Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

Serine/threonine-protein kinase mTOR (EC 2.7.11.1) (FK506-binding protein 12-rapamycin complex-associated protein 1) (FKBP12-rapamycin complex-associated protein) (Mammalian target of rapamycin) (mTOR) (Mechanistic target of rapamycin) (Rapamycin and FKBP12 target 1) (Rapamycin target protein 1)

 MTOR_HUMAN              Reviewed;        2549 AA.
P42345; Q4LE76; Q5TER1; Q6LE87; Q96QG3; Q9Y4I3;
01-NOV-1995, integrated into UniProtKB/Swiss-Prot.
01-NOV-1995, sequence version 1.
27-SEP-2017, entry version 188.
RecName: Full=Serine/threonine-protein kinase mTOR;
EC=2.7.11.1;
AltName: Full=FK506-binding protein 12-rapamycin complex-associated protein 1;
AltName: Full=FKBP12-rapamycin complex-associated protein;
AltName: Full=Mammalian target of rapamycin;
Short=mTOR;
AltName: Full=Mechanistic target of rapamycin;
AltName: Full=Rapamycin and FKBP12 target 1;
AltName: Full=Rapamycin target protein 1;
Name=MTOR; Synonyms=FRAP, FRAP1, FRAP2, RAFT1, RAPT1;
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [MRNA].
TISSUE=Brain;
PubMed=8008069; DOI=10.1038/369756a0;
Brown E.J., Albers M.W., Shin T.B., Ichikawa K., Keith C.T.,
Lane W.S., Schreiber S.L.;
"A mammalian protein targeted by G1-arresting rapamycin-receptor
complex.";
Nature 369:756-758(1994).
[2]
NUCLEOTIDE SEQUENCE [MRNA].
PubMed=9653645; DOI=10.1006/geno.1997.5186;
Onyango P., Lubyova B., Gardellin P., Kurzbauer R., Weith A.;
"Molecular cloning and expression analysis of five novel genes in
chromosome 1p36.";
Genomics 50:187-198(1998).
[3]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Nakajima D., Saito K., Yamakawa H., Kikuno R.F., Nakayama M.,
Ohara R., Okazaki N., Koga H., Nagase T., Ohara O.;
"Preparation of a set of expression-ready clones of mammalian long
cDNAs encoding large proteins by the ORF trap cloning method.";
Submitted (MAR-2005) to the EMBL/GenBank/DDBJ databases.
[4]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=16710414; DOI=10.1038/nature04727;
Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D.,
Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A.,
Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F.,
McDonald L., Evans R., Phillips K., Atkinson A., Cooper R., Jones C.,
Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P.,
Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K.,
Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G.,
Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D.,
Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G.,
Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J.,
Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H.,
Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L.,
Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J.,
Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R.,
Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D.,
Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G.,
Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M.,
Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J.,
Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M.,
Loveland J., Lovell J., Lush M.J., Lyne R., Martin S.,
Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S.,
Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N.,
Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V.,
Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J.,
Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E.,
Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C.,
Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z.,
Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E.,
Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A.,
Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R.,
Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V.,
Beck S., Rogers J., Bentley D.R.;
"The DNA sequence and biological annotation of human chromosome 1.";
Nature 441:315-321(2006).
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
TISSUE=Cerebellum;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[6]
NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1362-2549.
PubMed=11426320; DOI=10.1038/sj.gene.6363745;
Stover C., Endo Y., Takahashi M., Lynch N., Constantinescu C.,
Vorup-Jensen T., Thiel S., Friedl H., Hankeln T., Hall R., Gregory S.,
Fujita T., Schwaeble W.;
"The human gene for mannan-binding lectin-associated serine protease-2
(MASP-2), the effector component of the lectin route of complement
activation, is part of a tightly linked gene cluster on chromosome
1p36.2-3.";
Genes Immun. 2:119-127(2001).
[7]
NUCLEOTIDE SEQUENCE [MRNA] OF 1987-2146, AND TISSUE SPECIFICITY.
TISSUE=B-cell;
PubMed=7809080; DOI=10.1073/pnas.91.26.12574;
Chiu M.I., Katz H., Berlin V.;
"RAPT1, a mammalian homolog of yeast Tor, interacts with the
FKBP12/rapamycin complex.";
Proc. Natl. Acad. Sci. U.S.A. 91:12574-12578(1994).
[8]
SUBCELLULAR LOCATION, AND AUTOPHOSPHORYLATION.
PubMed=9434772; DOI=10.1006/bbrc.1997.7878;
Withers D.J., Ouwens D.M., Nave B.T., van der Zon G.C.M.,
Alarcon C.M., Cardenas M.E., Heitman J., Maassen J.A., Shepherd P.R.;
"Expression, enzyme activity, and subcellular localization of
mammalian target of rapamycin in insulin-responsive cells.";
Biochem. Biophys. Res. Commun. 241:704-709(1997).
[9]
INTERACTION WITH UBQLN1.
PubMed=11853878; DOI=10.1016/S0167-4889(01)00164-1;
Wu S., Mikhailov A., Kallo-Hosein H., Hara K., Yonezawa K., Avruch J.;
"Characterization of ubiquilin 1, an mTOR-interacting protein.";
Biochim. Biophys. Acta 1542:41-56(2002).
[10]
FUNCTION IN NUTRIENT-DEPENDENT CELL GROWTH, FUNCTION IN
PHOSPHORYLATION OF RPS6KB1, AND INTERACTION WITH RPTOR.
PubMed=12150925; DOI=10.1016/S0092-8674(02)00808-5;
Kim D.-H., Sarbassov D.D., Ali S.M., King J.E., Latek R.R.,
Erdjument-Bromage H., Tempst P., Sabatini D.M.;
"mTOR interacts with raptor to form a nutrient-sensitive complex that
signals to the growth machinery.";
Cell 110:163-175(2002).
[11]
FUNCTION, AND INTERACTION WITH RPTOR.
PubMed=12150926; DOI=10.1016/S0092-8674(02)00833-4;
Hara K., Maruki Y., Long X., Yoshino K., Oshiro N., Hidayat S.,
Tokunaga C., Avruch J., Yonezawa K.;
"Raptor, a binding partner of target of rapamycin (TOR), mediates TOR
action.";
Cell 110:177-189(2002).
[12]
INTERACTION WITH CLIP1, AND FUNCTION IN PHOSPHORYLATION OF CLIP1.
PubMed=12231510; DOI=10.1093/embo-reports/kvf197;
Choi J.H., Bertram P.G., Drenan R., Carvalho J., Zhou H.H.,
Zheng X.F.;
"The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170
kinase.";
EMBO Rep. 3:988-994(2002).
[13]
FUNCTION IN PHOSPHORYLATION OF RPS6KB2.
PubMed=12087098; DOI=10.1074/jbc.M204080200;
Park I.H., Bachmann R., Shirazi H., Chen J.;
"Regulation of ribosomal S6 kinase 2 by mammalian target of
rapamycin.";
J. Biol. Chem. 277:31423-31429(2002).
[14]
INTERACTION WITH MLST8 AND RPTOR, IDENTIFICATION IN THE MTORC1
COMPLEX, AND TISSUE SPECIFICITY.
PubMed=12408816; DOI=10.1016/S1097-2765(02)00636-6;
Loewith R., Jacinto E., Wullschleger S., Lorberg A., Crespo J.L.,
Bonenfant D., Oppliger W., Jenoe P., Hall M.N.;
"Two TOR complexes, only one of which is rapamycin sensitive, have
distinct roles in cell growth control.";
Mol. Cell 10:457-468(2002).
[15]
SUBCELLULAR LOCATION.
PubMed=11930000; DOI=10.1073/pnas.261702698;
Desai B.N., Myers B.R., Schreiber S.L.;
"FKBP12-rapamycin-associated protein associates with mitochondria and
senses osmotic stress via mitochondrial dysfunction.";
Proc. Natl. Acad. Sci. U.S.A. 99:4319-4324(2002).
[16]
ENZYME REGULATION, AND FUNCTION IN RESPONSE TO LOW CELLULAR ENERGY.
PubMed=14651849; DOI=10.1016/S0092-8674(03)00929-2;
Inoki K., Zhu T., Guan K.L.;
"TSC2 mediates cellular energy response to control cell growth and
survival.";
Cell 115:577-590(2003).
[17]
FUNCTION, AND INTERACTION WITH MLST8.
PubMed=12718876; DOI=10.1016/S1097-2765(03)00114-X;
Kim D.-H., Sarbassov D.D., Ali S.M., Latek R.R., Guntur K.V.P.,
Erdjument-Bromage H., Tempst P., Sabatini D.M.;
"GbetaL, a positive regulator of the rapamycin-sensitive pathway
required for the nutrient-sensitive interaction between raptor and
mTOR.";
Mol. Cell 11:895-904(2003).
[18]
FUNCTION IN PHOSPHORYLATION OF PRKCA, FUNCTION IN REGULATION OF THE
ACTIN CYTOSKELETON, IDENTIFICATION IN THE MTORC2 COMPLEX, AND
INTERACTION WITH RICTOR.
PubMed=15268862; DOI=10.1016/j.cub.2004.06.054;
Sarbassov D.D., Ali S.M., Kim D.-H., Guertin D.A., Latek R.R.,
Erdjument-Bromage H., Tempst P., Sabatini D.M.;
"Rictor, a novel binding partner of mTOR, defines a rapamycin-
insensitive and raptor-independent pathway that regulates the
cytoskeleton.";
Curr. Biol. 14:1296-1302(2004).
[19]
ENZYME REGULATION, AND FUNCTION IN RESPONSE TO HYPOXIA.
PubMed=15545625; DOI=10.1101/gad.1256804;
Brugarolas J., Lei K., Hurley R.L., Manning B.D., Reiling J.H.,
Hafen E., Witters L.A., Ellisen L.W., Kaelin W.G. Jr.;
"Regulation of mTOR function in response to hypoxia by REDD1 and the
TSC1/TSC2 tumor suppressor complex.";
Genes Dev. 18:2893-2904(2004).
[20]
SUBCELLULAR LOCATION.
PubMed=14578359; DOI=10.1074/jbc.M305912200;
Drenan R.M., Liu X., Bertram P.G., Zheng X.F.S.;
"FKBP12-rapamycin-associated protein or mammalian target of rapamycin
(FRAP/mTOR) localization in the endoplasmic reticulum and the Golgi
apparatus.";
J. Biol. Chem. 279:772-778(2004).
[21]
FUNCTION IN REGULATION OF THE ACTIN CYTOSKELETON, FUNCTION IN
PHOSPHORYLATION OF PXN, IDENTIFICATION IN THE MTORC2 COMPLEX,
INTERACTION WITH RICTOR, AND AUTOPHOSPHORYLATION.
PubMed=15467718; DOI=10.1038/ncb1183;
Jacinto E., Loewith R., Schmidt A., Lin S., Ruegg M.A., Hall A.,
Hall M.N.;
"Mammalian TOR complex 2 controls the actin cytoskeleton and is
rapamycin insensitive.";
Nat. Cell Biol. 6:1122-1128(2004).
[22]
PHOSPHORYLATION AT THR-2446 AND SER-2448.
PubMed=15905173; DOI=10.1074/jbc.M504045200;
Holz M.K., Blenis J.;
"Identification of S6 kinase 1 as a novel mammalian target of
rapamycin (mTOR)-phosphorylating kinase.";
J. Biol. Chem. 280:26089-26093(2005).
[23]
FUNCTION IN PHOSPHORYLATION OF AKT1.
PubMed=15718470; DOI=10.1126/science.1106148;
Sarbassov D.D., Guertin D.A., Ali S.M., Sabatini D.M.;
"Phosphorylation and regulation of Akt/PKB by the rictor-mTOR
complex.";
Science 307:1098-1101(2005).
[24]
IDENTIFICATION IN THE MTORC2 COMPLEX, AND INTERACTION WITH PRR5.
PubMed=17599906; DOI=10.1074/jbc.M704343200;
Woo S.-Y., Kim D.-H., Jun C.-B., Kim Y.-M., Haar E.V., Lee S.-I.,
Hegg J.W., Bandhakavi S., Griffin T.J., Kim D.-H.;
"PRR5, a novel component of mTOR complex 2, regulates platelet-derived
growth factor receptor beta expression and signaling.";
J. Biol. Chem. 282:25604-25612(2007).
[25]
INTERACTION WITH AKT1S1, AND ENZYME REGULATION.
PubMed=17386266; DOI=10.1016/j.molcel.2007.03.003;
Sancak Y., Thoreen C.C., Peterson T.R., Lindquist R.A., Kang S.A.,
Spooner E., Carr S.A., Sabatini D.M.;
"PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein
kinase.";
Mol. Cell 25:903-915(2007).
[26]
IDENTIFICATION IN THE MTORC1 AND MTORC2 COMPLEXES, AND FUNCTION IN
PHOSPHORYLATION OF RPS6KB1 AND SGK1.
PubMed=18925875; DOI=10.1042/BJ20081668;
Garcia-Martinez J.M., Alessi D.R.;
"mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation
and activation of serum- and glucocorticoid-induced protein kinase 1
(SGK1).";
Biochem. J. 416:375-385(2008).
[27]
FUNCTION IN LIPID SYNTHESIS AND CELL GROWTH.
PubMed=18762023; DOI=10.1016/j.cmet.2008.07.007;
Porstmann T., Santos C.R., Griffiths B., Cully M., Wu M., Leevers S.,
Griffiths J.R., Chung Y.L., Schulze A.;
"SREBP activity is regulated by mTORC1 and contributes to Akt-
dependent cell growth.";
Cell Metab. 8:224-236(2008).
[28]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-567, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18691976; DOI=10.1016/j.molcel.2008.07.007;
Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,
Greff Z., Keri G., Stemmann O., Mann M.;
"Kinase-selective enrichment enables quantitative phosphoproteomics of
the kinome across the cell cycle.";
Mol. Cell 31:438-448(2008).
[29]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2478 AND SER-2481, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18669648; DOI=10.1073/pnas.0805139105;
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
Elledge S.J., Gygi S.P.;
"A quantitative atlas of mitotic phosphorylation.";
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
[30]
FUNCTION, ENZYME REGULATION, AND SUBCELLULAR LOCATION.
PubMed=18497260; DOI=10.1126/science.1157535;
Sancak Y., Peterson T.R., Shaul Y.D., Lindquist R.A., Thoreen C.C.,
Bar-Peled L., Sabatini D.M.;
"The Rag GTPases bind raptor and mediate amino acid signaling to
mTORC1.";
Science 320:1496-1501(2008).
[31]
INTERACTION WITH DEPTOR, AND ENZYME REGULATION.
PubMed=19446321; DOI=10.1016/j.cell.2009.03.046;
Peterson T.R., Laplante M., Thoreen C.C., Sancak Y., Kang S.A.,
Kuehl W.M., Gray N.S., Sabatini D.M.;
"DEPTOR is an mTOR inhibitor frequently overexpressed in multiple
myeloma cells and required for their survival.";
Cell 137:873-886(2009).
[32]
PHOSPHORYLATION AT SER-1261.
PubMed=19487463; DOI=10.1128/MCB.01665-08;
Acosta-Jaquez H.A., Keller J.A., Foster K.G., Ekim B., Soliman G.A.,
Feener E.P., Ballif B.A., Fingar D.C.;
"Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling
and cell growth.";
Mol. Cell. Biol. 29:4308-4324(2009).
[33]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-567, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19369195; DOI=10.1074/mcp.M800588-MCP200;
Oppermann F.S., Gnad F., Olsen J.V., Hornberger R., Greff Z., Keri G.,
Mann M., Daub H.;
"Large-scale proteomics analysis of the human kinome.";
Mol. Cell. Proteomics 8:1751-1764(2009).
[34]
ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-1218, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19608861; DOI=10.1126/science.1175371;
Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
Walther T.C., Olsen J.V., Mann M.;
"Lysine acetylation targets protein complexes and co-regulates major
cellular functions.";
Science 325:834-840(2009).
[35]
PHOSPHORYLATION AT SER-2448.
PubMed=19145465; DOI=10.1007/s00726-008-0230-7;
Rosner M., Siegel N., Valli A., Fuchs C., Hengstschlager M.;
"mTOR phosphorylated at S2448 binds to raptor and rictor.";
Amino Acids 38:223-228(2010).
[36]
SUBCELLULAR LOCATION, AND ENZYME REGULATION.
PubMed=20381137; DOI=10.1016/j.cell.2010.02.024;
Sancak Y., Bar-Peled L., Zoncu R., Markhard A.L., Nada S.,
Sabatini D.M.;
"Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is
necessary for its activation by amino acids.";
Cell 141:290-303(2010).
[37]
FUNCTION IN PHOSPHORYLATION OF DAP, AND FUNCTION IN AUTOPHAGY.
PubMed=20537536; DOI=10.1016/j.cub.2010.04.041;
Koren I., Reem E., Kimchi A.;
"DAP1, a novel substrate of mTOR, negatively regulates autophagy.";
Curr. Biol. 20:1093-1098(2010).
[38]
INTERACTION WITH TTI1.
PubMed=20810650; DOI=10.1101/gad.1934210;
Hurov K.E., Cotta-Ramusino C., Elledge S.J.;
"A genetic screen identifies the Triple T complex required for DNA
damage signaling and ATM and ATR stability.";
Genes Dev. 24:1939-1950(2010).
[39]
INTERACTION WITH TELO2.
PubMed=20801936; DOI=10.1101/gad.1956410;
Takai H., Xie Y., de Lange T., Pavletich N.P.;
"Tel2 structure and function in the Hsp90-dependent maturation of mTOR
and ATR complexes.";
Genes Dev. 24:2019-2030(2010).
[40]
INTERACTION WITH TELO2 AND TTI1.
PubMed=20427287; DOI=10.1074/jbc.M110.121699;
Kaizuka T., Hara T., Oshiro N., Kikkawa U., Yonezawa K., Takehana K.,
Iemura S., Natsume T., Mizushima N.;
"Tti1 and Tel2 are critical factors in mammalian target of rapamycin
complex assembly.";
J. Biol. Chem. 285:20109-20116(2010).
[41]
FUNCTION IN REGULATION OF RNA POLYMERASE III TRANSCRIPTION, AND
FUNCTION IN PHOSPHORYLATION OF MAF1.
PubMed=20516213; DOI=10.1128/MCB.00319-10;
Michels A.A., Robitaille A.M., Buczynski-Ruchonnet D., Hodroj W.,
Reina J.H., Hall M.N., Hernandez N.;
"mTORC1 directly phosphorylates and regulates human MAF1.";
Mol. Cell. Biol. 30:3749-3757(2010).
[42]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-567 AND THR-1162, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=20068231; DOI=10.1126/scisignal.2000475;
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
Mann M.;
"Quantitative phosphoproteomics reveals widespread full
phosphorylation site occupancy during mitosis.";
Sci. Signal. 3:RA3-RA3(2010).
[43]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21269460; DOI=10.1186/1752-0509-5-17;
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
"Initial characterization of the human central proteome.";
BMC Syst. Biol. 5:17-17(2011).
[44]
PHOSPHORYLATION AT SER-2159; THR-2164 AND SER-2481, AND MUTAGENESIS OF
SER-2159 AND THR-2164.
PubMed=21576368; DOI=10.1128/MCB.05437-11;
Ekim B., Magnuson B., Acosta-Jaquez H.A., Keller J.A., Feener E.P.,
Fingar D.C.;
"mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell
growth, and cell cycle progression.";
Mol. Cell. Biol. 31:2787-2801(2011).
[45]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21406692; DOI=10.1126/scisignal.2001570;
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
Blagoev B.;
"System-wide temporal characterization of the proteome and
phosphoproteome of human embryonic stem cell differentiation.";
Sci. Signal. 4:RS3-RS3(2011).
[46]
FUNCTION IN PHOSPHORYLATION OF GRB10, AND FUNCTION IN INSR-DEPENDENT
SIGNALING.
PubMed=21659604; DOI=10.1126/science.1199498;
Hsu P.P., Kang S.A., Rameseder J., Zhang Y., Ottina K.A., Lim D.,
Peterson T.R., Choi Y., Gray N.S., Yaffe M.B., Marto J.A.,
Sabatini D.M.;
"The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-
mediated inhibition of growth factor signaling.";
Science 332:1317-1322(2011).
[47]
INTERACTION WITH HTR6.
PubMed=23027611; DOI=10.1002/emmm.201201410;
Meffre J., Chaumont-Dubel S., Mannoury la Cour C., Loiseau F.,
Watson D.J., Dekeyne A., Seveno M., Rivet J.M., Gaven F., Deleris P.,
Herve D., Fone K.C., Bockaert J., Millan M.J., Marin P.;
"5-HT(6) receptor recruitment of mTOR as a mechanism for perturbed
cognition in schizophrenia.";
EMBO Mol. Med. 4:1043-1056(2012).
[48]
ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=22814378; DOI=10.1073/pnas.1210303109;
Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
Aldabe R.;
"N-terminal acetylome analyses and functional insights of the N-
terminal acetyltransferase NatB.";
Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
[49]
INTERACTION WITH BRAT1.
PubMed=25657994;
So E.Y., Ouchi T.;
"The potential role of BRCA1-associated ATM activator-1 (BRAT1) in
regulation of mTOR.";
J. Cancer. Biol. Res. 1:0-0(2013).
[50]
PHOSPHORYLATION AT THR-2173, AND MUTAGENESIS OF THR-2173.
PubMed=24247430; DOI=10.1083/jcb.201305103;
Halova L., Du W., Kirkham S., Smith D.L., Petersen J.;
"Phosphorylation of the TOR ATP binding domain by AGC kinase
constitutes a novel mode of TOR inhibition.";
J. Cell Biol. 203:595-604(2013).
[51]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1261, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma, and Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[52]
INTERACTION WITH NBN.
PubMed=23762398; DOI=10.1371/journal.pone.0065586;
Wang J.Q., Chen J.H., Chen Y.C., Chen M.Y., Hsieh C.Y., Teng S.C.,
Wu K.J.;
"Interaction between NBS1 and the mTOR/Rictor/SIN1 complex through
specific domains.";
PLoS ONE 8:E65586-E65586(2013).
[53]
FUNCTION, PHOSPHORYLATION OF RPS6KB1, AND REGULATION OF PYRIMIDINE
SYNTHESIS.
PubMed=23429704; DOI=10.1126/science.1228771;
Robitaille A.M., Christen S., Shimobayashi M., Cornu M., Fava L.L.,
Moes S., Prescianotto-Baschong C., Sauer U., Jenoe P., Hall M.N.;
"Quantitative phosphoproteomics reveal mTORC1 activates de novo
pyrimidine synthesis.";
Science 339:1320-1323(2013).
[54]
FUNCTION, PHOSPHORYLATION OF RPS6KB1, AND REGULATION OF PYRIMIDINE
SYNTHESIS.
PubMed=23429703; DOI=10.1126/science.1228792;
Ben-Sahra I., Howell J.J., Asara J.M., Manning B.D.;
"Stimulation of de novo pyrimidine synthesis by growth signaling
through mTOR and S6K1.";
Science 339:1323-1328(2013).
[55]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2448, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Liver;
PubMed=24275569; DOI=10.1016/j.jprot.2013.11.014;
Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D.,
Wang L., Ye M., Zou H.;
"An enzyme assisted RP-RPLC approach for in-depth analysis of human
liver phosphoproteome.";
J. Proteomics 96:253-262(2014).
[56]
INVOLVEMENT IN SKS, VARIANT SKS LYS-1799, AND CHARACTERIZATION OF
VARIANT SKS LYS-1799.
PubMed=25851998; DOI=10.1002/ajmg.a.37070;
Baynam G., Overkov A., Davis M., Mina K., Schofield L., Allcock R.,
Laing N., Cook M., Dawkins H., Goldblatt J.;
"A germline MTOR mutation in Aboriginal Australian siblings with
intellectual disability, dysmorphism, macrocephaly, and small
thoraces.";
Am. J. Med. Genet. A 167:1659-1667(2015).
[57]
FUNCTION, INVOLVEMENT IN FCORD2, VARIANTS FCORD2 ASP-1459; PRO-1460;
PHE-2215 AND TYR-2215, AND CHARACTERIZATION OF VARIANTS FCORD2
ASP-1459; PRO-1460; PHE-2215 AND TYR-2215.
PubMed=26018084; DOI=10.1002/ana.24444;
Nakashima M., Saitsu H., Takei N., Tohyama J., Kato M., Kitaura H.,
Shiina M., Shirozu H., Masuda H., Watanabe K., Ohba C., Tsurusaki Y.,
Miyake N., Zheng Y., Sato T., Takebayashi H., Ogata K., Kameyama S.,
Kakita A., Matsumoto N.;
"Somatic mutations in the MTOR gene cause focal cortical dysplasia
type IIb.";
Ann. Neurol. 78:375-386(2015).
[58]
INVOLVEMENT IN SKS, VARIANT SKS LYS-1799, AND CHARACTERIZATION OF
VARIANT SKS LYS-1799.
PubMed=26542245; DOI=10.1186/s12881-015-0240-8;
Mroske C., Rasmussen K., Shinde D.N., Huether R., Powis Z., Lu H.M.,
Baxter R.M., McPherson E., Tang S.;
"Germline activating MTOR mutation arising through gonadal mosaicism
in two brothers with megalencephaly and neurodevelopmental
abnormalities.";
BMC Med. Genet. 16:102-102(2015).
[59]
FUNCTION, INVOLVEMENT IN FCORD2, VARIANTS FCORD2 HIS-624; ASP-1450;
ARG-1483; HIS-1709; LYS-1977; CYS-2193; PHE-2215; GLN-2427 AND
PRO-2427, AND CHARACTERIZATION OF VARIANTS FCORD2 ARG-1483; GLN-2427
AND PRO-2427.
PubMed=25799227; DOI=10.1038/nm.3824;
Lim J.S., Kim W.I., Kang H.C., Kim S.H., Park A.H., Park E.K.,
Cho Y.W., Kim S., Kim H.M., Kim J.A., Kim J., Rhee H., Kang S.G.,
Kim H.D., Kim D., Kim D.S., Lee J.H.;
"Brain somatic mutations in MTOR cause focal cortical dysplasia type
II leading to intractable epilepsy.";
Nat. Med. 21:395-400(2015).
[60]
ENZYME REGULATION.
PubMed=25561175; DOI=10.1038/nature14107;
Rebsamen M., Pochini L., Stasyk T., de Araujo M.E., Galluccio M.,
Kandasamy R.K., Snijder B., Fauster A., Rudashevskaya E.L.,
Bruckner M., Scorzoni S., Filipek P.A., Huber K.V., Bigenzahn J.W.,
Heinz L.X., Kraft C., Bennett K.L., Indiveri C., Huber L.A.,
Superti-Furga G.;
"SLC38A9 is a component of the lysosomal amino acid sensing machinery
that controls mTORC1.";
Nature 519:477-481(2015).
[61]
INVOLVEMENT IN FCORD2, AND VARIANT FCORD2 GLY-1456.
PubMed=25878179; DOI=10.1212/WNL.0000000000001594;
Leventer R.J., Scerri T., Marsh A.P., Pope K., Gillies G., Maixner W.,
MacGregor D., Harvey A.S., Delatycki M.B., Amor D.J., Crino P.,
Bahlo M., Lockhart P.J.;
"Hemispheric cortical dysplasia secondary to a mosaic somatic mutation
in MTOR.";
Neurology 84:2029-2032(2015).
[62]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=25944712; DOI=10.1002/pmic.201400617;
Vaca Jacome A.S., Rabilloud T., Schaeffer-Reiss C., Rompais M.,
Ayoub D., Lane L., Bairoch A., Van Dorsselaer A., Carapito C.;
"N-terminome analysis of the human mitochondrial proteome.";
Proteomics 15:2519-2524(2015).
[63]
ENZYME REGULATION.
PubMed=25567906; DOI=10.1126/science.1257132;
Wang S., Tsun Z.Y., Wolfson R.L., Shen K., Wyant G.A., Plovanich M.E.,
Yuan E.D., Jones T.D., Chantranupong L., Comb W., Wang T.,
Bar-Peled L., Zoncu R., Straub C., Kim C., Park J., Sabatini B.L.,
Sabatini D.M.;
"Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine
sufficiency to mTORC1.";
Science 347:188-194(2015).
[64]
INTERACTION WITH WAC.
PubMed=26812014; DOI=10.1016/j.devcel.2015.12.019;
David-Morrison G., Xu Z., Rui Y.N., Charng W.L., Jaiswal M.,
Yamamoto S., Xiong B., Zhang K., Sandoval H., Duraine L., Zuo Z.,
Zhang S., Bellen H.J.;
"WAC regulates mTOR activity by acting as an adaptor for the TTT and
Pontin/Reptin complexes.";
Dev. Cell 36:139-151(2016).
[65]
INVOLVEMENT IN FCORD2, VARIANTS GLU-1376 AND VAL-2501, VARIANTS FCORD2
SER-1459; PRO-1460; PHE-2215 AND TYR-2215, AND VARIANTS SKS ARG-1490;
ILE-1595; THR-1832; CYS-1888 AND ILE-2327.
PubMed=27830187; DOI=10.1212/NXG.0000000000000118;
Moeller R.S., Weckhuysen S., Chipaux M., Marsan E., Taly V.,
Bebin E.M., Hiatt S.M., Prokop J.W., Bowling K.M., Mei D., Conti V.,
de la Grange P., Ferrand-Sorbets S., Dorfmueller G., Lambrecq V.,
Larsen L.H., Leguern E., Guerrini R., Rubboli G., Cooper G.M.,
Baulac S.;
"Germline and somatic mutations in the MTOR gene in focal cortical
dysplasia and epilepsy.";
Neurol. Genet. 2:E118-E118(2016).
[66]
X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) OF 2018-2112 IN COMPLEX WITH
FKBP1A AND INHIBITOR RAPAMYCIN.
PubMed=8662507; DOI=10.1126/science.273.5272.239;
Choi J., Chen J., Schreiber S.L., Clardy J.;
"Structure of the FKBP12-rapamycin complex interacting with the
binding domain of human FRAP.";
Science 273:239-242(1996).
[67]
X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 2018-2112 IN COMPLEX WITH
FKBP1A AND INHIBITOR RAPAMYCIN.
PubMed=10089303; DOI=10.1107/S0907444998014747;
Liang J., Choi J., Clardy J.;
"Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2.2
A resolution.";
Acta Crystallogr. D 55:736-744(1999).
[68]
3D-STRUCTURE MODELING, HEAT-REPEATS, AND TPR-REPEATS.
PubMed=20060908; DOI=10.1016/j.jsb.2010.01.002;
Knutson B.A.;
"Insights into the domain and repeat architecture of target of
rapamycin.";
J. Struct. Biol. 170:354-363(2010).
[69]
CRYO-ELECTRON MICROSCOPY (26 ANGSTROMS) OF MTORC1 COMPLEX, AND
SUBUNIT.
PubMed=20542007; DOI=10.1016/j.molcel.2010.05.017;
Yip C.K., Murata K., Walz T., Sabatini D.M., Kang S.A.;
"Structure of the human mTOR complex I and its implications for
rapamycin inhibition.";
Mol. Cell 38:768-774(2010).
[70]
X-RAY CRYSTALLOGRAPHY (3.2 ANGSTROMS) OF 1376-2549 IN COMPLEX WITH
MLST8, SUBUNIT, TPR-REPEATS, DOMAINS, AND MUTAGENESIS OF HIS-2340.
PubMed=23636326; DOI=10.1038/nature12122;
Yang H., Rudge D.G., Koos J.D., Vaidialingam B., Yang H.J.,
Pavletich N.P.;
"mTOR kinase structure, mechanism and regulation.";
Nature 497:217-223(2013).
[71]
VARIANTS [LARGE SCALE ANALYSIS] SER-8; THR-135; VAL-1083; VAL-1134;
PHE-1178; VAL-2011; TYR-2215 AND LEU-2476.
PubMed=17344846; DOI=10.1038/nature05610;
Greenman C., Stephens P., Smith R., Dalgliesh G.L., Hunter C.,
Bignell G., Davies H., Teague J., Butler A., Stevens C., Edkins S.,
O'Meara S., Vastrik I., Schmidt E.E., Avis T., Barthorpe S.,
Bhamra G., Buck G., Choudhury B., Clements J., Cole J., Dicks E.,
Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J.,
Jenkinson A., Jones D., Menzies A., Mironenko T., Perry J., Raine K.,
Richardson D., Shepherd R., Small A., Tofts C., Varian J., Webb T.,
West S., Widaa S., Yates A., Cahill D.P., Louis D.N., Goldstraw P.,
Nicholson A.G., Brasseur F., Looijenga L., Weber B.L., Chiew Y.-E.,
DeFazio A., Greaves M.F., Green A.R., Campbell P., Birney E.,
Easton D.F., Chenevix-Trench G., Tan M.-H., Khoo S.K., Teh B.T.,
Yuen S.T., Leung S.Y., Wooster R., Futreal P.A., Stratton M.R.;
"Patterns of somatic mutation in human cancer genomes.";
Nature 446:153-158(2007).
[72]
VARIANTS PHE-2220 AND ALA-2406.
PubMed=21248752; DOI=10.1038/nature09639;
Varela I., Tarpey P., Raine K., Huang D., Ong C.K., Stephens P.,
Davies H., Jones D., Lin M.L., Teague J., Bignell G., Butler A.,
Cho J., Dalgliesh G.L., Galappaththige D., Greenman C., Hardy C.,
Jia M., Latimer C., Lau K.W., Marshall J., McLaren S., Menzies A.,
Mudie L., Stebbings L., Largaespada D.A., Wessels L.F.A., Richard S.,
Kahnoski R.J., Anema J., Tuveson D.A., Perez-Mancera P.A.,
Mustonen V., Fischer A., Adams D.J., Rust A., Chan-On W., Subimerb C.,
Dykema K., Furge K., Campbell P.J., Teh B.T., Stratton M.R.,
Futreal P.A.;
"Exome sequencing identifies frequent mutation of the SWI/SNF complex
gene PBRM1 in renal carcinoma.";
Nature 469:539-542(2011).
-!- FUNCTION: Serine/threonine protein kinase which is a central
regulator of cellular metabolism, growth and survival in response
to hormones, growth factors, nutrients, energy and stress signals.
MTOR directly or indirectly regulates the phosphorylation of at
least 800 proteins. Functions as part of 2 structurally and
functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR
complex 1 and 2). Activated mTORC1 up-regulates protein synthesis
by phosphorylating key regulators of mRNA translation and ribosome
synthesis. This includes phosphorylation of EIF4EBP1 and release
of its inhibition toward the elongation initiation factor 4E
(eiF4E). Moreover, phosphorylates and activates RPS6KB1 and
RPS6KB2 that promote protein synthesis by modulating the activity
of their downstream targets including ribosomal protein S6,
eukaryotic translation initiation factor EIF4B, and the inhibitor
of translation initiation PDCD4. Stimulates the pyrimidine
biosynthesis pathway, both by acute regulation through RPS6KB1-
mediated phosphorylation of the biosynthetic enzyme CAD, and
delayed regulation, through transcriptional enhancement of the
pentose phosphate pathway which produces 5-phosphoribosyl-1-
pyrophosphate (PRPP), an allosteric activator of CAD at a later
step in synthesis, this function is dependent on the mTORC1
complex. Regulates ribosome synthesis by activating RNA polymerase
III-dependent transcription through phosphorylation and inhibition
of MAF1 an RNA polymerase III-repressor. In parallel to protein
synthesis, also regulates lipid synthesis through SREBF1/SREBP1
and LPIN1. To maintain energy homeostasis mTORC1 may also regulate
mitochondrial biogenesis through regulation of PPARGC1A. mTORC1
also negatively regulates autophagy through phosphorylation of
ULK1. Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-
758', disrupting the interaction with AMPK and preventing
activation of ULK1. Also prevents autophagy through
phosphorylation of the autophagy inhibitor DAP. mTORC1 exerts a
feedback control on upstream growth factor signaling that includes
phosphorylation and activation of GRB10 a INSR-dependent signaling
suppressor. Among other potential targets mTORC1 may phosphorylate
CLIP1 and regulate microtubules. As part of the mTORC2 complex
MTOR may regulate other cellular processes including survival and
organization of the cytoskeleton. Plays a critical role in the
phosphorylation at 'Ser-473' of AKT1, a pro-survival effector of
phosphoinositide 3-kinase, facilitating its activation by PDK1.
mTORC2 may regulate the actin cytoskeleton, through
phosphorylation of PRKCA, PXN and activation of the Rho-type
guanine nucleotide exchange factors RHOA and RAC1A or RAC1B.
mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422'
(PubMed:12087098, PubMed:12150925, PubMed:12150926,
PubMed:12231510, PubMed:12718876, PubMed:14651849,
PubMed:15268862, PubMed:15467718, PubMed:15545625,
PubMed:15718470, PubMed:18497260, PubMed:18762023,
PubMed:18925875, PubMed:20516213, PubMed:20537536,
PubMed:21659604, PubMed:23429703, PubMed:23429704,
PubMed:25799227, PubMed:26018084). Regulates osteoclastogenesis by
adjusting the expression of CEBPB isoforms (By similarity).
{ECO:0000250|UniProtKB:Q9JLN9, ECO:0000269|PubMed:12087098,
ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926,
ECO:0000269|PubMed:12231510, ECO:0000269|PubMed:12718876,
ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15268862,
ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15545625,
ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:18497260,
ECO:0000269|PubMed:18762023, ECO:0000269|PubMed:18925875,
ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20537536,
ECO:0000269|PubMed:21659604, ECO:0000269|PubMed:23429703,
ECO:0000269|PubMed:23429704, ECO:0000269|PubMed:25799227,
ECO:0000269|PubMed:26018084}.
-!- CATALYTIC ACTIVITY: ATP + a protein = ADP + a phosphoprotein.
-!- ENZYME REGULATION: Activation of mTORC1 by growth factors such as
insulin involves AKT1-mediated phosphorylation of TSC1-TSC2, which
leads to the activation of the RHEB GTPase a potent activator of
the protein kinase activity of mTORC1. Insulin-stimulated and
amino acid-dependent phosphorylation at Ser-1261 promotes
autophosphorylation and the activation of mTORC1. Activation by
amino acids requires relocalization of the mTORC1 complex to
lysosomes that is mediated by the Ragulator complex, SLC38A9, and
the Rag GTPases RRAGA, RRAGB, RRAGC and RRAGD (PubMed:18497260,
PubMed:20381137, PubMed:25561175, PubMed:25567906). On the other
hand, low cellular energy levels can inhibit mTORC1 through
activation of PRKAA1 while hypoxia inhibits mTORC1 through a
REDD1-dependent mechanism which may also require PRKAA1. The
kinase activity of MTOR within the mTORC1 complex is positively
regulated by MLST8 and negatively regulated by DEPTOR and AKT1S1.
MTOR phosphorylates RPTOR which in turn inhibits mTORC1. MTOR is
the target of the immunosuppressive and anti-cancer drug rapamycin
which acts in complex with FKBP1A/FKBP12, and specifically
inhibits its kinase activity. mTORC2 is also activated by growth
factors, but seems to be nutrient-insensitive. It may be regulated
by RHEB but in an indirect manner through the PI3K signaling
pathway. {ECO:0000269|PubMed:14651849,
ECO:0000269|PubMed:15545625, ECO:0000269|PubMed:17386266,
ECO:0000269|PubMed:18497260, ECO:0000269|PubMed:19446321,
ECO:0000269|PubMed:20381137, ECO:0000269|PubMed:25561175,
ECO:0000269|PubMed:25567906}.
-!- SUBUNIT: Part of the mammalian target of rapamycin complex 1
(mTORC1) which contains MTOR, MLST8, RPTOR, AKT1S1/PRAS40 and
DEPTOR. The mTORC1 complex is a 1 Md obligate dimer of two
stoichiometric heterotetramers with overall dimensions of 290 A x
210 A x 135 A. It has a rhomboid shape and a central cavity, the
dimeric interfaces are formed by interlocking interactions between
the two MTOR and the two RPTOR subunits. The MLST8 subunit forms
distal foot-like protuberances, and contacts only one MTOR within
the complex, while the small PRAS40 localizes to the midsection of
the central core, in close proximity to RPTOR. Part of the
mammalian target of rapamycin complex 2 (mTORC2) which contains
MTOR, MLST8, PRR5, RICTOR, MAPKAP1 and DEPTOR. Interacts with
PLPP7 and PML. Interacts with PRR5 and RICTOR; the interaction is
direct within the mTORC2 complex. Interacts with WAC; WAC
positively regulates MTOR activity by promoting the assembly of
the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL
complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex
which leads to the dimerization of the mTORC1 complex and its
subsequent activation (PubMed:26812014). Interacts with UBQLN1.
Interacts with TTI1 and TELO2. Interacts with CLIP1;
phosphorylates and regulates CLIP1. Interacts with NBN. Interacts
with HTR6 (PubMed:23027611). Interacts with BRAT1.
{ECO:0000269|PubMed:10089303, ECO:0000269|PubMed:11853878,
ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926,
ECO:0000269|PubMed:12231510, ECO:0000269|PubMed:12408816,
ECO:0000269|PubMed:12718876, ECO:0000269|PubMed:15268862,
ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:17386266,
ECO:0000269|PubMed:17599906, ECO:0000269|PubMed:18925875,
ECO:0000269|PubMed:19446321, ECO:0000269|PubMed:20427287,
ECO:0000269|PubMed:20542007, ECO:0000269|PubMed:20801936,
ECO:0000269|PubMed:20810650, ECO:0000269|PubMed:23027611,
ECO:0000269|PubMed:23636326, ECO:0000269|PubMed:23762398,
ECO:0000269|PubMed:25657994, ECO:0000269|PubMed:26812014,
ECO:0000269|PubMed:8662507}.
-!- INTERACTION:
P31749:AKT1; NbExp=2; IntAct=EBI-359260, EBI-296087;
Q8TB45:DEPTOR; NbExp=5; IntAct=EBI-359260, EBI-2359040;
Q13541:EIF4EBP1; NbExp=2; IntAct=EBI-359260, EBI-74090;
P62942:FKBP1A; NbExp=2; IntAct=EBI-359260, EBI-1027571;
Q9BVC4:MLST8; NbExp=5; IntAct=EBI-359260, EBI-1387471;
Q13615:MTMR3; NbExp=3; IntAct=EBI-359260, EBI-371938;
Q8TCU6:PREX1; NbExp=11; IntAct=EBI-359260, EBI-1046542;
P62820:RAB1A; NbExp=4; IntAct=EBI-359260, EBI-716845;
Q15382:RHEB; NbExp=2; IntAct=EBI-359260, EBI-1055287;
Q6R327:RICTOR; NbExp=31; IntAct=EBI-359260, EBI-1387196;
Q8N122:RPTOR; NbExp=32; IntAct=EBI-359260, EBI-1567928;
Q96EB6:SIRT1; NbExp=2; IntAct=EBI-359260, EBI-1802965;
Q8NHX9:TPCN2; NbExp=2; IntAct=EBI-359260, EBI-5239949;
Q12933:TRAF2; NbExp=2; IntAct=EBI-359260, EBI-355744;
-!- SUBCELLULAR LOCATION: Endoplasmic reticulum membrane
{ECO:0000269|PubMed:14578359}; Peripheral membrane protein
{ECO:0000269|PubMed:14578359}; Cytoplasmic side
{ECO:0000269|PubMed:14578359}. Golgi apparatus membrane
{ECO:0000269|PubMed:14578359}; Peripheral membrane protein
{ECO:0000269|PubMed:14578359}; Cytoplasmic side
{ECO:0000269|PubMed:14578359}. Mitochondrion outer membrane
{ECO:0000269|PubMed:11930000, ECO:0000269|PubMed:14578359};
Peripheral membrane protein {ECO:0000269|PubMed:11930000,
ECO:0000269|PubMed:14578359}; Cytoplasmic side
{ECO:0000269|PubMed:11930000, ECO:0000269|PubMed:14578359}.
Lysosome {ECO:0000269|PubMed:18497260,
ECO:0000269|PubMed:20381137}. Cytoplasm
{ECO:0000269|PubMed:11930000, ECO:0000269|PubMed:18497260}.
Nucleus, PML body {ECO:0000250|UniProtKB:Q9JLN9}. Microsome
membrane {ECO:0000269|PubMed:9434772}. Note=Shuttles between
cytoplasm and nucleus. Accumulates in the nucleus in response to
hypoxia (By similarity). Targeting to lysosomes depends on amino
acid availability and RRAGA and RRAGB (PubMed:18497260,
PubMed:20381137). {ECO:0000250|UniProtKB:Q9JLN9,
ECO:0000269|PubMed:18497260, ECO:0000269|PubMed:20381137}.
-!- TISSUE SPECIFICITY: Expressed in numerous tissues, with highest
levels in testis. {ECO:0000269|PubMed:12408816,
ECO:0000269|PubMed:7809080}.
-!- DOMAIN: The kinase domain (PI3K/PI4K) is intrinsically active but
has a highly restricted catalytic center.
{ECO:0000269|PubMed:23636326}.
-!- DOMAIN: The FAT domain forms three discontinuous subdomains of
alpha-helical TPR repeats plus a single subdomain of HEAT repeats.
The four domains pack sequentially to form a C-shaped a-solenoid
that clamps onto the kinase domain (PubMed:23636326).
{ECO:0000269|PubMed:23636326}.
-!- PTM: Autophosphorylates when part of mTORC1 or mTORC2.
Phosphorylation at Ser-1261, Ser-2159 and Thr-2164 promotes
autophosphorylation. Phosphorylation in the kinase domain
modulates the interactions of MTOR with RPTOR and PRAS40 and leads
to increased intrinsic mTORC1 kinase activity. Phosphorylation at
Thr-2173 in the ATP-binding region by AKT1 strongly reduces kinase
activity. {ECO:0000269|PubMed:15905173,
ECO:0000269|PubMed:19145465, ECO:0000269|PubMed:19487463,
ECO:0000269|PubMed:21576368, ECO:0000269|PubMed:23429703,
ECO:0000269|PubMed:23429704, ECO:0000269|PubMed:24247430}.
-!- DISEASE: Smith-Kingsmore syndrome (SKS) [MIM:616638]: An autosomal
dominant syndrome characterized by intellectual disability,
macrocephaly, seizures, umbilical hernia, and facial dysmorphic
features. {ECO:0000269|PubMed:25851998,
ECO:0000269|PubMed:26542245, ECO:0000269|PubMed:27830187}.
Note=The disease is caused by mutations affecting the gene
represented in this entry.
-!- DISEASE: Focal cortical dysplasia 2 (FCORD2) [MIM:607341]: A form
of focal cortical dysplasia, a malformation of cortical
development that results in medically refractory epilepsy in the
pediatric population and in adults. FCORD2 is a severe form, with
onset usually in childhood, characterized by disrupted cortical
lamination and specific cytological abnormalities. It is
classified in 2 subtypes: type IIA characterized by dysmorphic
neurons and lack of balloon cells; type IIB with dysmorphic
neurons and balloon cells. {ECO:0000269|PubMed:25799227,
ECO:0000269|PubMed:25878179, ECO:0000269|PubMed:26018084,
ECO:0000269|PubMed:27830187}. Note=The disease is caused by
mutations affecting the gene represented in this entry.
-!- SIMILARITY: Belongs to the PI3/PI4-kinase family. {ECO:0000305}.
-!- SEQUENCE CAUTION:
Sequence=AAC39933.1; Type=Frameshift; Positions=956, 999; Evidence={ECO:0000305};
Sequence=BAE06077.1; Type=Erroneous initiation; Note=Translation N-terminally shortened.; Evidence={ECO:0000305};
-!- WEB RESOURCE: Name=Atlas of Genetics and Cytogenetics in Oncology
and Haematology;
URL="http://atlasgeneticsoncology.org/Genes/FRAP1ID40639ch1p36.html";
-!- WEB RESOURCE: Name=Wikipedia; Note=Mammalian target of rapamycin
entry;
URL="https://en.wikipedia.org/wiki/Mammalian_target_of_rapamycin";
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; L34075; AAA58486.1; -; mRNA.
EMBL; U88966; AAC39933.1; ALT_FRAME; mRNA.
EMBL; AB209995; BAE06077.1; ALT_INIT; mRNA.
EMBL; AL109811; CAI22105.1; -; Genomic_DNA.
EMBL; AL049653; CAI22105.1; JOINED; Genomic_DNA.
EMBL; AL391561; CAI22105.1; JOINED; Genomic_DNA.
EMBL; AL391561; CAI17228.1; -; Genomic_DNA.
EMBL; AL049653; CAI17228.1; JOINED; Genomic_DNA.
EMBL; AL109811; CAI17228.1; JOINED; Genomic_DNA.
EMBL; AL049653; CAI22145.1; -; Genomic_DNA.
EMBL; AL109811; CAI22145.1; JOINED; Genomic_DNA.
EMBL; AL391561; CAI22145.1; JOINED; Genomic_DNA.
EMBL; BC117166; AAI17167.1; -; mRNA.
EMBL; AJ300188; CAC15570.1; -; Genomic_DNA.
EMBL; L35478; AAC41713.1; -; mRNA.
CCDS; CCDS127.1; -.
PIR; S45340; S45340.
RefSeq; NP_004949.1; NM_004958.3.
RefSeq; XP_005263495.1; XM_005263438.2.
UniGene; Hs.338207; -.
PDB; 1AUE; X-ray; 2.33 A; A/B=2015-2114.
PDB; 1FAP; X-ray; 2.70 A; B=2018-2112.
PDB; 1NSG; X-ray; 2.20 A; B=2019-2112.
PDB; 2FAP; X-ray; 2.20 A; B=2019-2112.
PDB; 2GAQ; NMR; -; A=2015-2114.
PDB; 2NPU; NMR; -; A=2015-2114.
PDB; 2RSE; NMR; -; B=2019-2112.
PDB; 3FAP; X-ray; 1.85 A; B=2019-2112.
PDB; 3JBZ; EM; 28.00 A; A=1385-2549.
PDB; 4DRH; X-ray; 2.30 A; B/E=2025-2114.
PDB; 4DRI; X-ray; 1.45 A; B=2025-2114.
PDB; 4DRJ; X-ray; 1.80 A; B=2025-2114.
PDB; 4FAP; X-ray; 2.80 A; B=2019-2112.
PDB; 4JSN; X-ray; 3.20 A; A/B=1376-2549.
PDB; 4JSP; X-ray; 3.30 A; A/B=1376-2549.
PDB; 4JSV; X-ray; 3.50 A; A/B=1376-2549.
PDB; 4JSX; X-ray; 3.50 A; A/B=1376-2549.
PDB; 4JT5; X-ray; 3.45 A; A/B=1376-2549.
PDB; 4JT6; X-ray; 3.60 A; A/B=1376-2549.
PDB; 5FLC; EM; 5.90 A; B/F=1382-2549.
PDB; 5GPG; X-ray; 1.67 A; B=2021-2112.
PDB; 5H64; EM; 4.40 A; A/a=1-2549.
PDBsum; 1AUE; -.
PDBsum; 1FAP; -.
PDBsum; 1NSG; -.
PDBsum; 2FAP; -.
PDBsum; 2GAQ; -.
PDBsum; 2NPU; -.
PDBsum; 2RSE; -.
PDBsum; 3FAP; -.
PDBsum; 3JBZ; -.
PDBsum; 4DRH; -.
PDBsum; 4DRI; -.
PDBsum; 4DRJ; -.
PDBsum; 4FAP; -.
PDBsum; 4JSN; -.
PDBsum; 4JSP; -.
PDBsum; 4JSV; -.
PDBsum; 4JSX; -.
PDBsum; 4JT5; -.
PDBsum; 4JT6; -.
PDBsum; 5FLC; -.
PDBsum; 5GPG; -.
PDBsum; 5H64; -.
ProteinModelPortal; P42345; -.
SMR; P42345; -.
BioGrid; 108757; 180.
CORUM; P42345; -.
DIP; DIP-790N; -.
IntAct; P42345; 77.
MINT; MINT-121301; -.
STRING; 9606.ENSP00000354558; -.
BindingDB; P42345; -.
ChEMBL; CHEMBL2842; -.
DrugBank; DB04974; AP1903.
DrugBank; DB01590; Everolimus.
DrugBank; DB00337; Pimecrolimus.
DrugBank; DB05210; SF1126.
DrugBank; DB00877; Sirolimus.
DrugBank; DB06287; Temsirolimus.
DrugBank; DB05241; XL765.
GuidetoPHARMACOLOGY; 2109; -.
iPTMnet; P42345; -.
PhosphoSitePlus; P42345; -.
BioMuta; MTOR; -.
DMDM; 1169735; -.
EPD; P42345; -.
MaxQB; P42345; -.
PaxDb; P42345; -.
PeptideAtlas; P42345; -.
PRIDE; P42345; -.
Ensembl; ENST00000361445; ENSP00000354558; ENSG00000198793.
GeneID; 2475; -.
KEGG; hsa:2475; -.
UCSC; uc001asd.4; human.
CTD; 2475; -.
DisGeNET; 2475; -.
EuPathDB; HostDB:ENSG00000198793.12; -.
GeneCards; MTOR; -.
HGNC; HGNC:3942; MTOR.
HPA; CAB069425; -.
HPA; HPA071227; -.
MalaCards; MTOR; -.
MIM; 601231; gene.
MIM; 607341; phenotype.
MIM; 616638; phenotype.
neXtProt; NX_P42345; -.
OpenTargets; ENSG00000198793; -.
PharmGKB; PA28360; -.
eggNOG; KOG0891; Eukaryota.
eggNOG; COG5032; LUCA.
GeneTree; ENSGT00890000139494; -.
HOGENOM; HOG000163215; -.
HOVERGEN; HBG005744; -.
InParanoid; P42345; -.
KO; K07203; -.
OMA; DPYKHKM; -.
OrthoDB; EOG091G0046; -.
PhylomeDB; P42345; -.
TreeFam; TF105134; -.
Reactome; R-HSA-1257604; PIP3 activates AKT signaling.
Reactome; R-HSA-1632852; Macroautophagy.
Reactome; R-HSA-165159; mTOR signalling.
Reactome; R-HSA-166208; mTORC1-mediated signalling.
Reactome; R-HSA-3371571; HSF1-dependent transactivation.
Reactome; R-HSA-380972; Energy dependent regulation of mTOR by LKB1-AMPK.
Reactome; R-HSA-389357; CD28 dependent PI3K/Akt signaling.
Reactome; R-HSA-5218920; VEGFR2 mediated vascular permeability.
Reactome; R-HSA-5628897; TP53 Regulates Metabolic Genes.
Reactome; R-HSA-5674400; Constitutive Signaling by AKT1 E17K in Cancer.
Reactome; R-HSA-6804757; Regulation of TP53 Degradation.
Reactome; R-HSA-8943724; Regulation of PTEN gene transcription.
SignaLink; P42345; -.
SIGNOR; P42345; -.
ChiTaRS; MTOR; human.
EvolutionaryTrace; P42345; -.
GeneWiki; Mammalian_target_of_rapamycin; -.
GenomeRNAi; 2475; -.
PRO; PR:P42345; -.
Proteomes; UP000005640; Chromosome 1.
Bgee; ENSG00000198793; -.
CleanEx; HS_FRAP1; -.
ExpressionAtlas; P42345; baseline and differential.
Genevisible; P42345; HS.
GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
GO; GO:0005829; C:cytosol; TAS:Reactome.
GO; GO:0030425; C:dendrite; IEA:Ensembl.
GO; GO:0012505; C:endomembrane system; IDA:UniProtKB.
GO; GO:0005789; C:endoplasmic reticulum membrane; IEA:UniProtKB-SubCell.
GO; GO:0000139; C:Golgi membrane; IEA:UniProtKB-SubCell.
GO; GO:0005765; C:lysosomal membrane; IDA:UniProtKB.
GO; GO:0005764; C:lysosome; IDA:UniProtKB.
GO; GO:0016020; C:membrane; IDA:UniProtKB.
GO; GO:0005741; C:mitochondrial outer membrane; IEA:UniProtKB-SubCell.
GO; GO:0043025; C:neuronal cell body; IEA:Ensembl.
GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
GO; GO:0005634; C:nucleus; IBA:GO_Central.
GO; GO:0005942; C:phosphatidylinositol 3-kinase complex; NAS:UniProtKB.
GO; GO:0016605; C:PML body; IEA:UniProtKB-SubCell.
GO; GO:0031931; C:TORC1 complex; IDA:UniProtKB.
GO; GO:0031932; C:TORC2 complex; IDA:UniProtKB.
GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
GO; GO:0016301; F:kinase activity; IDA:MGI.
GO; GO:0051219; F:phosphoprotein binding; IPI:UniProtKB.
GO; GO:0019904; F:protein domain specific binding; IEA:Ensembl.
GO; GO:0004672; F:protein kinase activity; IDA:WormBase.
GO; GO:0019901; F:protein kinase binding; IEA:Ensembl.
GO; GO:0004674; F:protein serine/threonine kinase activity; IDA:UniProtKB.
GO; GO:0043022; F:ribosome binding; IEA:Ensembl.
GO; GO:0001030; F:RNA polymerase III type 1 promoter DNA binding; IDA:UniProtKB.
GO; GO:0001031; F:RNA polymerase III type 2 promoter DNA binding; IDA:UniProtKB.
GO; GO:0001032; F:RNA polymerase III type 3 promoter DNA binding; IDA:UniProtKB.
GO; GO:0001156; F:TFIIIC-class transcription factor binding; IDA:UniProtKB.
GO; GO:0006207; P:'de novo' pyrimidine nucleobase biosynthetic process; IEA:Ensembl.
GO; GO:0043276; P:anoikis; NAS:ParkinsonsUK-UCL.
GO; GO:0007420; P:brain development; IEA:Ensembl.
GO; GO:0055013; P:cardiac muscle cell development; IEA:Ensembl.
GO; GO:0060048; P:cardiac muscle contraction; IEA:Ensembl.
GO; GO:0007569; P:cell aging; IEA:Ensembl.
GO; GO:0007050; P:cell cycle arrest; TAS:Reactome.
GO; GO:0016049; P:cell growth; IDA:UniProtKB.
GO; GO:0034198; P:cellular response to amino acid starvation; IDA:CAFA.
GO; GO:0071230; P:cellular response to amino acid stimulus; IDA:CAFA.
GO; GO:0071456; P:cellular response to hypoxia; ISS:UniProtKB.
GO; GO:0071233; P:cellular response to leucine; IDA:CAFA.
GO; GO:1990253; P:cellular response to leucine starvation; IDA:CAFA.
GO; GO:0031669; P:cellular response to nutrient levels; ISS:UniProtKB.
GO; GO:0009267; P:cellular response to starvation; IDA:UniProtKB.
GO; GO:0006281; P:DNA repair; IBA:GO_Central.
GO; GO:0006112; P:energy reserve metabolic process; IEA:Ensembl.
GO; GO:0007281; P:germ cell development; IEA:Ensembl.
GO; GO:0040007; P:growth; NAS:UniProtKB.
GO; GO:0003007; P:heart morphogenesis; IEA:Ensembl.
GO; GO:0003179; P:heart valve morphogenesis; IEA:Ensembl.
GO; GO:0038111; P:interleukin-7-mediated signaling pathway; TAS:Reactome.
GO; GO:0007616; P:long-term memory; IEA:Ensembl.
GO; GO:0060135; P:maternal process involved in female pregnancy; IEA:Ensembl.
GO; GO:0048255; P:mRNA stabilization; IEA:Ensembl.
GO; GO:0035264; P:multicellular organism growth; IEA:Ensembl.
GO; GO:0010507; P:negative regulation of autophagy; IMP:CAFA.
GO; GO:0045792; P:negative regulation of cell size; IEA:Ensembl.
GO; GO:1904193; P:negative regulation of cholangiocyte apoptotic process; IEA:Ensembl.
GO; GO:1904213; P:negative regulation of iodide transmembrane transport; IEA:Ensembl.
GO; GO:0016242; P:negative regulation of macroautophagy; IDA:MGI.
GO; GO:0014736; P:negative regulation of muscle atrophy; IEA:Ensembl.
GO; GO:0051534; P:negative regulation of NFAT protein import into nucleus; IEA:Ensembl.
GO; GO:0001933; P:negative regulation of protein phosphorylation; IEA:Ensembl.
GO; GO:0031397; P:negative regulation of protein ubiquitination; IEA:Ensembl.
GO; GO:0018105; P:peptidyl-serine phosphorylation; IMP:UniProtKB.
GO; GO:0018107; P:peptidyl-threonine phosphorylation; IEA:Ensembl.
GO; GO:0048015; P:phosphatidylinositol-mediated signaling; TAS:Reactome.
GO; GO:0016310; P:phosphorylation; IDA:UniProtKB.
GO; GO:0030838; P:positive regulation of actin filament polymerization; IEA:Ensembl.
GO; GO:0061051; P:positive regulation of cell growth involved in cardiac muscle cell development; IEA:Ensembl.
GO; GO:1904056; P:positive regulation of cholangiocyte proliferation; IEA:Ensembl.
GO; GO:0060999; P:positive regulation of dendritic spine development; IEA:Ensembl.
GO; GO:1904000; P:positive regulation of eating behavior; IEA:Ensembl.
GO; GO:0001938; P:positive regulation of endothelial cell proliferation; IEA:Ensembl.
GO; GO:0010718; P:positive regulation of epithelial to mesenchymal transition; IMP:BHF-UCL.
GO; GO:0010628; P:positive regulation of gene expression; IMP:UniProtKB.
GO; GO:0060252; P:positive regulation of glial cell proliferation; IEA:Ensembl.
GO; GO:1904197; P:positive regulation of granulosa cell proliferation; IEA:Ensembl.
GO; GO:0051549; P:positive regulation of keratinocyte migration; IMP:BHF-UCL.
GO; GO:0010592; P:positive regulation of lamellipodium assembly; IEA:Ensembl.
GO; GO:0046889; P:positive regulation of lipid biosynthetic process; IMP:UniProtKB.
GO; GO:0010831; P:positive regulation of myotube differentiation; IEA:Ensembl.
GO; GO:1901216; P:positive regulation of neuron death; IEA:Ensembl.
GO; GO:0014042; P:positive regulation of neuron maturation; IEA:Ensembl.
GO; GO:0045429; P:positive regulation of nitric oxide biosynthetic process; IEA:Ensembl.
GO; GO:0048714; P:positive regulation of oligodendrocyte differentiation; IEA:Ensembl.
GO; GO:0050731; P:positive regulation of peptidyl-tyrosine phosphorylation; IEA:Ensembl.
GO; GO:0051897; P:positive regulation of protein kinase B signaling; IEA:Ensembl.
GO; GO:0001934; P:positive regulation of protein phosphorylation; IDA:UniProtKB.
GO; GO:1904058; P:positive regulation of sensory perception of pain; IEA:Ensembl.
GO; GO:1904206; P:positive regulation of skeletal muscle hypertrophy; IEA:Ensembl.
GO; GO:0048661; P:positive regulation of smooth muscle cell proliferation; IEA:Ensembl.
GO; GO:0051496; P:positive regulation of stress fiber assembly; IEA:Ensembl.
GO; GO:0045945; P:positive regulation of transcription from RNA polymerase III promoter; IMP:UniProtKB.
GO; GO:1901838; P:positive regulation of transcription of nuclear large rRNA transcript from RNA polymerase I promoter; IMP:UniProtKB.
GO; GO:0045727; P:positive regulation of translation; IDA:UniProtKB.
GO; GO:1903691; P:positive regulation of wound healing, spreading of epidermal cells; IMP:BHF-UCL.
GO; GO:0009791; P:post-embryonic development; IEA:Ensembl.
GO; GO:0046777; P:protein autophosphorylation; IDA:MGI.
GO; GO:0030163; P:protein catabolic process; TAS:UniProtKB.
GO; GO:0006468; P:protein phosphorylation; IDA:UniProtKB.
GO; GO:0032956; P:regulation of actin cytoskeleton organization; IMP:UniProtKB.
GO; GO:0090335; P:regulation of brown fat cell differentiation; IEA:Ensembl.
GO; GO:0043610; P:regulation of carbohydrate utilization; IEA:Ensembl.
GO; GO:0008361; P:regulation of cell size; IMP:CAFA.
GO; GO:1900034; P:regulation of cellular response to heat; TAS:Reactome.
GO; GO:0031998; P:regulation of fatty acid beta-oxidation; IEA:Ensembl.
GO; GO:0005979; P:regulation of glycogen biosynthetic process; IEA:Ensembl.
GO; GO:0043087; P:regulation of GTPase activity; IEA:Ensembl.
GO; GO:0016241; P:regulation of macroautophagy; TAS:Reactome.
GO; GO:0090559; P:regulation of membrane permeability; IEA:Ensembl.
GO; GO:0031641; P:regulation of myelination; IEA:Ensembl.
GO; GO:0045670; P:regulation of osteoclast differentiation; ISS:UniProtKB.
GO; GO:0045859; P:regulation of protein kinase activity; IEA:Ensembl.
GO; GO:0032095; P:regulation of response to food; IEA:Ensembl.
GO; GO:0043200; P:response to amino acid; IDA:UniProtKB.
GO; GO:0042220; P:response to cocaine; IEA:Ensembl.
GO; GO:0032868; P:response to insulin; IEA:Ensembl.
GO; GO:0043278; P:response to morphine; IEA:Ensembl.
GO; GO:0007584; P:response to nutrient; NAS:UniProtKB.
GO; GO:0006950; P:response to stress; IMP:UniProtKB.
GO; GO:0031529; P:ruffle organization; IEA:Ensembl.
GO; GO:0007165; P:signal transduction; NAS:UniProtKB.
GO; GO:0035176; P:social behavior; IEA:Ensembl.
GO; GO:0021510; P:spinal cord development; IEA:Ensembl.
GO; GO:0031295; P:T cell costimulation; TAS:Reactome.
GO; GO:0031929; P:TOR signaling; IMP:UniProtKB.
GO; GO:0038202; P:TORC1 signaling; IDA:UniProtKB.
GO; GO:0008542; P:visual learning; IEA:Ensembl.
GO; GO:0050882; P:voluntary musculoskeletal movement; IEA:Ensembl.
GO; GO:0042060; P:wound healing; IEA:Ensembl.
Gene3D; 1.10.1070.11; -; 1.
Gene3D; 1.20.120.150; -; 1.
Gene3D; 1.25.10.10; -; 3.
InterPro; IPR011989; ARM-like.
InterPro; IPR016024; ARM-type_fold.
InterPro; IPR024585; DUF3385_TOR.
InterPro; IPR003152; FATC_dom.
InterPro; IPR009076; FRB_dom.
InterPro; IPR011009; Kinase-like_dom.
InterPro; IPR000403; PI3/4_kinase_cat_dom.
InterPro; IPR018936; PI3/4_kinase_CS.
InterPro; IPR003151; PIK-rel_kinase_FAT.
InterPro; IPR014009; PIK_FAT.
InterPro; IPR026683; TOR.
PANTHER; PTHR11139:SF85; PTHR11139:SF85; 1.
Pfam; PF11865; DUF3385; 1.
Pfam; PF02259; FAT; 1.
Pfam; PF02260; FATC; 1.
Pfam; PF08771; FRB_dom; 1.
Pfam; PF00454; PI3_PI4_kinase; 1.
SMART; SM01346; DUF3385; 1.
SMART; SM01343; FATC; 1.
SMART; SM00146; PI3Kc; 1.
SUPFAM; SSF47212; SSF47212; 1.
SUPFAM; SSF48371; SSF48371; 5.
SUPFAM; SSF56112; SSF56112; 2.
PROSITE; PS51189; FAT; 1.
PROSITE; PS51190; FATC; 1.
PROSITE; PS00915; PI3_4_KINASE_1; 1.
PROSITE; PS00916; PI3_4_KINASE_2; 1.
PROSITE; PS50290; PI3_4_KINASE_3; 1.
1: Evidence at protein level;
3D-structure; Acetylation; ATP-binding; Complete proteome; Cytoplasm;
Disease mutation; Endoplasmic reticulum; Epilepsy; Golgi apparatus;
Kinase; Lysosome; Membrane; Mental retardation; Microsome;
Mitochondrion; Mitochondrion outer membrane; Nucleotide-binding;
Nucleus; Phosphoprotein; Polymorphism; Reference proteome; Repeat;
Serine/threonine-protein kinase; TPR repeat; Transferase.
CHAIN 1 2549 Serine/threonine-protein kinase mTOR.
/FTId=PRO_0000088808.
REPEAT 16 53 HEAT 1.
REPEAT 55 99 HEAT 2.
REPEAT 100 137 HEAT 3.
REPEAT 138 179 HEAT 4.
REPEAT 180 220 HEAT 5.
REPEAT 222 276 HEAT 6.
REPEAT 277 313 HEAT 7.
REPEAT 314 364 HEAT 8.
REPEAT 365 409 HEAT 9.
REPEAT 410 445 HEAT 10.
REPEAT 446 494 HEAT 11.
REPEAT 495 529 HEAT 12.
REPEAT 530 563 HEAT 13.
REPEAT 564 596 HEAT 14.
REPEAT 597 636 HEAT 15.
REPEAT 637 683 HEAT 16.
REPEAT 686 724 HEAT 17.
REPEAT 727 766 HEAT 18.
REPEAT 769 811 HEAT 19.
REPEAT 814 853 HEAT 20.
REPEAT 857 893 HEAT 21.
REPEAT 894 942 HEAT 22.
REPEAT 943 988 HEAT 23.
REPEAT 989 1027 HEAT 24.
REPEAT 1029 1068 HEAT 25.
REPEAT 1069 1105 HEAT 26.
REPEAT 1106 1144 HEAT 27.
REPEAT 1145 1188 HEAT 28.
REPEAT 1189 1225 HEAT 29.
REPEAT 1226 1273 HEAT 30.
REPEAT 1274 1311 HEAT 31.
REPEAT 1312 1345 HEAT 32.
REPEAT 1346 1382 TPR 1.
DOMAIN 1382 1982 FAT. {ECO:0000255|PROSITE-
ProRule:PRU00534}.
REPEAT 1383 1408 TPR 2.
REPEAT 1409 1442 TPR 3.
REPEAT 1443 1473 TPR 4.
REPEAT 1474 1507 TPR 5.
REPEAT 1508 1541 TPR 6.
REPEAT 1542 1574 TPR 7.
REPEAT 1575 1614 TPR 8.
REPEAT 1615 1649 TPR 9.
REPEAT 1650 1693 TPR 10.
REPEAT 1694 1731 TPR 11.
REPEAT 1732 1786 TPR 12.
REPEAT 1787 1846 TPR 13.
REPEAT 1898 1930 TPR 14.
REPEAT 1931 1970 TPR 15.
REPEAT 1971 2005 TPR 16.
DOMAIN 2182 2516 PI3K/PI4K. {ECO:0000255|PROSITE-
ProRule:PRU00269}.
DOMAIN 2517 2549 FATC. {ECO:0000255|PROSITE-
ProRule:PRU00534, ECO:0000255|PROSITE-
ProRule:PRU00535}.
REGION 1 651 Interaction with NBN.
{ECO:0000269|PubMed:23762398}.
REGION 2012 2144 Sufficient for interaction with the
FKBP1A/rapamycin complex. {ECO:0000250}.
REGION 2258 2296 Interaction with MLST8.
MOD_RES 1 1 N-acetylmethionine.
{ECO:0000244|PubMed:22814378}.
MOD_RES 567 567 Phosphoserine.
{ECO:0000244|PubMed:18691976,
ECO:0000244|PubMed:19369195,
ECO:0000244|PubMed:20068231}.
MOD_RES 1162 1162 Phosphothreonine.
{ECO:0000244|PubMed:20068231}.
MOD_RES 1218 1218 N6-acetyllysine.
{ECO:0000244|PubMed:19608861}.
MOD_RES 1261 1261 Phosphoserine.
{ECO:0000244|PubMed:23186163,
ECO:0000269|PubMed:19487463}.
MOD_RES 2159 2159 Phosphoserine.
{ECO:0000269|PubMed:21576368}.
MOD_RES 2164 2164 Phosphothreonine.
{ECO:0000269|PubMed:21576368}.
MOD_RES 2173 2173 Phosphothreonine; by PKB/AKT1.
{ECO:0000269|PubMed:24247430}.
MOD_RES 2446 2446 Phosphothreonine; by RPS6KB1.
{ECO:0000269|PubMed:15905173}.
MOD_RES 2448 2448 Phosphoserine; by RPS6KB1.
{ECO:0000244|PubMed:24275569,
ECO:0000269|PubMed:15905173,
ECO:0000269|PubMed:19145465}.
MOD_RES 2478 2478 Phosphoserine.
{ECO:0000244|PubMed:18669648}.
MOD_RES 2481 2481 Phosphoserine; by autocatalysis.
{ECO:0000244|PubMed:18669648,
ECO:0000269|PubMed:21576368}.
VARIANT 8 8 A -> S (in a lung large cell carcinoma
sample; somatic mutation).
{ECO:0000269|PubMed:17344846}.
/FTId=VAR_041537.
VARIANT 135 135 M -> T (in a metastatic melanoma sample;
somatic mutation).
{ECO:0000269|PubMed:17344846}.
/FTId=VAR_041538.
VARIANT 624 624 R -> H (in FCORD2; somatic mutation;
unknown pathological significance).
{ECO:0000269|PubMed:25799227}.
/FTId=VAR_078824.
VARIANT 1083 1083 M -> V (in dbSNP:rs56164650).
{ECO:0000269|PubMed:17344846}.
/FTId=VAR_041539.
VARIANT 1134 1134 A -> V (in dbSNP:rs28730685).
{ECO:0000269|PubMed:17344846}.
/FTId=VAR_041540.
VARIANT 1178 1178 S -> F (in dbSNP:rs55975118).
{ECO:0000269|PubMed:17344846}.
/FTId=VAR_041541.
VARIANT 1376 1376 D -> E (found in a patient with focal
epilepsy; unknown pathological
significance).
{ECO:0000269|PubMed:27830187}.
/FTId=VAR_078825.
VARIANT 1450 1450 Y -> D (in FCORD2; somatic mutation).
{ECO:0000269|PubMed:25799227}.
/FTId=VAR_078826.
VARIANT 1456 1456 W -> G (in FCORD2; somatic mutation).
{ECO:0000269|PubMed:25878179}.
/FTId=VAR_078827.
VARIANT 1459 1459 A -> D (in FCORD2; somatic mutation;
increased TOR signaling).
{ECO:0000269|PubMed:26018084}.
/FTId=VAR_078828.
VARIANT 1459 1459 A -> S (in FCORD2; somatic mutation).
{ECO:0000269|PubMed:27830187}.
/FTId=VAR_078829.
VARIANT 1460 1460 L -> P (in FCORD2; somatic mutation;
increased TOR signaling).
{ECO:0000269|PubMed:26018084,
ECO:0000269|PubMed:27830187}.
/FTId=VAR_078830.
VARIANT 1483 1483 C -> R (in FCORD2; somatic mutation;
increased TOR signaling; increased kinase
activity). {ECO:0000269|PubMed:25799227}.
/FTId=VAR_078831.
VARIANT 1490 1490 W -> R (in SKS).
{ECO:0000269|PubMed:27830187}.
/FTId=VAR_078832.
VARIANT 1595 1595 M -> I (in SKS; dbSNP:rs869312671).
{ECO:0000269|PubMed:27830187}.
/FTId=VAR_078833.
VARIANT 1709 1709 R -> H (in FCORD2; somatic mutation;
unknown pathological significance;
dbSNP:rs587777895).
{ECO:0000269|PubMed:25799227}.
/FTId=VAR_078834.
VARIANT 1799 1799 E -> K (in SKS; results in increased mTOR
signaling; dbSNP:rs863225264).
{ECO:0000269|PubMed:25851998,
ECO:0000269|PubMed:26542245}.
/FTId=VAR_075072.
VARIANT 1832 1832 A -> T (in SKS; dbSNP:rs369088781).
{ECO:0000269|PubMed:27830187}.
/FTId=VAR_078835.
VARIANT 1888 1888 F -> C (in SKS; dbSNP:rs869312666).
{ECO:0000269|PubMed:27830187}.
/FTId=VAR_078836.
VARIANT 1977 1977 T -> K (in FCORD2; somatic mutation;
dbSNP:rs587777893).
{ECO:0000269|PubMed:25799227}.
/FTId=VAR_078837.
VARIANT 2011 2011 M -> V (in an ovarian mucinous carcinoma
sample; somatic mutation).
{ECO:0000269|PubMed:17344846}.
/FTId=VAR_041542.
VARIANT 2193 2193 R -> C (in FCORD2; somatic mutation).
{ECO:0000269|PubMed:25799227}.
/FTId=VAR_078838.
VARIANT 2215 2215 S -> F (in FCORD2; somatic mutation;
increased TOR signaling;
dbSNP:rs587777894).
{ECO:0000269|PubMed:25799227,
ECO:0000269|PubMed:26018084,
ECO:0000269|PubMed:27830187}.
/FTId=VAR_078839.
VARIANT 2215 2215 S -> Y (in FCORD2; also found in a
colorectal adenocarcinoma sample; somatic
mutation; increased TOR signaling).
{ECO:0000269|PubMed:17344846,
ECO:0000269|PubMed:26018084,
ECO:0000269|PubMed:27830187}.
/FTId=VAR_041543.
VARIANT 2220 2220 L -> F (found in a renal cell carcinoma
sample; somatic mutation).
{ECO:0000269|PubMed:21248752}.
/FTId=VAR_064733.
VARIANT 2327 2327 M -> I (in SKS; dbSNP:rs878855328).
{ECO:0000269|PubMed:27830187}.
/FTId=VAR_078840.
VARIANT 2406 2406 V -> A (found in a renal cell carcinoma
sample; somatic mutation).
{ECO:0000269|PubMed:21248752}.
/FTId=VAR_064734.
VARIANT 2427 2427 L -> P (in FCORD2; somatic mutation;
increased TOR signaling; increased kinase
activity). {ECO:0000269|PubMed:25799227}.
/FTId=VAR_078841.
VARIANT 2427 2427 L -> Q (in FCORD2; somatic mutation;
increased TOR signaling; increased kinase
activity). {ECO:0000269|PubMed:25799227}.
/FTId=VAR_078842.
VARIANT 2476 2476 P -> L (in a glioblastoma multiforme
sample; somatic mutation).
{ECO:0000269|PubMed:17344846}.
/FTId=VAR_041544.
VARIANT 2501 2501 I -> V (found in a patient with non-
lesional nocturnal frontal epilepsy;
unknown pathological significance).
{ECO:0000269|PubMed:27830187}.
/FTId=VAR_078843.
MUTAGEN 2159 2159 S->A: Reduces mTORC1-associated S-2481
autophosphorylation; when associated with
A-2164. {ECO:0000269|PubMed:21576368}.
MUTAGEN 2159 2159 S->D: Stronger phosphorylation of
RPS6KB1; when associated with E-2164.
{ECO:0000269|PubMed:21576368}.
MUTAGEN 2164 2164 T->A: Reduces mTORC1-associated S-2481
autophosphorylation; when associated with
A-2159. {ECO:0000269|PubMed:21576368}.
MUTAGEN 2164 2164 T->E: Stronger phosphorylation of
RPS6KB1; when associated with D-2159.
{ECO:0000269|PubMed:21576368}.
MUTAGEN 2173 2173 T->A: Increased mTOR kinase activity.
{ECO:0000269|PubMed:24247430}.
MUTAGEN 2340 2340 H->A: Barely detectable kinase activity.
{ECO:0000269|PubMed:23636326}.
CONFLICT 353 353 K -> N (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 359 359 S -> N (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 364 364 D -> N (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 390 390 M -> L (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 430 430 R -> L (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 455 457 VLD -> GVE (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 461 461 A -> G (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 482 484 VFT -> FFN (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 489 489 L -> V (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 513 513 L -> I (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 539 539 L -> V (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 553 553 R -> C (in Ref. 2; AAC39933).
{ECO:0000305}.
CONFLICT 857 857 P -> L (in Ref. 3; BAE06077).
{ECO:0000305}.
CONFLICT 1075 1075 I -> S (in Ref. 2; AAC39933).
{ECO:0000305}.
HELIX 1387 1406 {ECO:0000244|PDB:4JSN}.
HELIX 1410 1422 {ECO:0000244|PDB:4JSN}.
HELIX 1426 1439 {ECO:0000244|PDB:4JSN}.
HELIX 1446 1452 {ECO:0000244|PDB:4JSN}.
HELIX 1456 1469 {ECO:0000244|PDB:4JSN}.
HELIX 1474 1486 {ECO:0000244|PDB:4JSN}.
HELIX 1490 1498 {ECO:0000244|PDB:4JSN}.
STRAND 1501 1503 {ECO:0000244|PDB:4JSN}.
HELIX 1506 1521 {ECO:0000244|PDB:4JSN}.
TURN 1522 1524 {ECO:0000244|PDB:4JSN}.
HELIX 1526 1533 {ECO:0000244|PDB:4JSN}.
HELIX 1541 1553 {ECO:0000244|PDB:4JSN}.
HELIX 1557 1572 {ECO:0000244|PDB:4JSN}.
TURN 1573 1577 {ECO:0000244|PDB:4JSN}.
TURN 1584 1586 {ECO:0000244|PDB:4JSN}.
HELIX 1587 1605 {ECO:0000244|PDB:4JSN}.
STRAND 1606 1608 {ECO:0000244|PDB:4JSP}.
HELIX 1609 1611 {ECO:0000244|PDB:4JSX}.
HELIX 1612 1624 {ECO:0000244|PDB:4JSN}.
HELIX 1630 1640 {ECO:0000244|PDB:4JSN}.
TURN 1641 1643 {ECO:0000244|PDB:4JSN}.
TURN 1646 1648 {ECO:0000244|PDB:4JSN}.
HELIX 1650 1663 {ECO:0000244|PDB:4JSN}.
HELIX 1666 1677 {ECO:0000244|PDB:4JSN}.
STRAND 1681 1684 {ECO:0000244|PDB:4JSP}.
HELIX 1694 1706 {ECO:0000244|PDB:4JSN}.
HELIX 1710 1729 {ECO:0000244|PDB:4JSN}.
HELIX 1737 1762 {ECO:0000244|PDB:4JSN}.
TURN 1766 1768 {ECO:0000244|PDB:4JSN}.
HELIX 1769 1782 {ECO:0000244|PDB:4JSN}.
TURN 1783 1785 {ECO:0000244|PDB:4JSN}.
HELIX 1787 1813 {ECO:0000244|PDB:4JSN}.
HELIX 1868 1893 {ECO:0000244|PDB:4JSN}.
STRAND 1896 1898 {ECO:0000244|PDB:4JSN}.
HELIX 1900 1913 {ECO:0000244|PDB:4JSN}.
HELIX 1917 1929 {ECO:0000244|PDB:4JSN}.
HELIX 1933 1938 {ECO:0000244|PDB:4JSN}.
HELIX 1939 1943 {ECO:0000244|PDB:4JSN}.
TURN 1944 1947 {ECO:0000244|PDB:4JSN}.
HELIX 1951 1966 {ECO:0000244|PDB:4JSN}.
HELIX 1970 1980 {ECO:0000244|PDB:4JSN}.
HELIX 1985 2020 {ECO:0000244|PDB:4JSN}.
HELIX 2025 2039 {ECO:0000244|PDB:4DRI}.
HELIX 2044 2058 {ECO:0000244|PDB:4DRI}.
HELIX 2065 2091 {ECO:0000244|PDB:4DRI}.
HELIX 2094 2111 {ECO:0000244|PDB:4DRI}.
HELIX 2115 2117 {ECO:0000244|PDB:4JSN}.
STRAND 2119 2122 {ECO:0000244|PDB:4JSN}.
HELIX 2123 2126 {ECO:0000244|PDB:4JSN}.
HELIX 2128 2132 {ECO:0000244|PDB:4JSN}.
STRAND 2137 2139 {ECO:0000244|PDB:4JSN}.
STRAND 2152 2156 {ECO:0000244|PDB:4JSN}.
STRAND 2158 2162 {ECO:0000244|PDB:4JSN}.
STRAND 2165 2167 {ECO:0000244|PDB:4JSN}.
STRAND 2170 2176 {ECO:0000244|PDB:4JSN}.
STRAND 2181 2189 {ECO:0000244|PDB:4JSN}.
HELIX 2193 2211 {ECO:0000244|PDB:4JSN}.
HELIX 2213 2217 {ECO:0000244|PDB:4JSN}.
STRAND 2227 2229 {ECO:0000244|PDB:4JSN}.
STRAND 2231 2233 {ECO:0000244|PDB:4JSN}.
STRAND 2235 2238 {ECO:0000244|PDB:4JSN}.
STRAND 2243 2245 {ECO:0000244|PDB:4JSN}.
HELIX 2246 2256 {ECO:0000244|PDB:4JSN}.
HELIX 2263 2271 {ECO:0000244|PDB:4JSN}.
HELIX 2275 2277 {ECO:0000244|PDB:4JSN}.
HELIX 2280 2291 {ECO:0000244|PDB:4JSN}.
HELIX 2298 2306 {ECO:0000244|PDB:4JSN}.
HELIX 2310 2334 {ECO:0000244|PDB:4JSN}.
TURN 2341 2343 {ECO:0000244|PDB:4JSN}.
STRAND 2344 2347 {ECO:0000244|PDB:4JSN}.
TURN 2348 2350 {ECO:0000244|PDB:4JSN}.
STRAND 2353 2355 {ECO:0000244|PDB:4JSN}.
HELIX 2364 2367 {ECO:0000244|PDB:4JSN}.
STRAND 2369 2371 {ECO:0000244|PDB:4JSN}.
HELIX 2381 2386 {ECO:0000244|PDB:4JSN}.
TURN 2389 2394 {ECO:0000244|PDB:4JSN}.
HELIX 2395 2409 {ECO:0000244|PDB:4JSN}.
HELIX 2411 2422 {ECO:0000244|PDB:4JSN}.
TURN 2425 2427 {ECO:0000244|PDB:4JSN}.
HELIX 2428 2435 {ECO:0000244|PDB:4JSN}.
HELIX 2493 2507 {ECO:0000244|PDB:4JSN}.
TURN 2508 2510 {ECO:0000244|PDB:4JSN}.
STRAND 2512 2516 {ECO:0000244|PDB:4JT5}.
HELIX 2521 2533 {ECO:0000244|PDB:4JSN}.
HELIX 2535 2538 {ECO:0000244|PDB:4JSN}.
HELIX 2543 2545 {ECO:0000244|PDB:4JSN}.
SEQUENCE 2549 AA; 288892 MW; 7D9AD6E784882AB4 CRC64;
MLGTGPAAAT TAATTSSNVS VLQQFASGLK SRNEETRAKA AKELQHYVTM ELREMSQEES
TRFYDQLNHH IFELVSSSDA NERKGGILAI ASLIGVEGGN ATRIGRFANY LRNLLPSNDP
VVMEMASKAI GRLAMAGDTF TAEYVEFEVK RALEWLGADR NEGRRHAAVL VLRELAISVP
TFFFQQVQPF FDNIFVAVWD PKQAIREGAV AALRACLILT TQREPKEMQK PQWYRHTFEE
AEKGFDETLA KEKGMNRDDR IHGALLILNE LVRISSMEGE RLREEMEEIT QQQLVHDKYC
KDLMGFGTKP RHITPFTSFQ AVQPQQSNAL VGLLGYSSHQ GLMGFGTSPS PAKSTLVESR
CCRDLMEEKF DQVCQWVLKC RNSKNSLIQM TILNLLPRLA AFRPSAFTDT QYLQDTMNHV
LSCVKKEKER TAAFQALGLL SVAVRSEFKV YLPRVLDIIR AALPPKDFAH KRQKAMQVDA
TVFTCISMLA RAMGPGIQQD IKELLEPMLA VGLSPALTAV LYDLSRQIPQ LKKDIQDGLL
KMLSLVLMHK PLRHPGMPKG LAHQLASPGL TTLPEASDVG SITLALRTLG SFEFEGHSLT
QFVRHCADHF LNSEHKEIRM EAARTCSRLL TPSIHLISGH AHVVSQTAVQ VVADVLSKLL
VVGITDPDPD IRYCVLASLD ERFDAHLAQA ENLQALFVAL NDQVFEIREL AICTVGRLSS
MNPAFVMPFL RKMLIQILTE LEHSGIGRIK EQSARMLGHL VSNAPRLIRP YMEPILKALI
LKLKDPDPDP NPGVINNVLA TIGELAQVSG LEMRKWVDEL FIIIMDMLQD SSLLAKRQVA
LWTLGQLVAS TGYVVEPYRK YPTLLEVLLN FLKTEQNQGT RREAIRVLGL LGALDPYKHK
VNIGMIDQSR DASAVSLSES KSSQDSSDYS TSEMLVNMGN LPLDEFYPAV SMVALMRIFR
DQSLSHHHTM VVQAITFIFK SLGLKCVQFL PQVMPTFLNV IRVCDGAIRE FLFQQLGMLV
SFVKSHIRPY MDEIVTLMRE FWVMNTSIQS TIILLIEQIV VALGGEFKLY LPQLIPHMLR
VFMHDNSPGR IVSIKLLAAI QLFGANLDDY LHLLLPPIVK LFDAPEAPLP SRKAALETVD
RLTESLDFTD YASRIIHPIV RTLDQSPELR STAMDTLSSL VFQLGKKYQI FIPMVNKVLV
RHRINHQRYD VLICRIVKGY TLADEEEDPL IYQHRMLRSG QGDALASGPV ETGPMKKLHV
STINLQKAWG AARRVSKDDW LEWLRRLSLE LLKDSSSPSL RSCWALAQAY NPMARDLFNA
AFVSCWSELN EDQQDELIRS IELALTSQDI AEVTQTLLNL AEFMEHSDKG PLPLRDDNGI
VLLGERAAKC RAYAKALHYK ELEFQKGPTP AILESLISIN NKLQQPEAAA GVLEYAMKHF
GELEIQATWY EKLHEWEDAL VAYDKKMDTN KDDPELMLGR MRCLEALGEW GQLHQQCCEK
WTLVNDETQA KMARMAAAAA WGLGQWDSME EYTCMIPRDT HDGAFYRAVL ALHQDLFSLA
QQCIDKARDL LDAELTAMAG ESYSRAYGAM VSCHMLSELE EVIQYKLVPE RREIIRQIWW
ERLQGCQRIV EDWQKILMVR SLVVSPHEDM RTWLKYASLC GKSGRLALAH KTLVLLLGVD
PSRQLDHPLP TVHPQVTYAY MKNMWKSARK IDAFQHMQHF VQTMQQQAQH AIATEDQQHK
QELHKLMARC FLKLGEWQLN LQGINESTIP KVLQYYSAAT EHDRSWYKAW HAWAVMNFEA
VLHYKHQNQA RDEKKKLRHA SGANITNATT AATTAATATT TASTEGSNSE SEAESTENSP
TPSPLQKKVT EDLSKTLLMY TVPAVQGFFR SISLSRGNNL QDTLRVLTLW FDYGHWPDVN
EALVEGVKAI QIDTWLQVIP QLIARIDTPR PLVGRLIHQL LTDIGRYHPQ ALIYPLTVAS
KSTTTARHNA ANKILKNMCE HSNTLVQQAM MVSEELIRVA ILWHEMWHEG LEEASRLYFG
ERNVKGMFEV LEPLHAMMER GPQTLKETSF NQAYGRDLME AQEWCRKYMK SGNVKDLTQA
WDLYYHVFRR ISKQLPQLTS LELQYVSPKL LMCRDLELAV PGTYDPNQPI IRIQSIAPSL
QVITSKQRPR KLTLMGSNGH EFVFLLKGHE DLRQDERVMQ LFGLVNTLLA NDPTSLRKNL
SIQRYAVIPL STNSGLIGWV PHCDTLHALI RDYREKKKIL LNIEHRIMLR MAPDYDHLTL
MQKVEVFEHA VNNTAGDDLA KLLWLKSPSS EVWFDRRTNY TRSLAVMSMV GYILGLGDRH
PSNLMLDRLS GKILHIDFGD CFEVAMTREK FPEKIPFRLT RMLTNAMEVT GLDGNYRITC
HTVMEVLREH KDSVMAVLEA FVYDPLLNWR LMDTNTKGNK RSRTRTDSYS AGQSVEILDG
VELGEPAHKK TGTTVPESIH SFIGDGLVKP EALNKKAIQI INRVRDKLTG RDFSHDDTLD
VPTQVELLIK QATSHENLCQ CYIGWCPFW


Related products :

Catalog number Product name Quantity
EIAAB25745 FK506-binding protein 12-rapamycin complex-associated protein 1,FKBP12-rapamycin complex-associated protein,Frap1,Mammalian target of rapamycin,Mechanistic target of rapamycin,mTOR,Mtor,Raft1,Rapamyci
EIAAB25746 FK506-binding protein 12-rapamycin complex-associated protein 1,FKBP12-rapamycin complex-associated protein,Frap,Frap1,Mammalian target of rapamycin,Mechanistic target of rapamycin,Mouse,mTOR,Mtor,Mus
18-661-15231 FKBP12-rapamycin complex-associated protein - FK506-binding protein 12-rapamycin complex-associated protein 1; Rapamycin target protein; RAPT1; Mammalian target of rapamycin; mTOR Polyclonal 0.1 mg
EIAAB25744 FK506-binding protein 12-rapamycin complex-associated protein 1,FKBP12-rapamycin complex-associated protein,FRAP,FRAP1,FRAP2,Homo sapiens,Human,Mammalian target of rapamycin,Mechanistic target of rapa
18-785-210287 mTOR (Phospho-Ser2448) - FK506-binding protein 12-rapamycin complex-associated protein 1; Rapamycin target protein; RAPT1; Mammalian target of rapamycin; mTOR Polyclonal 0.1 mg
18-785-210287 mTOR (Phospho-Ser2448) - FK506-binding protein 12-rapamycin complex-associated protein 1; Rapamycin target protein; RAPT1; Mammalian target of rapamycin; mTOR Polyclonal 0.05 mg
bs-1992P Peptides: mTOR(Mammalian target of rapamycin) Protein Length:12-25 amino acids. 200ug lyophilized
MTPN MTOR Gene mechanistic target of rapamycin (serine_threonine kinase)
mTOR-101AP PC-mTOR (WB control) Mammalian Target of Rapamycin (mTOR) Immunogen: peptide Host: Rabbit 100-150ul
mTOR-101AP Mammalian Target of Rapamycin (mTOR) WB control: PC-mTOR Host: Rabbit Affinity purifed 100-150ul
mTOR-101AP Mammalian Target of Rapamycin (mTOR) Antigenic peptide: P-mTOR Host: Rabbit Affinity purifed 100ul
E02M0019 Rat Mammalian target of rapamycin ELISA , mTOR
201-11-0427 Rat mammalian target of rapamycin(mTOR)ELISA Kit 96T
QY-E11218 Rat mammalian target of rapamycin(mTOR)ELISA Kit 96T
UB-E11218 Rat mammalian target of rapamycin(mTOR)ELISA Kit 96T
E02M0019 Rat Mammalian target of rapamycin ELISA , mTOR 96 Tests/kit
E0426Ra Rat mammalian target of rapamycin, mTOR ELISA Kit 96T
201-11-0427 Rat mammalian target of rapamycin, mTOR ELISA Kit 96T
E0426Ra Rat mammalian target of rapamycin, mTOR ELISA Kit 48T
P-mTOR Mammalian Target of Rapamycin (mTOR) , Antigen blocking peptide 100ul
18-661-15232 Regulatory-associated protein of mTOR - Raptor; P150 target of rapamycin (TOR)-scaffold protein Polyclonal 0.1 mg
18-661-15233 Regulatory-associated protein of mTOR - Raptor; P150 target of rapamycin (TOR)-scaffold protein Polyclonal 0.1 mg
18-661-15234 Regulatory-associated protein of mTOR - Raptor; P150 target of rapamycin (TOR)-scaffold protein Polyclonal 0.1 mg
mTOR-101AP Mammalian Target of Rapamycin (mTOR) , Host species: rabbit, polyclonal antibody 200ul
mTOR-101AP Polyclonal Antibody Mammalian Target of Rapamycin (mTOR) Immunogen: peptide Host: Rabbit 200ul


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur