Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

UV excision repair protein RAD23 homolog B (HR23B) (hHR23B) (XP-C repair-complementing complex 58 kDa protein) (p58)

 RD23B_HUMAN             Reviewed;         409 AA.
P54727; B3KWK8; G5E9P0; Q7Z5K8; Q8WUB0;
01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
01-OCT-1996, sequence version 1.
27-SEP-2017, entry version 175.
RecName: Full=UV excision repair protein RAD23 homolog B;
Short=HR23B;
Short=hHR23B;
AltName: Full=XP-C repair-complementing complex 58 kDa protein;
Short=p58;
Name=RAD23B;
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND PARTIAL PROTEIN SEQUENCE.
PubMed=8168482;
Masutani C., Sugasawa K., Yanagisawa J., Sonoyama T., Ui M.,
Enomoto T., Takio K., Tanaka K., van der Spek P.J., Bootsma D.,
Hoeijmakers J.H.J., Hanaoka F.;
"Purification and cloning of a nucleotide excision repair complex
involving the Xeroderma pigmentosum group C protein and a human
homologue of yeast RAD23.";
EMBO J. 13:1831-1843(1994).
[2]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), VARIANT VAL-249, ALTERNATIVE
SPLICING, AND TISSUE SPECIFICITY (ISOFORM 2).
TISSUE=Testis;
PubMed=15064313;
Huang X., Wang H., Xu M., Lu L., Xu Z., Li J., Zhou Z., Sha J.;
"Expression of a novel RAD23B mRNA splice variant in the human
testis.";
J. Androl. 25:363-368(2004).
[3]
NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT VAL-249.
NIEHS SNPs program;
Submitted (OCT-2002) to the EMBL/GenBank/DDBJ databases.
[4]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
PubMed=14702039; DOI=10.1038/ng1285;
Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
"Complete sequencing and characterization of 21,243 full-length human
cDNAs.";
Nat. Genet. 36:40-45(2004).
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=15164053; DOI=10.1038/nature02465;
Humphray S.J., Oliver K., Hunt A.R., Plumb R.W., Loveland J.E.,
Howe K.L., Andrews T.D., Searle S., Hunt S.E., Scott C.E., Jones M.C.,
Ainscough R., Almeida J.P., Ambrose K.D., Ashwell R.I.S.,
Babbage A.K., Babbage S., Bagguley C.L., Bailey J., Banerjee R.,
Barker D.J., Barlow K.F., Bates K., Beasley H., Beasley O., Bird C.P.,
Bray-Allen S., Brown A.J., Brown J.Y., Burford D., Burrill W.,
Burton J., Carder C., Carter N.P., Chapman J.C., Chen Y., Clarke G.,
Clark S.Y., Clee C.M., Clegg S., Collier R.E., Corby N., Crosier M.,
Cummings A.T., Davies J., Dhami P., Dunn M., Dutta I., Dyer L.W.,
Earthrowl M.E., Faulkner L., Fleming C.J., Frankish A.,
Frankland J.A., French L., Fricker D.G., Garner P., Garnett J.,
Ghori J., Gilbert J.G.R., Glison C., Grafham D.V., Gribble S.,
Griffiths C., Griffiths-Jones S., Grocock R., Guy J., Hall R.E.,
Hammond S., Harley J.L., Harrison E.S.I., Hart E.A., Heath P.D.,
Henderson C.D., Hopkins B.L., Howard P.J., Howden P.J., Huckle E.,
Johnson C., Johnson D., Joy A.A., Kay M., Keenan S., Kershaw J.K.,
Kimberley A.M., King A., Knights A., Laird G.K., Langford C.,
Lawlor S., Leongamornlert D.A., Leversha M., Lloyd C., Lloyd D.M.,
Lovell J., Martin S., Mashreghi-Mohammadi M., Matthews L., McLaren S.,
McLay K.E., McMurray A., Milne S., Nickerson T., Nisbett J.,
Nordsiek G., Pearce A.V., Peck A.I., Porter K.M., Pandian R.,
Pelan S., Phillimore B., Povey S., Ramsey Y., Rand V., Scharfe M.,
Sehra H.K., Shownkeen R., Sims S.K., Skuce C.D., Smith M.,
Steward C.A., Swarbreck D., Sycamore N., Tester J., Thorpe A.,
Tracey A., Tromans A., Thomas D.W., Wall M., Wallis J.M., West A.P.,
Whitehead S.L., Willey D.L., Williams S.A., Wilming L., Wray P.W.,
Young L., Ashurst J.L., Coulson A., Blocker H., Durbin R.M.,
Sulston J.E., Hubbard T., Jackson M.J., Bentley D.R., Beck S.,
Rogers J., Dunham I.;
"DNA sequence and analysis of human chromosome 9.";
Nature 429:369-374(2004).
[6]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
Venter J.C.;
Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
[7]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), AND VARIANT
VAL-249.
TISSUE=Uterus;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[8]
FUNCTION.
PubMed=9372924; DOI=10.1128/MCB.17.12.6924;
Sugasawa K., Ng J.M., Masutani C., Maekawa T., Uchida A.,
van der Spek P.J., Eker A.P., Rademakers S., Visser C.,
Aboussekhra A., Wood R.D., Hanaoka F., Bootsma D., Hoeijmakers J.H.;
"Two human homologs of Rad23 are functionally interchangeable in
complex formation and stimulation of XPC repair activity.";
Mol. Cell. Biol. 17:6924-6931(1997).
[9]
FUNCTION OF THE XPC COMPLEX.
PubMed=9734359; DOI=10.1016/S1097-2765(00)80132-X;
Sugasawa K., Ng J.M., Masutani C., Iwai S., van der Spek P.J.,
Eker A.P., Hanaoka F., Bootsma D., Hoeijmakers J.H.;
"Xeroderma pigmentosum group C protein complex is the initiator of
global genome nucleotide excision repair.";
Mol. Cell 2:223-232(1998).
[10]
INTERACTION WITH PSMD4 AND PSMC5.
PubMed=10488153; DOI=10.1074/jbc.274.39.28019;
Hiyama H., Yokoi M., Masutani C., Sugasawa K., Maekawa T., Tanaka K.,
Hoeijmakers J.H., Hanaoka F.;
"Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23
mediates interaction with S5a subunit of 26 S proteasome.";
J. Biol. Chem. 274:28019-28025(1999).
[11]
INTERACTION WITH ATXN3.
PubMed=10915768; DOI=10.1093/hmg/9.12.1795;
Wang G., Sawai N., Kotliarova S., Kanazawa I., Nukina N.;
"Ataxin-3, the MJD1 gene product, interacts with the two human
homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B.";
Hum. Mol. Genet. 9:1795-1803(2000).
[12]
FUNCTION, AND FUNCTION OF THE XPC COMPLEX.
PubMed=10873465; DOI=10.1006/jmbi.2000.3857;
Batty D., Rapic'-Otrin V., Levine A.S., Wood R.D.;
"Stable binding of human XPC complex to irradiated DNA confers strong
discrimination for damaged sites.";
J. Mol. Biol. 300:275-290(2000).
[13]
INTERACTION WITH CETN2, SUBCELLULAR LOCATION, AND CHARACTERIZATION OF
THE XPC COMPLEX.
PubMed=11279143; DOI=10.1074/jbc.M100855200;
Araki M., Masutani C., Takemura M., Uchida A., Sugasawa K., Kondoh J.,
Ohkuma Y., Hanaoka F.;
"Centrosome protein centrin 2/caltractin 1 is part of the xeroderma
pigmentosum group C complex that initiates global genome nucleotide
excision repair.";
J. Biol. Chem. 276:18665-18672(2001).
[14]
FUNCTION OF THE XPC COMPLEX.
PubMed=12509299; DOI=10.1016/S1568-7864(01)00008-8;
Sugasawa K., Shimizu Y., Iwai S., Hanaoka F.;
"A molecular mechanism for DNA damage recognition by the xeroderma
pigmentosum group C protein complex.";
DNA Repair 1:95-107(2002).
[15]
INTERACTION WITH XPC.
PubMed=12509233; DOI=10.1016/S1568-7864(02)00031-9;
Uchida A., Sugasawa K., Masutani C., Dohmae N., Araki M., Yokoi M.,
Ohkuma Y., Hanaoka F.;
"The carboxy-terminal domain of the XPC protein plays a crucial role
in nucleotide excision repair through interactions with transcription
factor IIH.";
DNA Repair 1:449-461(2002).
[16]
FUNCTION OF THE XPC COMPLEX.
PubMed=12547395; DOI=10.1016/S1568-7864(02)00222-7;
Janicijevic A., Sugasawa K., Shimizu Y., Hanaoka F., Wijgers N.,
Djurica M., Hoeijmakers J.H., Wyman C.;
"DNA bending by the human damage recognition complex XPC-HR23B.";
DNA Repair 2:325-336(2003).
[17]
FUNCTION.
PubMed=12815074; DOI=10.1101/gad.260003;
Ng J.M., Vermeulen W., van der Horst G.T., Bergink S., Sugasawa K.,
Vrieling H., Hoeijmakers J.H.;
"A novel regulation mechanism of DNA repair by damage-induced and
RAD23-dependent stabilization of xeroderma pigmentosum group C
protein.";
Genes Dev. 17:1630-1645(2003).
[18]
INTERACTION WITH NGLY1 AND PSMC1.
PubMed=15358861; DOI=10.1073/pnas.0405663101;
Katiyar S., Li G., Lennarz W.J.;
"A complex between peptide:N-glycanase and two proteasome-linked
proteins suggests a mechanism for the degradation of misfolded
glycoproteins.";
Proc. Natl. Acad. Sci. U.S.A. 101:13774-13779(2004).
[19]
SUBCELLULAR LOCATION.
PubMed=16253613; DOI=10.1016/j.bbrc.2005.09.192;
Katiyar S., Lennarz W.J.;
"Studies on the intracellular localization of hHR23B.";
Biochem. Biophys. Res. Commun. 337:1296-1300(2005).
[20]
INTERACTION WITH XPC.
PubMed=15964821; DOI=10.1128/MCB.25.13.5664-5674.2005;
Nishi R., Okuda Y., Watanabe E., Mori T., Iwai S., Masutani C.,
Sugasawa K., Hanaoka F.;
"Centrin 2 stimulates nucleotide excision repair by interacting with
xeroderma pigmentosum group C protein.";
Mol. Cell. Biol. 25:5664-5674(2005).
[21]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
Mann M.;
"Global, in vivo, and site-specific phosphorylation dynamics in
signaling networks.";
Cell 127:635-648(2006).
[22]
INTERACTION WITH EEF1A1, AND MUTAGENESIS OF LYS-6.
PubMed=16712842; DOI=10.1016/j.febslet.2006.05.012;
Chen L., Madura K.;
"Evidence for distinct functions for human DNA repair factors hHR23A
and hHR23B.";
FEBS Lett. 580:3401-3408(2006).
[23]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-155, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Embryonic kidney;
PubMed=17323924; DOI=10.1021/bi061994u;
Wang X., Chen C.-F., Baker P.R., Chen P.-L., Kaiser P., Huang L.;
"Mass spectrometric characterization of the affinity-purified human
26S proteasome complex.";
Biochemistry 46:3553-3565(2007).
[24]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18691976; DOI=10.1016/j.molcel.2008.07.007;
Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,
Greff Z., Keri G., Stemmann O., Mann M.;
"Kinase-selective enrichment enables quantitative phosphoproteomics of
the kinome across the cell cycle.";
Mol. Cell 31:438-448(2008).
[25]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18669648; DOI=10.1073/pnas.0805139105;
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
Elledge S.J., Gygi S.P.;
"A quantitative atlas of mitotic phosphorylation.";
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
[26]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19413330; DOI=10.1021/ac9004309;
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
Mohammed S.;
"Lys-N and trypsin cover complementary parts of the phosphoproteome in
a refined SCX-based approach.";
Anal. Chem. 81:4493-4501(2009).
[27]
FUNCTION IN PROTEASOMAL DEGRADATION, AND POLYUBIQUITIN-BINDING.
PubMed=19435460; DOI=10.1042/BJ20090528;
Li X., Demartino G.N.;
"Variably modulated gating of the 26S proteasome by ATP and
polyubiquitin.";
Biochem. J. 421:397-404(2009).
[28]
FUNCTION OF THE XPC COMPLEX.
PubMed=19941824; DOI=10.1016/j.molcel.2009.09.035;
Sugasawa K., Akagi J., Nishi R., Iwai S., Hanaoka F.;
"Two-step recognition of DNA damage for mammalian nucleotide excision
repair: Directional binding of the XPC complex and DNA strand
scanning.";
Mol. Cell 36:642-653(2009).
[29]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Leukemic T-cell;
PubMed=19690332; DOI=10.1126/scisignal.2000007;
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
Rodionov V., Han D.K.;
"Quantitative phosphoproteomic analysis of T cell receptor signaling
reveals system-wide modulation of protein-protein interactions.";
Sci. Signal. 2:RA46-RA46(2009).
[30]
FUNCTION OF THE XPC COMPLEX.
PubMed=20028083; DOI=10.1021/bi901575h;
Neher T.M., Rechkunova N.I., Lavrik O.I., Turchi J.J.;
"Photo-cross-linking of XPC-Rad23B to cisplatin-damaged DNA reveals
contacts with both strands of the DNA duplex and spans the DNA
adduct.";
Biochemistry 49:669-678(2010).
[31]
FUNCTION OF THE XPC COMPLEX.
PubMed=20798892; DOI=10.4061/2010/805698;
Shimizu Y., Uchimura Y., Dohmae N., Saitoh H., Hanaoka F.,
Sugasawa K.;
"Stimulation of DNA glycosylase activities by XPC Protein Complex:
Roles of protein-protein interactions.";
J. Nucleic Acids 2010:455-459(2010).
[32]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=20068231; DOI=10.1126/scisignal.2000475;
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
Mann M.;
"Quantitative phosphoproteomics reveals widespread full
phosphorylation site occupancy during mitosis.";
Sci. Signal. 3:RA3-RA3(2010).
[33]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21269460; DOI=10.1186/1752-0509-5-17;
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
"Initial characterization of the human central proteome.";
BMC Syst. Biol. 5:17-17(2011).
[34]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21406692; DOI=10.1126/scisignal.2001570;
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
Blagoev B.;
"System-wide temporal characterization of the proteome and
phosphoproteome of human embryonic stem cell differentiation.";
Sci. Signal. 4:RS3-RS3(2011).
[35]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma, and Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[36]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160 AND THR-164, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Liver;
PubMed=24275569; DOI=10.1016/j.jprot.2013.11.014;
Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D.,
Wang L., Ye M., Zou H.;
"An enzyme assisted RP-RPLC approach for in-depth analysis of human
liver phosphoproteome.";
J. Proteomics 96:253-262(2014).
[37]
STRUCTURE BY NMR OF 1-82.
PubMed=12832454; DOI=10.1074/jbc.M304628200;
Ryu K.-S., Lee K.-J., Bae S.-H., Kim B.-K., Kim K.-A., Choi B.-S.;
"Binding surface mapping of intra- and interdomain interactions among
hHR23B, ubiquitin, and polyubiquitin binding site 2 of S5a.";
J. Biol. Chem. 278:36621-36627(2003).
[38]
STRUCTURE BY NMR OF 1-87 IN COMPLEX WITH PSMD4.
PubMed=14585839; DOI=10.1074/jbc.M309448200;
Fujiwara K., Tenno T., Sugasawa K., Jee J.-G., Ohki I., Kojima C.,
Tochio H., Hiroaki H., Hanaoka F., Shirakawa M.;
"Structure of the ubiquitin-interacting motif of S5a bound to the
ubiquitin-like domain of HR23B.";
J. Biol. Chem. 279:4760-4767(2004).
[39]
STRUCTURE BY NMR OF 275-342, AND FUNCTION.
PubMed=15885096; DOI=10.1111/j.1742-4658.2005.04667.x;
Kim B., Ryu K.-S., Kim H.-J., Cho S.-J., Choi B.-S.;
"Solution structure and backbone dynamics of the XPC-binding domain of
the human DNA repair protein hHR23B.";
FEBS J. 272:2467-2476(2005).
-!- FUNCTION: Multiubiquitin chain receptor involved in modulation of
proteasomal degradation. Binds to polyubiquitin chains. Proposed
to be capable to bind simultaneously to the 26S proteasome and to
polyubiquitinated substrates and to deliver ubiquitinated proteins
to the proteasome. May play a role in endoplasmic reticulum-
associated degradation (ERAD) of misfolded glycoproteins by
association with PNGase and delivering deglycosylated proteins to
the proteasome.
-!- FUNCTION: Involved in global genome nucleotide excision repair
(GG-NER) by acting as component of the XPC complex. Cooperatively
with CETN2 appears to stabilize XPC. May protect XPC from
proteasomal degradation.
-!- FUNCTION: The XPC complex is proposed to represent the first
factor bound at the sites of DNA damage and together with other
core recognition factors, XPA, RPA and the TFIIH complex, is part
of the pre-incision (or initial recognition) complex. The XPC
complex recognizes a wide spectrum of damaged DNA characterized by
distortions of the DNA helix such as single-stranded loops,
mismatched bubbles or single-stranded overhangs. The orientation
of XPC complex binding appears to be crucial for inducing a
productive NER. XPC complex is proposed to recognize and to
interact with unpaired bases on the undamaged DNA strand which is
followed by recruitment of the TFIIH complex and subsequent
scanning for lesions in the opposite strand in a 5'-to-3'
direction by the NER machinery. Cyclobutane pyrimidine dimers
(CPDs) which are formed upon UV-induced DNA damage esacpe
detection by the XPC complex due to a low degree of structural
perurbation. Instead they are detected by the UV-DDB complex which
in turn recruits and cooperates with the XPC complex in the
respective DNA repair. In vitro, the XPC:RAD23B dimer is
sufficient to initiate NER; it preferentially binds to cisplatin
and UV-damaged double-stranded DNA and also binds to a variety of
chemically and structurally diverse DNA adducts. XPC:RAD23B
contacts DNA both 5' and 3' of a cisplatin lesion with a
preference for the 5' side. XPC:RAD23B induces a bend in DNA upon
binding. XPC:RAD23B stimulates the activity of DNA glycosylases
TDG and SMUG1.
-!- SUBUNIT: Component of the XPC complex composed of XPC, RAD23B and
CETN2. Interacts with NGLY1 and PSMC1. Interacts with ATXN3.
Interacts with PSMD4 and PSMC5. Interacts with AMFR. Interacts
with VCP; the interaction is indirect and mediated by NGLY1 (By
similarity). {ECO:0000250}.
-!- INTERACTION:
Q16186:ADRM1; NbExp=2; IntAct=EBI-954531, EBI-954387;
P54252:ATXN3; NbExp=2; IntAct=EBI-954531, EBI-946046;
P19447:ERCC3; NbExp=2; IntAct=EBI-954531, EBI-1183307;
Q96IV0:NGLY1; NbExp=7; IntAct=EBI-954531, EBI-6165879;
P24610:Pax3 (xeno); NbExp=4; IntAct=EBI-954531, EBI-1208116;
Q96PV4:PNMA5; NbExp=5; IntAct=EBI-954531, EBI-10171633;
P55036:PSMD4; NbExp=12; IntAct=EBI-954531, EBI-359318;
Q9UHX1:PUF60; NbExp=3; IntAct=EBI-954531, EBI-1053259;
P55034:RPN10 (xeno); NbExp=3; IntAct=EBI-954531, EBI-2620423;
Q92681:RSC1A1; NbExp=4; IntAct=EBI-954531, EBI-3940171;
Q8TBC4:UBA3; NbExp=2; IntAct=EBI-954531, EBI-717567;
P0CG47:UBB; NbExp=4; IntAct=EBI-954531, EBI-413034;
P0CG48:UBC; NbExp=6; IntAct=EBI-954531, EBI-3390054;
P45974:USP5; NbExp=2; IntAct=EBI-954531, EBI-741277;
P08670:VIM; NbExp=2; IntAct=EBI-954531, EBI-353844;
Q01831:XPC; NbExp=5; IntAct=EBI-954531, EBI-372610;
-!- SUBCELLULAR LOCATION: Nucleus. Cytoplasm. Note=The intracellular
distribution is cell cycle dependent. Localized to the nucleus and
the cytoplasm during G1 phase. Nuclear levels decrease during S-
phase; upon entering mitosis, relocalizes in the cytoplasm without
association with chromatin.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing; Named isoforms=2;
Name=1;
IsoId=P54727-1; Sequence=Displayed;
Name=2;
IsoId=P54727-2; Sequence=VSP_045606;
Note=Highly expressed in the testis and in ejaculated
spermatozoa.;
-!- DOMAIN: The ubiquitin-like domain mediates interaction with ATXN3.
-!- SIMILARITY: Belongs to the RAD23 family. {ECO:0000305}.
-!- WEB RESOURCE: Name=NIEHS-SNPs;
URL="http://egp.gs.washington.edu/data/rad23b/";
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; D21090; BAA04652.1; -; mRNA.
EMBL; AY313777; AAP81008.1; -; mRNA.
EMBL; AY165178; AAN47194.1; -; Genomic_DNA.
EMBL; AK125226; BAG54170.1; -; mRNA.
EMBL; AL137852; CAD13275.1; -; Genomic_DNA.
EMBL; CH471105; EAW59016.1; -; Genomic_DNA.
EMBL; CH471105; EAW59017.1; -; Genomic_DNA.
EMBL; BC020973; AAH20973.1; -; mRNA.
CCDS; CCDS59138.1; -. [P54727-2]
CCDS; CCDS6769.1; -. [P54727-1]
PIR; S44346; S44346.
RefSeq; NP_001231653.1; NM_001244724.1. [P54727-2]
RefSeq; NP_002865.1; NM_002874.4. [P54727-1]
UniGene; Hs.521640; -.
PDB; 1P1A; NMR; -; A=1-82.
PDB; 1PVE; NMR; -; A=275-342.
PDB; 1UEL; NMR; -; A=1-87.
PDBsum; 1P1A; -.
PDBsum; 1PVE; -.
PDBsum; 1UEL; -.
ProteinModelPortal; P54727; -.
SMR; P54727; -.
BioGrid; 111824; 120.
DIP; DIP-39944N; -.
IntAct; P54727; 52.
MINT; MINT-5006025; -.
STRING; 9606.ENSP00000350708; -.
iPTMnet; P54727; -.
PhosphoSitePlus; P54727; -.
SwissPalm; P54727; -.
BioMuta; RAD23B; -.
DMDM; 1709985; -.
OGP; P54727; -.
EPD; P54727; -.
MaxQB; P54727; -.
PaxDb; P54727; -.
PeptideAtlas; P54727; -.
PRIDE; P54727; -.
TopDownProteomics; P54727-1; -. [P54727-1]
DNASU; 5887; -.
Ensembl; ENST00000358015; ENSP00000350708; ENSG00000119318. [P54727-1]
Ensembl; ENST00000416373; ENSP00000405623; ENSG00000119318. [P54727-2]
GeneID; 5887; -.
KEGG; hsa:5887; -.
UCSC; uc004bde.4; human. [P54727-1]
CTD; 5887; -.
DisGeNET; 5887; -.
EuPathDB; HostDB:ENSG00000119318.12; -.
GeneCards; RAD23B; -.
HGNC; HGNC:9813; RAD23B.
HPA; CAB033868; -.
HPA; HPA029718; -.
HPA; HPA029720; -.
MIM; 600062; gene.
neXtProt; NX_P54727; -.
OpenTargets; ENSG00000119318; -.
PharmGKB; PA34173; -.
eggNOG; KOG0011; Eukaryota.
eggNOG; COG5272; LUCA.
GeneTree; ENSGT00390000012078; -.
HOGENOM; HOG000172162; -.
HOVERGEN; HBG055042; -.
InParanoid; P54727; -.
KO; K10839; -.
OMA; NFLFDQP; -.
OrthoDB; EOG091G0DVL; -.
PhylomeDB; P54727; -.
TreeFam; TF101216; -.
Reactome; R-HSA-532668; N-glycan trimming in the ER and Calnexin/Calreticulin cycle.
Reactome; R-HSA-5689877; Josephin domain DUBs.
Reactome; R-HSA-5696394; DNA Damage Recognition in GG-NER.
Reactome; R-HSA-5696395; Formation of Incision Complex in GG-NER.
SIGNOR; P54727; -.
ChiTaRS; RAD23B; human.
EvolutionaryTrace; P54727; -.
GeneWiki; RAD23B; -.
GenomeRNAi; 5887; -.
PMAP-CutDB; P54727; -.
PRO; PR:P54727; -.
Proteomes; UP000005640; Chromosome 9.
Bgee; ENSG00000119318; -.
CleanEx; HS_RAD23B; -.
ExpressionAtlas; P54727; baseline and differential.
Genevisible; P54727; HS.
GO; GO:0005829; C:cytosol; IDA:HPA.
GO; GO:0005654; C:nucleoplasm; IDA:HPA.
GO; GO:0005634; C:nucleus; TAS:ProtInc.
GO; GO:0000502; C:proteasome complex; IEA:UniProtKB-KW.
GO; GO:0071942; C:XPC complex; IDA:UniProtKB.
GO; GO:0003684; F:damaged DNA binding; IEA:InterPro.
GO; GO:0031593; F:polyubiquitin modification-dependent protein binding; IDA:UniProtKB.
GO; GO:0003697; F:single-stranded DNA binding; TAS:ProtInc.
GO; GO:0048568; P:embryonic organ development; IEA:Ensembl.
GO; GO:0070911; P:global genome nucleotide-excision repair; TAS:Reactome.
GO; GO:0006289; P:nucleotide-excision repair; IDA:UniProtKB.
GO; GO:0000715; P:nucleotide-excision repair, DNA damage recognition; IDA:UniProtKB.
GO; GO:0000717; P:nucleotide-excision repair, DNA duplex unwinding; TAS:Reactome.
GO; GO:0006294; P:nucleotide-excision repair, preincision complex assembly; TAS:Reactome.
GO; GO:0043161; P:proteasome-mediated ubiquitin-dependent protein catabolic process; IEA:InterPro.
GO; GO:0016579; P:protein deubiquitination; TAS:Reactome.
GO; GO:0006457; P:protein folding; TAS:Reactome.
GO; GO:0032434; P:regulation of proteasomal ubiquitin-dependent protein catabolic process; IDA:UniProtKB.
GO; GO:0007283; P:spermatogenesis; IEA:Ensembl.
InterPro; IPR004806; Rad23.
InterPro; IPR006636; STI1_HS-bd.
InterPro; IPR015940; UBA.
InterPro; IPR009060; UBA-like.
InterPro; IPR029071; Ubiquitin-rel_dom.
InterPro; IPR000626; Ubiquitin_dom.
InterPro; IPR015360; XPC-bd.
Pfam; PF00627; UBA; 2.
Pfam; PF00240; ubiquitin; 1.
Pfam; PF09280; XPC-binding; 1.
PRINTS; PR01839; RAD23PROTEIN.
SMART; SM00727; STI1; 1.
SMART; SM00165; UBA; 2.
SMART; SM00213; UBQ; 1.
SUPFAM; SSF101238; SSF101238; 1.
SUPFAM; SSF46934; SSF46934; 2.
SUPFAM; SSF54236; SSF54236; 1.
TIGRFAMs; TIGR00601; rad23; 1.
PROSITE; PS50030; UBA; 2.
PROSITE; PS50053; UBIQUITIN_2; 1.
1: Evidence at protein level;
3D-structure; Alternative splicing; Complete proteome; Cytoplasm;
Direct protein sequencing; DNA damage; DNA repair; Nucleus;
Phosphoprotein; Polymorphism; Proteasome; Reference proteome; Repeat;
Ubl conjugation pathway.
CHAIN 1 409 UV excision repair protein RAD23 homolog
B.
/FTId=PRO_0000114906.
DOMAIN 1 79 Ubiquitin-like. {ECO:0000255|PROSITE-
ProRule:PRU00214}.
DOMAIN 188 228 UBA 1. {ECO:0000255|PROSITE-
ProRule:PRU00212}.
DOMAIN 274 317 STI1.
DOMAIN 364 404 UBA 2. {ECO:0000255|PROSITE-
ProRule:PRU00212}.
COMPBIAS 103 106 Poly-Thr.
COMPBIAS 254 260 Poly-Ala.
COMPBIAS 261 269 Poly-Thr.
COMPBIAS 336 348 Poly-Gly.
MOD_RES 155 155 Phosphothreonine.
{ECO:0000244|PubMed:17323924}.
MOD_RES 160 160 Phosphoserine.
{ECO:0000244|PubMed:18669648,
ECO:0000244|PubMed:19690332,
ECO:0000244|PubMed:20068231,
ECO:0000244|PubMed:21406692,
ECO:0000244|PubMed:23186163,
ECO:0000244|PubMed:24275569}.
MOD_RES 164 164 Phosphothreonine.
{ECO:0000244|PubMed:24275569}.
MOD_RES 174 174 Phosphoserine.
{ECO:0000250|UniProtKB:Q4KMA2}.
MOD_RES 186 186 Phosphothreonine.
{ECO:0000250|UniProtKB:Q4KMA2}.
MOD_RES 199 199 Phosphoserine.
{ECO:0000250|UniProtKB:Q4KMA2}.
MOD_RES 202 202 Phosphotyrosine.
{ECO:0000250|UniProtKB:Q4KMA2}.
VAR_SEQ 1 72 Missing (in isoform 2).
{ECO:0000303|PubMed:15064313}.
/FTId=VSP_045606.
VARIANT 249 249 A -> V (in dbSNP:rs1805329).
{ECO:0000269|PubMed:15064313,
ECO:0000269|PubMed:15489334,
ECO:0000269|Ref.3}.
/FTId=VAR_014350.
MUTAGEN 6 6 K->A: Impairs interaction with EEF1A1.
{ECO:0000269|PubMed:16712842}.
STRAND 1 7 {ECO:0000244|PDB:1P1A}.
STRAND 12 17 {ECO:0000244|PDB:1P1A}.
HELIX 23 34 {ECO:0000244|PDB:1P1A}.
TURN 36 38 {ECO:0000244|PDB:1P1A}.
HELIX 41 43 {ECO:0000244|PDB:1P1A}.
STRAND 44 48 {ECO:0000244|PDB:1P1A}.
HELIX 59 62 {ECO:0000244|PDB:1P1A}.
STRAND 68 74 {ECO:0000244|PDB:1P1A}.
HELIX 277 279 {ECO:0000244|PDB:1PVE}.
TURN 283 287 {ECO:0000244|PDB:1PVE}.
HELIX 288 292 {ECO:0000244|PDB:1PVE}.
HELIX 296 298 {ECO:0000244|PDB:1PVE}.
HELIX 299 307 {ECO:0000244|PDB:1PVE}.
HELIX 311 318 {ECO:0000244|PDB:1PVE}.
HELIX 321 329 {ECO:0000244|PDB:1PVE}.
HELIX 335 338 {ECO:0000244|PDB:1PVE}.
SEQUENCE 409 AA; 43171 MW; C026C78273BCB289 CRC64;
MQVTLKTLQQ QTFKIDIDPE ETVKALKEKI ESEKGKDAFP VAGQKLIYAG KILNDDTALK
EYKIDEKNFV VVMVTKPKAV STPAPATTQQ SAPASTTAVT SSTTTTVAQA PTPVPALAPT
STPASITPAS ATASSEPAPA SAAKQEKPAE KPAETPVATS PTATDSTSGD SSRSNLFEDA
TSALVTGQSY ENMVTEIMSM GYEREQVIAA LRASFNNPDR AVEYLLMGIP GDRESQAVVD
PPQAASTGAP QSSAVAAAAA TTTATTTTTS SGGHPLEFLR NQPQFQQMRQ IIQQNPSLLP
ALLQQIGREN PQLLQQISQH QEHFIQMLNE PVQEAGGQGG GGGGGSGGIA EAGSGHMNYI
QVTPQEKEAI ERLKALGFPE GLVIQAYFAC EKNENLAANF LLQQNFDED


Related products :

Catalog number Product name Quantity
EIAAB34140 hHR23B,Homo sapiens,HR23B,Human,p58,RAD23B,UV excision repair protein RAD23 homolog B,XP-C repair-complementing complex 58 kDa protein
EIAAB34141 HR23B,mHR23B,Mhr23b,Mouse,Mus musculus,p58,Rad23b,UV excision repair protein RAD23 homolog B,XP-C repair-complementing complex 58 kDa protein
EIAAB46542 DNA excision repair protein ERCC-4,DNA repair endonuclease XPF,DNA repair protein complementing XP-F cells,ERCC11,ERCC4,Homo sapiens,Human,Xeroderma pigmentosum group F-complementing protein,XPF
EIAAB13183 DNA excision repair protein ERCC-5,DNA repair protein complementing XP-G cells homolog,Ercc5,Ercc-5,Mouse,Mus musculus,Xeroderma pigmentosum group G-complementing protein homolog,Xpg
EIAAB13182 DNA excision repair protein ERCC-5,DNA repair protein complementing XP-G cells,ERCC5,ERCM2,Homo sapiens,Human,Xeroderma pigmentosum group G-complementing protein,XPG,XPGC
EIAAB13174 Bos taurus,Bovine,CXPD,DNA excision repair protein ERCC-2,DNA repair protein complementing XP-D cells,ERCC2,TFIIH basal transcription factor complex helicase XPD subunit,Xeroderma pigmentosum group D-
EIAAB13176 CXPD,DNA excision repair protein ERCC-2,DNA repair protein complementing XP-D cells,Ercc2,Mouse,Mus musculus,TFIIH basal transcription factor complex helicase XPD subunit,Xeroderma pigmentosum group D
20-272-191522 XPF - Mouse monoclonal [SPM228] to XPF; EC 3.1.-.-; DNA excision repair protein ERCC-4; DNA-repair protein complementing XP-F cells; Xeroderma pigmentosum group F-complementing protein Monoclonal 0.5 ml
CSB-RP037744h Recombinant human UV excision repair protein RAD23 homolog A 500ug
I1664 UV excision repair protein RAD23 homolog B (RAD23B), Rat, ELISA Kit 96T
18-003-43729 UV excision repair protein RAD23 homolog A - hHR23A Polyclonal 0.1 mg Protein A
18-003-43728 UV excision repair protein RAD23 homolog A - hHR23A Polyclonal 0.1 mg Protein A
CSB-EL019260RA Rat UV excision repair protein RAD23 homolog B(RAD23B) ELISA kit 96T
EIAAB34136 Bos taurus,Bovine,RAD23A,UV excision repair protein RAD23 homolog A
I1660 UV excision repair protein RAD23 homolog A(RAD23A), Human, ELISA Kit 96T
I1659 UV excision repair protein RAD23 homolog A (RAD23A), Mouse, ELISA Kit 96T
I1663 UV excision repair protein RAD23 homolog B (RAD23B), Mouse, ELISA Kit 96T
I1658 UV excision repair protein RAD23 homolog A (RAD23A), Bovine, ELISA Kit 96T
EIAAB34142 Rad23b,Rat,Rattus norvegicus,UV excision repair protein RAD23 homolog B
abx109043 Polyclonal Rabbit UV excision repair protein RAD23 homolog A Antibody (HRP) 100 μg
15-1030-1 Polyclonal antibody Anti-UV excision repair protein RAD23 homolog A 100
CSB-EL019259MO Mouse UV excision repair protein RAD23 homolog A(RAD23A) ELISA kit 96T
CSB-EL019260BO Bovine UV excision repair protein RAD23 homolog B(RAD23B) ELISA kit 96T
CSB-EL019259BO Bovine UV excision repair protein RAD23 homolog A(RAD23A) ELISA kit 96T
CSB-EL019260MO Mouse UV excision repair protein RAD23 homolog B(RAD23B) ELISA kit 96T


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur