382850,
ECO:0000269|Ref.6, ECO:0000269|Ref.9}.
/FTId=VAR_024571.
MUTAGEN 38 38 K->R: Abolishes kinase activity.
{ECO:0000269|PubMed:12446774,
ECO:0000269|PubMed:14681223}.
MUTAGEN 130 130 D->A: Abolishes kinase activity.
{ECO:0000269|PubMed:10673501,
ECO:0000269|PubMed:11390642,
ECO:0000269|PubMed:11535615,
ECO:0000269|PubMed:11821419,
ECO:0000269|PubMed:12588868,
ECO:0000269|PubMed:14681206,
ECO:0000269|PubMed:15311285,
ECO:0000269|PubMed:9278511}.
MUTAGEN 317 317 S->A: Abrogates interaction with RAD51;
when associated with A-345. Reduces
phosphorylation and impairs activation by
hydroxyurea and ionizing radiation.
Abrogates nuclear retention upon
checkpoint activation. Impairs
interaction with FBXO6.
{ECO:0000269|PubMed:11390642,
ECO:0000269|PubMed:12588868,
ECO:0000269|PubMed:12676583,
ECO:0000269|PubMed:12676962,
ECO:0000269|PubMed:15665856}.
MUTAGEN 317 317 S->E: Enhances interaction with RAD51;
when associated with E-345.
{ECO:0000269|PubMed:11390642,
ECO:0000269|PubMed:12588868,
ECO:0000269|PubMed:12676583,
ECO:0000269|PubMed:12676962,
ECO:0000269|PubMed:15665856}.
MUTAGEN 344 344 F->A: Impairs nuclear export.
{ECO:0000269|PubMed:12676962}.
MUTAGEN 345 345 S->A: Abrogates interaction with RAD51;
when associated with A-317. Reduces
phosphorylation and impairs activation by
hydroxyurea and ionizing radiation.
Impairs interaction with YWHAZ which is
required for nuclear retention after
checkpoint activation.
{ECO:0000269|PubMed:11390642,
ECO:0000269|PubMed:12588868,
ECO:0000269|PubMed:12676583,
ECO:0000269|PubMed:12676962,
ECO:0000269|PubMed:15665856,
ECO:0000269|PubMed:19716789}.
MUTAGEN 345 345 S->E: Enhances interaction with RAD51;
when associated with E-317.
{ECO:0000269|PubMed:11390642,
ECO:0000269|PubMed:12588868,
ECO:0000269|PubMed:12676583,
ECO:0000269|PubMed:12676962,
ECO:0000269|PubMed:15665856,
ECO:0000269|PubMed:19716789}.
MUTAGEN 353 353 M->A: Impairs nuclear export.
{ECO:0000269|PubMed:12676962}.
MUTAGEN 357 357 S->A: No effect on phosphorylation
induced by hydroxyurea.
{ECO:0000269|PubMed:11390642}.
MUTAGEN 366 366 S->A: No effect on phosphorylation
induced by hydroxyurea.
{ECO:0000269|PubMed:11390642}.
MUTAGEN 372 372 R->E: In 3RE mutant. Disrupts the folding
and/or conformation, allowing increased
accessibility to FBXO6 component of SCF-
type E3 ubiquitin ligase complex; when
associated with E-376 and E-379.
{ECO:0000269|PubMed:19716789}.
MUTAGEN 376 376 R->E: In 3RE mutant. Disrupts the folding
and/or conformation, allowing increased
accessibility to FBXO6 component of SCF-
type E3 ubiquitin ligase complex; when
associated with E-372 and E-379.
{ECO:0000269|PubMed:19716789}.
MUTAGEN 379 379 R->E: In 3RE mutant. Disrupts the folding
and/or conformation, allowing increased
accessibility to FBXO6 component of SCF-
type E3 ubiquitin ligase complex; when
associated with E-372 and E-376.
{ECO:0000269|PubMed:19716789}.
MUTAGEN 436 436 K->R: Enhances stability of the protein,
probably by preventing ubiquitination at
this site. {ECO:0000269|PubMed:19716789}.
MUTAGEN 468 468 S->A: No effect on phosphorylation
induced by hydroxyurea.
{ECO:0000269|PubMed:11390642}.
CONFLICT 163 163 L -> S (in Ref. 5; BAG56691).
{ECO:0000305}.
CONFLICT 220 220 D -> G (in Ref. 4; BAG61665).
{ECO:0000305}.
CONFLICT 381 381 F -> L (in Ref. 4; BAG61665).
{ECO:0000305}.
HELIX 3 8 {ECO:0000244|PDB:2YEX}.
STRAND 9 17 {ECO:0000244|PDB:2YEX}.
STRAND 19 28 {ECO:0000244|PDB:2YEX}.
TURN 29 31 {ECO:0000244|PDB:2YEX}.
STRAND 34 41 {ECO:0000244|PDB:2YEX}.
HELIX 42 44 {ECO:0000244|PDB:2YEX}.
HELIX 48 60 {ECO:0000244|PDB:2YEX}.
STRAND 70 76 {ECO:0000244|PDB:2YEX}.
STRAND 79 85 {ECO:0000244|PDB:2YEX}.
STRAND 88 91 {ECO:0000244|PDB:2GDO}.
HELIX 92 95 {ECO:0000244|PDB:2YEX}.
TURN 98 100 {ECO:0000244|PDB:2YEX}.
HELIX 104 123 {ECO:0000244|PDB:2YEX}.
STRAND 125 127 {ECO:0000244|PDB:2GHG}.
HELIX 133 135 {ECO:0000244|PDB:2YEX}.
STRAND 136 138 {ECO:0000244|PDB:2YEX}.
STRAND 144 146 {ECO:0000244|PDB:2YEX}.
HELIX 149 151 {ECO:0000244|PDB:2C3J}.
STRAND 153 157 {ECO:0000244|PDB:3JVR}.
HELIX 171 173 {ECO:0000244|PDB:2YEX}.
HELIX 176 179 {ECO:0000244|PDB:2YEX}.
STRAND 182 184 {ECO:0000244|PDB:2YEX}.
HELIX 186 203 {ECO:0000244|PDB:2YEX}.
STRAND 209 211 {ECO:0000244|PDB:4HYI}.
STRAND 213 215 {ECO:0000244|PDB:2XEY}.
HELIX 216 222 {ECO:0000244|PDB:2YEX}.
STRAND 227 229 {ECO:0000244|PDB:2E9U}.
HELIX 231 233 {ECO:0000244|PDB:2YEX}.
HELIX 236 245 {ECO:0000244|PDB:2YEX}.
TURN 250 252 {ECO:0000244|PDB:2YEX}.
HELIX 256 259 {ECO:0000244|PDB:2YEX}.
TURN 263 266 {ECO:0000244|PDB:2YEX}.
STRAND 379 384 {ECO:0000244|PDB:5WI2}.
HELIX 386 399 {ECO:0000244|PDB:5WI2}.
STRAND 403 417 {ECO:0000244|PDB:5WI2}.
STRAND 423 432 {ECO:0000244|PDB:5WI2}.
STRAND 434 446 {ECO:0000244|PDB:5WI2}.
HELIX 448 461 {ECO:0000244|PDB:5WI2}.
HELIX 463 465 {ECO:0000244|PDB:5WI2}.
SEQUENCE 476 AA; 54434 MW; 0ABD0FAB67E60F67 CRC64;
MAVPFVEDWD LVQTLGEGAY GEVQLAVNRV TEEAVAVKIV DMKRAVDCPE NIKKEICINK
MLNHENVVKF YGHRREGNIQ YLFLEYCSGG ELFDRIEPDI GMPEPDAQRF FHQLMAGVVY
LHGIGITHRD IKPENLLLDE RDNLKISDFG LATVFRYNNR ERLLNKMCGT LPYVAPELLK
RREFHAEPVD VWSCGIVLTA MLAGELPWDQ PSDSCQEYSD WKEKKTYLNP WKKIDSAPLA
LLHKILVENP SARITIPDIK KDRWYNKPLK KGAKRPRVTS GGVSESPSGF SKHIQSNLDF
SPVNSASSEE NVKYSSSQPE PRTGLSLWDT SPSYIDKLVQ GISFSQPTCP DHMLLNSQLL
GTPGSSQNPW QRLVKRMTRF FTKLDADKSY QCLKETCEKL GYQWKKSCMN QVTISTTDRR
NNKLIFKVNL LEMDDKILVD FRLSKGDGLE FKRHFLKIKG KLIDIVSSQK IWLPAT


Related products :

Catalog number Product name Quantity
LF-PA0059 anti-Chk1(Checkpoint kinase 1) , Rabbit polyclonal to Chk1(Checkpoint kinase 1) , Isotype IgG, Host Rabbit 100 ul
BMDV10317 Chk1 (Cell Cycle Checkpoint Kinase), 56kD, Clone DCS_300, Mab anti_Human; WB 0.5 ml.
LF-PA0059 anti-Chk1 (Checkpoint kinase 1) 100 ul
MA-20031 Mouse Monoclonal Anti-Human Checkpoint kinase 1 (CHK1). 100 ul
LF-PA0059 anti-Chk1 (Checkpoint kinase 1) type: Primary antibodies host: Rabbit 100 ul
E1119d Mouse ELISA Kit FOR Mitotic checkpoint serine per threonine-protein kinase BUB1 beta 96T
BUB1B_HUMAN Human ELISA Kit FOR Mitotic checkpoint serine per threonine-protein kinase BUB1 beta 96T
Y050792 Anti-CHK1(CHK1 checkpoint homolog) Antibody 100ug
CSB-EL002883MO Mouse Mitotic checkpoint serine per threonine-protein kinase BUB1 beta(BUB1B) ELISA kit 96T
BUB1B_MOUSE ELISA Kit FOR Mitotic checkpoint serine per threonine-protein kinase BUB1 beta; organism: Mouse; gene name: Bub1b 96T
LF-MA0266 anti-Chk2 (Checkpoint kinase 2) (20A8), Mouse monoclonal to Chk2 (Checkpoint kinase 2), Isotype IgG1, Host Mouse 100 ul
LF-MA0267 anti-Chk2 (Checkpoint kinase 2) (31A2), Mouse monoclonal to Chk2 (Checkpoint kinase 2), Isotype IgG1, Host Mouse 100 ul
EIAAB33643 Cell cycle checkpoint protein RAD1,DNA repair exonuclease rad1 homolog,Homo sapiens,hRAD1,Human,RAD1,Rad1-like DNA damage checkpoint protein,REC1
EIAAB33644 Cell cycle checkpoint protein RAD1,DNA repair exonuclease rad1 homolog,Mouse,mRAD1,Mus musculus,Rad1,Rad1-like DNA damage checkpoint protein,Rec1
orb60495 AZD7762 AZD7762 is a novel checkpoint kinase inhibitor with an IC50 of 5 and <10 nM for CHK1 and CHK2, respectively. For research use only. 5 mg
28-863 The human Timeless protein interacts with both the circadian clock protein cryptochrome 2 and with the cell cycle checkpoint proteins Chk1 and the ATR-ATRIP complex and plays an important role in the 0.1 mg
28-862 The human Timeless protein interacts with both the circadian clock protein cryptochrome 2 and with the cell cycle checkpoint proteins Chk1 and the ATR-ATRIP complex and plays an important role in the 0.1 mg
28-025 The human Timeless protein interacts with both the circadian clock protein cryptochrome 2 and with the cell cycle checkpoint proteins Chk1 and the ATR-ATRIP complex and plays an important role in the 0.05 mg
YSRTAHP601 Chk2 (Cell Cycle Checkpoint Kinase), N_terminal, Rabbit anti_Mouse, Rat 0.1 mg.
BUB1_MOUSE ELISA Kit FOR Mitotic checkpoint serine per threonine-protein kinase BUB1; organism: Mouse; gene name: Bub1 96T
BMAT4724/100 Chk2 (Cell Cycle Checkpoint Kinase), N_terminal, Rabbit anti_Human, Mouse, Rat; WB 100 µg.
BMAT4724/500 Chk2 (Cell Cycle Checkpoint Kinase), N_terminal, Rabbit anti_Human, Mouse, Rat; WB 500 µg.
Y050792 Anti_CHK1(CHK1 checkpoint homolog) 100ug
LF-PA41523 anti-Mitotic Checkpoint Kinase BUB1, Rabbit polyclonal to Mitotic Checkpoint Kinase BUB1, Isotype IgG, Host Rabbit 50 ug
60186 IgG,CHK1 checkpoint homolog (S. pombe) (CHEK1) 0.1 mg


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur