Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, GENTAUR another in time delivery

mRNA decay activator protein ZFP36 (Growth factor-inducible nuclear protein NUP475) (TPA-induced sequence 11) (Tristetraprolin) (Zinc finger protein 36) (Zfp-36)

 TTP_MOUSE               Reviewed;         319 AA.
P22893; P11520;
01-AUG-1991, integrated into UniProtKB/Swiss-Prot.
01-AUG-1991, sequence version 1.
25-OCT-2017, entry version 175.
RecName: Full=mRNA decay activator protein ZFP36 {ECO:0000305};
AltName: Full=Growth factor-inducible nuclear protein NUP475 {ECO:0000305};
AltName: Full=TPA-induced sequence 11 {ECO:0000303|PubMed:2915901};
AltName: Full=Tristetraprolin {ECO:0000303|PubMed:2204625};
AltName: Full=Zinc finger protein 36 {ECO:0000303|PubMed:7559666, ECO:0000312|MGI:MGI:99180};
Short=Zfp-36 {ECO:0000303|PubMed:7559666};
Name=Zfp36 {ECO:0000303|PubMed:7559666, ECO:0000312|MGI:MGI:99180};
Synonyms=Nup475 {ECO:0000303|PubMed:1699942},
Tis11 {ECO:0000303|PubMed:2915901}, Tis11a,
Ttp {ECO:0000303|PubMed:2204625};
Mus musculus (Mouse).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;
Muroidea; Muridae; Murinae; Mus; Mus.
NCBI_TaxID=10090;
[1]
NUCLEOTIDE SEQUENCE [MRNA], AND TISSUE SPECIFICITY.
PubMed=2204625;
Lai W.S., Stumpo D.J., Blackshear P.J.;
"Rapid insulin-stimulated accumulation of an mRNA encoding a proline-
rich protein.";
J. Biol. Chem. 265:16556-16563(1990).
[2]
NUCLEOTIDE SEQUENCE [MRNA], AND TISSUE SPECIFICITY.
PubMed=1699942;
Dubois R.N., McLane M.W., Ryder K., Lau L.F., Nathans D.;
"A growth factor-inducible nuclear protein with a novel
cysteine/histidine repetitive sequence.";
J. Biol. Chem. 265:19185-19191(1990).
[3]
NUCLEOTIDE SEQUENCE [MRNA].
STRAIN=SWR/J;
PubMed=2915901;
Varnum B.C., Lim R.W., Sukhatme V.P., Herschman H.R.;
"Nucleotide sequence of a cDNA encoding TIS11, a message induced in
Swiss 3T3 cells by the tumor promoter tetradecanoyl phorbol acetate.";
Oncogene 4:119-120(1989).
[4]
SEQUENCE REVISION.
PubMed=1861870;
Ma Q., Herschman H.R.;
"A corrected sequence for the predicted protein from the mitogen-
inducible TIS11 primary response gene.";
Oncogene 6:1277-1278(1991).
[5]
NUCLEOTIDE SEQUENCE [MRNA].
STRAIN=BALB/cJ;
PubMed=1996120; DOI=10.1128/MCB.11.3.1754;
Varnum B.C., Ma Q., Chi T., Fletcher B.S., Herschman H.R.;
"The TIS11 primary response gene is a member of a gene family that
encodes proteins with a highly conserved sequence containing an
unusual Cys-His repeat.";
Mol. Cell. Biol. 11:1754-1758(1991).
[6]
NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND INDUCTION.
STRAIN=BALB/cJ; TISSUE=Liver;
PubMed=7559666; DOI=10.1074/jbc.270.42.25266;
Lai W.S., Thompson M.J., Taylor G.A., Liu Y., Blackshear P.J.;
"Promoter analysis of Zfp-36, the mitogen-inducible gene encoding the
zinc finger protein tristetraprolin.";
J. Biol. Chem. 270:25266-25272(1995).
[7]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
STRAIN=FVB/N; TISSUE=Liver;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[8]
PHOSPHORYLATION AT SER-220 BY MAPK1.
PubMed=7768935; DOI=10.1074/jbc.270.22.13341;
Taylor G.A., Thompson M.J., Lai W.S., Blackshear P.J.;
"Phosphorylation of tristetraprolin, a potential zinc finger
transcription factor, by mitogen stimulation in intact cells and by
mitogen-activated protein kinase in vitro.";
J. Biol. Chem. 270:13341-13347(1995).
[9]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=8630730; DOI=10.1016/S1074-7613(00)80411-2;
Taylor G.A., Carballo E., Lee D.M., Lai W.S., Thompson M.J.,
Patel D.D., Schenkman D.I., Gilkeson G.S., Broxmeyer H.E.,
Haynes B.F., Blackshear P.J.;
"A pathogenetic role for TNF alpha in the syndrome of cachexia,
arthritis, and autoimmunity resulting from tristetraprolin (TTP)
deficiency.";
Immunity 4:445-454(1996).
[10]
FUNCTION, SUBCELLULAR LOCATION, DISRUPTION PHENOTYPE, AND INDUCTION.
PubMed=9703499; DOI=10.1126/science.281.5379.1001;
Carballo E., Lai W.S., Blackshear P.J.;
"Feedback inhibition of macrophage tumor necrosis factor-alpha
production by tristetraprolin.";
Science 281:1001-1005(1998).
[11]
FUNCTION, RNA-BINDING, AND DISRUPTION PHENOTYPE.
PubMed=10330172; DOI=10.1128/MCB.19.6.4311;
Lai W.S., Carballo E., Strum J.R., Kennington E.A., Phillips R.S.,
Blackshear P.J.;
"Evidence that tristetraprolin binds to AU-rich elements and promotes
the deadenylation and destabilization of tumor necrosis factor alpha
mRNA.";
Mol. Cell. Biol. 19:4311-4323(1999).
[12]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=10706852;
Carballo E., Lai W.S., Blackshear P.J.;
"Evidence that tristetraprolin is a physiological regulator of
granulocyte-macrophage colony-stimulating factor messenger RNA
deadenylation and stability.";
Blood 95:1891-1899(2000).
[13]
FUNCTION.
PubMed=10805719; DOI=10.1128/MCB.20.11.3753-3763.2000;
Stoecklin G., Ming X.F., Looser R., Moroni C.;
"Somatic mRNA turnover mutants implicate tristetraprolin in the
interleukin-3 mRNA degradation pathway.";
Mol. Cell. Biol. 20:3753-3763(2000).
[14]
FUNCTION, RNA-BINDING, PHOSPHORYLATION, AND INDUCTION.
PubMed=11533235; DOI=10.1128/MCB.21.9.6461-6469.2001;
Mahtani K.R., Brook M., Dean J.L., Sully G., Saklatvala J.,
Clark A.R.;
"Mitogen-activated protein kinase p38 controls the expression and
posttranslational modification of tristetraprolin, a regulator of
tumor necrosis factor alpha mRNA stability.";
Mol. Cell. Biol. 21:6461-6469(2001).
[15]
SUBCELLULAR LOCATION.
PubMed=11796723; DOI=10.1074/jbc.M111457200;
Phillips R.S., Ramos S.B., Blackshear P.J.;
"Members of the tristetraprolin family of tandem CCCH zinc finger
proteins exhibit CRM1-dependent nucleocytoplasmic shuttling.";
J. Biol. Chem. 277:11606-11613(2002).
[16]
INTERACTION WITH SFN; YWHAB; YWHAG; YWHAH; YWHAQ AND YWHAZ,
SUBCELLULAR LOCATION, AND MUTAGENESIS OF SER-178.
PubMed=11886850; DOI=10.1074/jbc.M110465200;
Johnson B.A., Stehn J.R., Yaffe M.B., Blackwell T.K.;
"Cytoplasmic localization of tristetraprolin involves 14-3-3-dependent
and -independent mechanisms.";
J. Biol. Chem. 277:18029-18036(2002).
[17]
FUNCTION, PHOSPHORYLATION AT SER-52 AND SER-178 BY MAPKAPK2,
INTERACTION WITH 14-3-3 PROTEINS, SUBCELLULAR LOCATION, RNA-BINDING,
AND MUTAGENESIS OF SER-52 AND SER-178.
PubMed=15014438; DOI=10.1038/sj.emboj.7600163;
Stoecklin G., Stubbs T., Kedersha N., Wax S., Rigby W.F.,
Blackwell T.K., Anderson P.;
"MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule
association and ARE-mRNA decay.";
EMBO J. 23:1313-1324(2004).
[18]
PHOSPHORYLATION AT SER-52 AND SER-178 BY MAPKAPK2; PHOSPHORYLATION AT
SER-80; SER-82; SER-85; THR-250 AND SER-316, INTERACTION WITH YWHAB,
RNA-BINDING, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=14688255; DOI=10.1074/jbc.M310486200;
Chrestensen C.A., Schroeder M.J., Shabanowitz J., Hunt D.F.,
Pelo J.W., Worthington M.T., Sturgill T.W.;
"MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites
including Ser178, a site required for 14-3-3 binding.";
J. Biol. Chem. 279:10176-10184(2004).
[19]
FUNCTION, RNA-BINDING, AND INDUCTION.
PubMed=15187092; DOI=10.1074/jbc.M402059200;
Tchen C.R., Brook M., Saklatvala J., Clark A.R.;
"The stability of tristetraprolin mRNA is regulated by mitogen-
activated protein kinase p38 and by tristetraprolin itself.";
J. Biol. Chem. 279:32393-32400(2004).
[20]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=15967811; DOI=10.1083/jcb.200502088;
Kedersha N., Stoecklin G., Ayodele M., Yacono P., Lykke-Andersen J.,
Fritzler M.J., Scheuner D., Kaufman R.J., Golan D.E., Anderson P.;
"Stress granules and processing bodies are dynamically linked sites of
mRNP remodeling.";
J. Cell Biol. 169:871-884(2005).
[21]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=15634918; DOI=10.4049/jimmunol.174.2.953;
Ogilvie R.L., Abelson M., Hau H.H., Vlasova I., Blackshear P.J.,
Bohjanen P.R.;
"Tristetraprolin down-regulates IL-2 gene expression through AU-rich
element-mediated mRNA decay.";
J. Immunol. 174:953-961(2005).
[22]
FUNCTION, AND INDUCTION.
PubMed=16514065; DOI=10.1182/blood-2005-07-3058;
Sauer I., Schaljo B., Vogl C., Gattermeier I., Kolbe T., Mueller M.,
Blackshear P.J., Kovarik P.;
"Interferons limit inflammatory responses by induction of
tristetraprolin.";
Blood 107:4790-4797(2006).
[23]
PHOSPHORYLATION, RNA-BINDING, DISRUPTION PHENOTYPE, MUTAGENESIS OF
SER-52 AND SER-178, AND INDUCTION.
PubMed=16508014; DOI=10.1128/MCB.26.6.2399-2407.2006;
Hitti E., Iakovleva T., Brook M., Deppenmeier S., Gruber A.D.,
Radzioch D., Clark A.R., Blackshear P.J., Kotlyarov A., Gaestel M.;
"Mitogen-activated protein kinase-activated protein kinase 2 regulates
tumor necrosis factor mRNA stability and translation mainly by
altering tristetraprolin expression, stability, and binding to
adenine/uridine-rich element.";
Mol. Cell. Biol. 26:2399-2407(2006).
[24]
SUBCELLULAR LOCATION, PHOSPHORYLATION, INDUCTION, AND MUTAGENESIS OF
SER-52 AND SER-178.
PubMed=16508015; DOI=10.1128/MCB.26.6.2408-2418.2006;
Brook M., Tchen C.R., Santalucia T., McIlrath J., Arthur J.S.,
Saklatvala J., Clark A.R.;
"Posttranslational regulation of tristetraprolin subcellular
localization and protein stability by p38 mitogen-activated protein
kinase and extracellular signal-regulated kinase pathways.";
Mol. Cell. Biol. 26:2408-2418(2006).
[25]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=17030620; DOI=10.1128/MCB.00945-06;
Lai W.S., Parker J.S., Grissom S.F., Stumpo D.J., Blackshear P.J.;
"Novel mRNA targets for tristetraprolin (TTP) identified by global
analysis of stabilized transcripts in TTP-deficient fibroblasts.";
Mol. Cell. Biol. 26:9196-9208(2006).
[26]
FUNCTION, RNA-BINDING, SUBCELLULAR LOCATION, AND INDUCTION.
PubMed=17288565; DOI=10.1111/j.1742-4658.2007.05632.x;
Lin N.Y., Lin C.T., Chen Y.L., Chang C.J.;
"Regulation of tristetraprolin during differentiation of 3T3-L1
preadipocytes.";
FEBS J. 274:867-878(2007).
[27]
INTERACTION WITH PPP2CA AND YWHAB, PHOSPHORYLATION AT SER-178 BY
MAPKAPK2, DEPHOSPHORYLATION AT SER-178 BY SERINE/THREONINE PHOSPHATASE
2A, AND MUTAGENESIS OF SER-52 AND SER-178.
PubMed=17170118; DOI=10.1074/jbc.M607347200;
Sun L., Stoecklin G., Van Way S., Hinkovska-Galcheva V., Guo R.F.,
Anderson P., Shanley T.P.;
"Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from
dephosphorylation by protein phosphatase 2a and stabilizes tumor
necrosis factor-alpha mRNA.";
J. Biol. Chem. 282:3766-3777(2007).
[28]
RNA-BINDING.
PubMed=17971298; DOI=10.1016/j.bbrc.2007.10.119;
Lin N.Y., Lin C.T., Chang C.J.;
"Modulation of immediate early gene expression by tristetraprolin in
the differentiation of 3T3-L1 cells.";
Biochem. Biophys. Res. Commun. 365:69-74(2008).
[29]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19144319; DOI=10.1016/j.immuni.2008.11.006;
Trost M., English L., Lemieux S., Courcelles M., Desjardins M.,
Thibault P.;
"The phagosomal proteome in interferon-gamma-activated macrophages.";
Immunity 30:143-154(2009).
[30]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=19188452; DOI=10.1128/MCB.00982-08;
Horner T.J., Lai W.S., Stumpo D.J., Blackshear P.J.;
"Stimulation of polo-like kinase 3 mRNA decay by tristetraprolin.";
Mol. Cell. Biol. 29:1999-2010(2009).
[31]
INDUCTION.
PubMed=20166898; DOI=10.3109/08977190903578660;
Hacker C., Valchanova R., Adams S., Munz B.;
"ZFP36L1 is regulated by growth factors and cytokines in keratinocytes
and influences their VEGF production.";
Growth Factors 28:178-190(2010).
[32]
FUNCTION, PHOSPHORYLATION AT SER-52 AND SER-178 BY MAPKAPK2,
RNA-BINDING, INTERACTION WITH 14-3-3 PROTEINS; CNOT7; CNOT8 AND
PABPC1, ASSOCIATION WITH THE CCR4-NOT DEADENYLASE COMPLEX, AND
MUTAGENESIS OF SER-52 AND SER-178.
PubMed=20595389; DOI=10.1074/jbc.M110.136473;
Marchese F.P., Aubareda A., Tudor C., Saklatvala J., Clark A.R.,
Dean J.L.;
"MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by
inhibiting CAF1 deadenylase recruitment.";
J. Biol. Chem. 285:27590-27600(2010).
[33]
MUTAGENESIS OF PRO-303, AND LACK OF INTERACTION WITH SH3KBP1.
PubMed=20221403; DOI=10.1371/journal.pone.0009588;
Kedar V.P., Darby M.K., Williams J.G., Blackshear P.J.;
"Phosphorylation of human tristetraprolin in response to its
interaction with the Cbl interacting protein CIN85.";
PLoS ONE 5:E9588-E9588(2010).
[34]
FUNCTION, RNA-BINDING, PHOSPHORYLATION BY MAPKAPK2, INTERACTION WITH
CNOT6L; PABPC1; PAN2 AND YWHAE, ASSOCIATION WITH THE CCR4-NOT AND
PAN2-PAN3 DEADENYLASE COMPLEXES, AND MUTAGENESIS OF SER-52 AND
SER-178.
PubMed=21078877; DOI=10.1128/MCB.00717-10;
Clement S.L., Scheckel C., Stoecklin G., Lykke-Andersen J.;
"Phosphorylation of tristetraprolin by MK2 impairs AU-rich element
mRNA decay by preventing deadenylase recruitment.";
Mol. Cell. Biol. 31:256-266(2011).
[35]
FUNCTION, RNA-BINDING, AND INTERACTION WITH CNOT1 AND CNOT7.
PubMed=21278420; DOI=10.1093/nar/gkr011;
Sandler H., Kreth J., Timmers H.T., Stoecklin G.;
"Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted
for degradation by tristetraprolin.";
Nucleic Acids Res. 39:4373-4386(2011).
[36]
FUNCTION, RNA-BINDING, TISSUE SPECIFICITY, AND INDUCTION.
PubMed=22701344; DOI=10.7150/ijbs.4036;
Lin N.Y., Lin T.Y., Yang W.H., Wang S.C., Wang K.T., Su Y.L.,
Jiang Y.W., Chang G.D., Chang C.J.;
"Differential expression and functional analysis of the
tristetraprolin family during early differentiation of 3T3-L1
preadipocytes.";
Int. J. Biol. Sci. 8:761-777(2012).
[37]
FUNCTION, INTERACTION WITH PABPN1 AND RNA POLY(A) POLYMERASE, AND
SUBCELLULAR LOCATION.
PubMed=22844456; DOI=10.1371/journal.pone.0041313;
Su Y.L., Wang S.C., Chi ang P.Y., Lin N.Y., Shen Y.F., Chang G.D.,
Chang C.J.;
"Tristetraprolin inhibits poly(A)-tail synthesis in nuclear mRNA that
contains AU-rich elements by interacting with poly(A)-binding protein
nuclear 1.";
PLoS ONE 7:E41313-E41313(2012).
[38]
INDUCTION.
PubMed=23046558; DOI=10.1186/2044-5040-2-21;
Farina N.H., Hausburg M., Betta N.D., Pulliam C., Srivastava D.,
Cornelison D., Olwin B.B.;
"A role for RNA post-transcriptional regulation in satellite cell
activation.";
Skelet. Muscle 2:21-21(2012).
[39]
SUBCELLULAR LOCATION, TISSUE SPECIFICITY, AND INDUCTION.
PubMed=24733888; DOI=10.1073/pnas.1320873111;
Tan F.E., Elowitz M.B.;
"Brf1 posttranscriptionally regulates pluripotency and differentiation
responses downstream of Erk MAP kinase.";
Proc. Natl. Acad. Sci. U.S.A. 111:1740-1748(2014).
[40]
INTERACTION WITH MAPKAPK2, PHOSPHORYLATION, TISSUE SPECIFICITY,
INDUCTION, AND DISRUPTION PHENOTYPE.
PubMed=25815583; DOI=10.7554/eLife.03390;
Hausburg M.A., Doles J.D., Clement S.L., Cadwallader A.B., Hall M.N.,
Blackshear P.J., Lykke-Andersen J., Olwin B.B.;
"Post-transcriptional regulation of satellite cell quiescence by TTP-
mediated mRNA decay.";
Elife 4:E03390-E03390(2015).
[41]
FUNCTION, AND RNA-BINDING.
PubMed=27193233; DOI=10.1007/s00726-016-2261-9;
Nowotarski S.L., Origanti S., Sass-Kuhn S., Shantz L.M.;
"Destabilization of the ornithine decarboxylase mRNA transcript by the
RNA-binding protein tristetraprolin.";
Amino Acids 48:2303-2311(2016).
[42]
INTERACTION WITH GIGYF2, AND MUTAGENESIS OF 64-PRO--PRO-66;
191-PRO--PRO-193 AND 212-PRO--PRO-214.
PubMed=26763119; DOI=10.1261/rna.054833.115;
Fu R., Olsen M.T., Webb K., Bennett E.J., Lykke-Andersen J.;
"Recruitment of the 4EHP-GYF2 cap-binding complex to tetraproline
motifs of tristetraprolin promotes repression and degradation of mRNAs
with AU-rich elements.";
RNA 22:373-382(2016).
[43]
STRUCTURE BY NMR OF 91-163 IN COMPLEX WITH ZINC.
PubMed=12515557; DOI=10.1021/bi026988m;
Amann B.T., Worthington M.T., Berg J.M.;
"A Cys3His zinc-binding domain from Nup475/tristetraprolin: a novel
fold with a disklike structure.";
Biochemistry 42:217-221(2003).
-!- FUNCTION: Zinc-finger RNA-binding protein that destabilizes
numerous cytoplasmic AU-rich element (ARE)-containing mRNA
transcripts by promoting their poly(A) tail removal or
deadenylation, and hence provide a mechanism for attenuating
protein synthesis (PubMed:10330172, PubMed:10706852,
PubMed:10805719, PubMed:15014438, PubMed:15187092,
PubMed:15634918, PubMed:17030620, PubMed:19188452,
PubMed:20595389, PubMed:21078877, PubMed:22701344,
PubMed:27193233). Acts as an 3'-untranslated region (UTR) ARE
mRNA-binding adapter protein to communicate signaling events to
the mRNA decay machinery (PubMed:21278420). Recruits deadenylase
CNOT7 (and probably the CCR4-NOT complex) via association with
CNOT1, and hence promotes ARE-mediated mRNA deadenylation
(PubMed:21278420). Functions also by recruiting components of the
cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs
(PubMed:21278420). Self regulates by destabilizing its own mRNA
(PubMed:15187092, PubMed:17288565). Binds to 3'-UTR ARE of
numerous mRNAs and of its own mRNA (PubMed:11533235,
PubMed:15187092, PubMed:16508014, PubMed:17288565,
PubMed:17971298, PubMed:20595389, PubMed:21078877,
PubMed:21278420, PubMed:22701344, PubMed:27193233). Plays a role
in anti-inflammatory responses; suppresses tumor necrosis factor
(TNF)-alpha production by stimulating ARE-mediated TNF-alpha mRNA
decay and several other inflammatory ARE-containing mRNAs in
interferon (IFN)- and/or lipopolysaccharide (LPS)-induced
macrophages (PubMed:8630730, PubMed:9703499, PubMed:15014438,
PubMed:16514065). Plays also a role in the regulation of dendritic
cell maturation at the post-transcriptional level, and hence
operates as part of a negative feedback loop to limit the
inflammatory response (By similarity). Promotes ARE-mediated mRNA
decay of hypoxia-inducible factor HIF1A mRNA during the response
of endothelial cells to hypoxia (By similarity). Positively
regulates early adipogenesis of preadipocytes by promoting ARE-
mediated mRNA decay of immediate early genes (IEGs)
(PubMed:22701344). Negatively regulates hematopoietic/erythroid
cell differentiation by promoting ARE-mediated mRNA decay of the
transcription factor STAT5B mRNA (By similarity). Plays a role in
maintaining skeletal muscle satellite cell quiescence by promoting
ARE-mediated mRNA decay of the myogenic determination factor MYOD1
mRNA (PubMed:25815583). Associates also with and regulates the
expression of non-ARE-containing target mRNAs at the post-
transcriptional level, such as MHC class I mRNAs (By similarity).
Participates in association with argonaute RISC catalytic
components in the ARE-mediated mRNA decay mechanism; assists
microRNA (miRNA) targeting ARE-containing mRNAs (By similarity).
May also play a role in the regulation of cytoplasmic mRNA
decapping; enhances decapping of ARE-containing RNAs, in vitro (By
similarity). Involved in the delivery of target ARE-mRNAs to
processing bodies (PBs) (By similarity). In addition to its
cytosolic mRNA-decay function, affects nuclear pre-mRNA processing
(PubMed:22844456). Negatively regulates nuclear poly(A)-binding
protein PABPN1-stimulated polyadenylation activity on ARE-
containing pre-mRNA during LPS-stimulated macrophages
(PubMed:22844456). Also involved in the regulation of stress
granule (SG) and P-body (PB) formation and fusion
(PubMed:15967811). Plays a role in the regulation of keratinocyte
proliferation, differentiation and apoptosis (By similarity).
Plays a role as a tumor suppressor by inhibiting cell
proliferation in breast cancer cells (By similarity).
{ECO:0000250|UniProtKB:P26651, ECO:0000269|PubMed:10330172,
ECO:0000269|PubMed:10706852, ECO:0000269|PubMed:10805719,
ECO:0000269|PubMed:11533235, ECO:0000269|PubMed:15014438,
ECO:0000269|PubMed:15187092, ECO:0000269|PubMed:15634918,
ECO:0000269|PubMed:15967811, ECO:0000269|PubMed:16508014,
ECO:0000269|PubMed:16514065, ECO:0000269|PubMed:17030620,
ECO:0000269|PubMed:17288565, ECO:0000269|PubMed:17971298,
ECO:0000269|PubMed:19188452, ECO:0000269|PubMed:20595389,
ECO:0000269|PubMed:21078877, ECO:0000269|PubMed:21278420,
ECO:0000269|PubMed:22701344, ECO:0000269|PubMed:22844456,
ECO:0000269|PubMed:25815583, ECO:0000269|PubMed:27193233,
ECO:0000269|PubMed:8630730, ECO:0000269|PubMed:9703499}.
-!- SUBUNIT: Associates with cytoplasmic CCR4-NOT and PAN2-PAN3
deadenylase complexes to trigger ARE-containing mRNA deadenylation
and decay processes (PubMed:20595389, PubMed:21078877). Part of a
mRNA decay activation complex at least composed of poly(A)-
specific exoribonucleases CNOT6, EXOSC2 and XRN1 and mRNA-
decapping enzymes DCP1A and DCP2 (By similarity). Associates with
the RNA exosome complex (By similarity). Interacts (via
phosphorylated form) with 14-3-3 proteins; these interactions
promote exclusion of ZFP36 from cytoplasmic stress granules in
response to arsenite treatment in a MAPKAPK2-dependent manner and
does not prevent CCR4-NOT deadenylase complex recruitment or
ZFP36-induced ARE-containing mRNA deadenylation and decay
processes (PubMed:15014438, PubMed:20595389). Interacts with 14-3-
3 proteins; these interactions occur in response to rapamycin in
an Akt-dependent manner (By similarity). Interacts with AGO2 and
AGO4 (By similarity). Interacts (via C-terminus) with CNOT1; this
interaction occurs in a RNA-independent manner and induces mRNA
deadenylation (PubMed:21278420). Interacts (via N-terminus) with
CNOT6 (By similarity). Interacts with CNOT6L (PubMed:21078877).
Interacts (via C-terminus) with CNOT7; this interaction occurs in
a RNA-independent manner, induces mRNA deadenylation and is
inhibited in a phosphorylation MAPKAPK2-dependent manner
(PubMed:20595389, PubMed:21278420). Interacts (via
unphosphorylated form) with CNOT8; this interaction occurs in a
RNA-independent manner and is inhibited in a phosphorylation
MAPKAPK2-dependent manner (PubMed:20595389). Interacts with DCP1A
(By similarity). Interacts (via N-terminus) with DCP2 (By
similarity). Interacts with EDC3 (By similarity). Interacts (via
N-terminus) with EXOSC2 (By similarity). Interacts with heat shock
70 kDa proteins (By similarity). Interacts with KHSRP; this
interaction increases upon cytokine-induced treatment (By
similarity). Interacts with MAP3K4; this interaction enhances the
association with SH3KBP1/CIN85 (By similarity). Interacts with
MAPKAPK2; this interaction occurs upon skeletal muscle satellite
cell activation (PubMed:25815583). Interacts with NCL (By
similarity). Interacts with NUP214; this interaction increases
upon lipopolysaccharide (LPS) stimulation (By similarity).
Interacts with PABPC1; this interaction occurs in a RNA-dependent
manner (PubMed:20595389, PubMed:21078877). Interacts (via
hypophosphorylated form) with PABPN1 (via RRM domain and C-
terminal arginine-rich region); this interaction occurs in the
nucleus in a RNA-independent manner, decreases in presence of
single-stranded poly(A) RNA-oligomer and in a p38 MAPK-dependent-
manner and inhibits nuclear poly(A) tail synthesis
(PubMed:22844456). Interacts with PAN2 (PubMed:21078877).
Interacts (via C3H1-type zinc finger domains) with PKM (By
similarity). Interacts (via C3H1-type zinc finger domains) with
nuclear RNA poly(A) polymerase (PubMed:22844456). Interacts with
PPP2CA; this interaction occurs in LPS-stimulated cells and
induces ZFP36 dephosphorylation, and hence may promote ARE-
containing mRNAs decay (PubMed:17170118). Interacts (via C-
terminus) with PRR5L (via C-terminus); this interaction may
accelerate ZFP36-mediated mRNA decay during stress (By
similarity). Interacts (via C-terminus) with SFN; this interaction
occurs in a phosphorylation-dependent manner (PubMed:11886850).
Interacts (via extreme C-terminal region) with SH3KBP1/CIN85 (via
SH3 domains); this interaction enhances MAP3K4-induced
phosphorylation of ZFP36 at Ser-58 and Ser-85 and does not alter
neither ZFP36 binding to ARE-containing transcripts nor TNF-alpha
mRNA decay (By similarity). Interacts with XRN1 (By similarity).
Interacts (via C-terminus and Ser-178 phosphorylated form) with
YWHAB; this interaction occurs in a p38/MAPKAPK2-dependent manner,
increases cytoplasmic localization of ZFP36 and protects ZFP36
from Ser-178 dephosphorylation by serine/threonine phosphatase 2A,
and hence may be crucial for stabilizing ARE-containing mRNAs
(PubMed:14688255, PubMed:17170118). Interacts (via phosphorylated
form) with YWHAE (PubMed:21078877). Interacts (via C-terminus)
with YWHAG; this interaction occurs in a phosphorylation-dependent
manner (PubMed:11886850). Interacts with YWHAH; this interaction
occurs in a phosphorylation-dependent manner (PubMed:11886850).
Interacts with YWHAQ; this interaction occurs in a
phosphorylation-dependent manner (PubMed:11886850). Interacts with
(via C-terminus) YWHAZ; this interaction occurs in a
phosphorylation-dependent manner (PubMed:11886850). Does not
interact with SH3KBP1 (PubMed:20221403). Interacts (via the 4EHP-
binding motif) with EIF4E2; the interaction is direct (By
similarity). Interacts (via P-P-P-P-G repeats) with GIGYF2; the
interaction is direct (PubMed:26763119).
{ECO:0000250|UniProtKB:P26651, ECO:0000269|PubMed:11886850,
ECO:0000269|PubMed:14688255, ECO:0000269|PubMed:15014438,
ECO:0000269|PubMed:17170118, ECO:0000269|PubMed:20221403,
ECO:0000269|PubMed:20595389, ECO:0000269|PubMed:21078877,
ECO:0000269|PubMed:21278420, ECO:0000269|PubMed:22844456,
ECO:0000269|PubMed:25815583, ECO:0000269|PubMed:26763119}.
-!- INTERACTION:
A5YKK6:CNOT1 (xeno); NbExp=5; IntAct=EBI-647803, EBI-1222758;
Q9UIV1:CNOT7 (xeno); NbExp=3; IntAct=EBI-647803, EBI-2105113;
P31946:YWHAB (xeno); NbExp=5; IntAct=EBI-647803, EBI-359815;
-!- SUBCELLULAR LOCATION: Nucleus {ECO:0000269|PubMed:11796723,
ECO:0000269|PubMed:11886850, ECO:0000269|PubMed:15014438,
ECO:0000269|PubMed:16508015, ECO:0000269|PubMed:22844456}.
Cytoplasm {ECO:0000269|PubMed:11796723,
ECO:0000269|PubMed:11886850, ECO:0000269|PubMed:15014438,
ECO:0000269|PubMed:16508015, ECO:0000269|PubMed:17288565,
ECO:0000269|PubMed:22844456, ECO:0000269|PubMed:24733888,
ECO:0000269|PubMed:9703499}. Cytoplasmic granule
{ECO:0000269|PubMed:15014438, ECO:0000269|PubMed:15967811}.
Cytoplasm, P-body {ECO:0000269|PubMed:15967811}. Note=Shuttles
between nucleus and cytoplasm in a CRM1-dependent manner
(PubMed:11796723, PubMed:11886850). Localized predominantly in the
cytoplasm in a p38 MAPK- and YWHAB-dependent manner
(PubMed:11886850, PubMed:16508015). Colocalizes with SH3KBP1 and
MAP3K4 in the cytoplasm (By similarity). Component of cytoplasmic
stress granules (SGs) (PubMed:15967811). Localizes to cytoplasmic
stress granules upon energy starvation (PubMed:15014438).
Localizes in processing bodies (PBs) (By similarity). Excluded
from stress granules in a phosphorylation MAPKAPK2-dependent
manner (PubMed:15014438). Shuttles in and out of both cytoplasmic
P-body and SGs (PubMed:15967811). {ECO:0000250|UniProtKB:P26651,
ECO:0000269|PubMed:11796723, ECO:0000269|PubMed:11886850,
ECO:0000269|PubMed:15014438, ECO:0000269|PubMed:15967811,
ECO:0000269|PubMed:16508015}.
-!- TISSUE SPECIFICITY: Expressed in skeletal muscle satellite cells
(PubMed:25815583). Strongly expressed in differentiated adipocytes
compared to preadipocytes (at protein level) (PubMed:22701344).
Expressed in embryonic stem cells (ESCs) (PubMed:24733888).
Expressed in heart, placenta, kidney, intestine, liver, lung,
thymus, fat and spleen (PubMed:2204625, PubMed:1699942).
{ECO:0000269|PubMed:1699942, ECO:0000269|PubMed:2204625,
ECO:0000269|PubMed:22701344, ECO:0000269|PubMed:24733888,
ECO:0000269|PubMed:25815583}.
-!- INDUCTION: Up-regulated during adipocyte differentiation
(PubMed:17288565, PubMed:22701344). Up-regulated transiently in
response to fibroblast growth factor FGF4 in a MAPK-dependent
manner in embryonic stem cells (ESCs) (PubMed:24733888). Up-
regulated by interferons and/or lipopolysaccharide (LPS) in a
STAT1- and p38 MAPK-dependent manner (PubMed:11533235,
PubMed:16514065, PubMed:16508014, PubMed:16508015). Down-regulated
in muscle satellite cells upon muscle injury (at protein level)
(PubMed:25815583). Up-regulated by various mitogens
(PubMed:7559666). Up-regulated by LPS and TNF-alpha
(PubMed:9703499). Up-regulated by interferon IFN-gamma and/or LPS
in a STAT1- and p38 MAPK-dependent manner (PubMed:15187092,
PubMed:16514065). Up-regulated during adipocyte differentiation
(PubMed:22701344). Up-regulated in keratinocytes during epidermal
repair after wound healing (PubMed:20166898). Down-regulated
during the conversion from quiescence to activated satellite cells
upon muscle injury (PubMed:23046558, PubMed:25815583).
{ECO:0000269|PubMed:11533235, ECO:0000269|PubMed:15187092,
ECO:0000269|PubMed:16508014, ECO:0000269|PubMed:16508015,
ECO:0000269|PubMed:16514065, ECO:0000269|PubMed:17288565,
ECO:0000269|PubMed:20166898, ECO:0000269|PubMed:22701344,
ECO:0000269|PubMed:23046558, ECO:0000269|PubMed:24733888,
ECO:0000269|PubMed:25815583, ECO:0000269|PubMed:7559666,
ECO:0000269|PubMed:9703499}.
-!- DOMAIN: The C3H1-type zinc finger domains are necessary for ARE-
binding activity. {ECO:0000250|UniProtKB:P26651}.
-!- PTM: Phosphorylated (PubMed:11533235). Phosphorylation at serine
and/or threonine residues occurs in a p38 MAPK- and MAPKAPK2-
dependent manner (PubMed:11533235). Phosphorylated by MAPKAPK2 at
Ser-52 and Ser-178; phosphorylation increases its stability and
cytoplasmic localization, promotes binding to 14-3-3 adapter
proteins and inhibits the recruitment of cytoplasmic CCR4-NOT and
PAN2-PAN3 deadenylase complexes to the mRNA decay machinery,
thereby inhibiting ZFP36-induced ARE-containing mRNA deadenylation
and decay processes (PubMed:15014438, PubMed:14688255,
PubMed:16508014, PubMed:16508015, PubMed:17170118,
PubMed:20595389, PubMed:21078877). Phosphorylation by MAPKAPK2
does not impair ARE-containing RNA-binding (PubMed:20595389,
PubMed:21078877). Phosphorylated in a MAPKAPK2- and p38 MAPK-
dependent manner upon skeletal muscle satellite cell activation;
this phosphorylation inhibits ZFP36-mediated mRNA decay activity,
and hence stabilizes MYOD1 mRNA (PubMed:25815583). Phosphorylated
by MAPK1 upon mitogen stimulation (PubMed:7768935,
PubMed:14688255). Phosphorylated at Ser-58 and Ser-85; these
phosphorylations increase in a SH3KBP1-dependent manner (By
similarity). Phosphorylated at serine and threonine residues in a
pyruvate kinase PKM- and p38 MAPK-dependent manner (By
similarity). Phosphorylation at Ser-52 may participate in the PKM-
mediated degradation of ZFP36 in a p38 MAPK-dependent manner (By
similarity). Dephosphorylated by serine/threonine phosphatase 2A
at Ser-178 (PubMed:11533235, PubMed:17170118).
{ECO:0000250|UniProtKB:P26651, ECO:0000269|PubMed:11533235,
ECO:0000269|PubMed:14688255, ECO:0000269|PubMed:15014438,
ECO:0000269|PubMed:16508014, ECO:0000269|PubMed:16508015,
ECO:0000269|PubMed:17170118, ECO:0000269|PubMed:20595389,
ECO:0000269|PubMed:21078877, ECO:0000269|PubMed:25815583,
ECO:0000269|PubMed:7768935}.
-!- PTM: Ubiquitinated; pyruvate kinase (PKM)-dependent ubiquitination
leads to proteasomal degradation through a p38 MAPK signaling
pathway. {ECO:0000250|UniProtKB:P26651}.
-!- DISRUPTION PHENOTYPE: Mice appear normal at birth, but within 1-8
weeks after birth they develop a complex syndrome of cachexia,
arthritis, autoimmunity, myeloid hyperplasia and general
inflammation (PubMed:8630730). Show precocious skeletal muscle
satellite cell activation and increased satellite cell fusion into
myofibers (PubMed:25815583). Show higher levels of tumor necrosis
factor (TNF)-alpha mRNA and protein in macrophages and an excess
of circulating TNF-alpha (PubMed:8630730, PubMed:9703499,
PubMed:16508014). Show higher levels of granulocyte-macrophage
colony-stimulating factor (GM-CSF) expression in macrophages and
an excess of GM-CSF secretion upon lipopolysaccharide (LPS)
stimulation (PubMed:10706852). Show higher levels of
serine/threonine-protein kinase PLK3 expression in macrophages
(PubMed:19188452). Show higher levels of interleukin IL2
expression in splenocytes and T lymphocytes and an excess of IL2
secretion upon T cell activation (PubMed:15634918). Show an
increase in the stability of numerous mRNAs, such as TNF-alpha,
GM-CSF, IL2 and PLK3 mRNAs (PubMed:9703499, PubMed:10706852,
PubMed:15634918, PubMed:17030620, PubMed:19188452). Show an
absence of ARE-containing transcript deadenylation
(PubMed:10330172). Mice with a double knockout of ZFP36 and
MAPKAPK2 show increased amounts of TNF in macrophages almost
comparable to single ZFP36 knockout (PubMed:16508014).
{ECO:0000269|PubMed:10330172, ECO:0000269|PubMed:10706852,
ECO:0000269|PubMed:15634918, ECO:0000269|PubMed:16508014,
ECO:0000269|PubMed:17030620, ECO:0000269|PubMed:19188452,
ECO:0000269|PubMed:25815583, ECO:0000269|PubMed:8630730,
ECO:0000269|PubMed:9703499}.
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
Distributed under the Creative Commons Attribution-NoDerivs License
-----------------------------------------------------------------------
EMBL; M57422; AAA40498.1; -; mRNA.
EMBL; M58691; AAA39837.1; -; mRNA.
EMBL; X14678; CAA32807.1; ALT_SEQ; mRNA.
EMBL; M58565; AAA72947.1; -; mRNA.
EMBL; L42317; AAC37676.1; -; Genomic_DNA.
EMBL; BC021391; AAH21391.1; -; mRNA.
CCDS; CCDS21041.1; -.
PIR; A36600; A36600.
PIR; S04743; S04743.
RefSeq; NP_035886.1; NM_011756.4.
UniGene; Mm.389856; -.
PDB; 1M9O; NMR; -; A=91-163.
PDBsum; 1M9O; -.
ProteinModelPortal; P22893; -.
SMR; P22893; -.
BioGrid; 204658; 7.
IntAct; P22893; 34.
MINT; MINT-225240; -.
STRING; 10090.ENSMUSP00000057815; -.
iPTMnet; P22893; -.
PhosphoSitePlus; P22893; -.
PaxDb; P22893; -.
PeptideAtlas; P22893; -.
PRIDE; P22893; -.
Ensembl; ENSMUST00000051241; ENSMUSP00000057815; ENSMUSG00000044786.
GeneID; 22695; -.
KEGG; mmu:22695; -.
UCSC; uc009fys.1; mouse.
CTD; 7538; -.
MGI; MGI:99180; Zfp36.
eggNOG; KOG1677; Eukaryota.
eggNOG; COG5063; LUCA.
GeneTree; ENSGT00530000063262; -.
HOGENOM; HOG000233479; -.
HOVERGEN; HBG008483; -.
InParanoid; P22893; -.
KO; K15308; -.
OMA; DPTPVCC; -.
OrthoDB; EOG091G0957; -.
PhylomeDB; P22893; -.
TreeFam; TF315463; -.
EvolutionaryTrace; P22893; -.
PRO; PR:P22893; -.
Proteomes; UP000000589; Chromosome 7.
Bgee; ENSMUSG00000044786; -.
CleanEx; MM_ZFP36; -.
ExpressionAtlas; P22893; baseline and differential.
Genevisible; P22893; MM.
GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
GO; GO:0010494; C:cytoplasmic stress granule; ISS:UniProtKB.
GO; GO:0005829; C:cytosol; IDA:MGI.
GO; GO:0030529; C:intracellular ribonucleoprotein complex; IDA:UniProtKB.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0000932; C:P-body; ISS:UniProtKB.
GO; GO:1990904; C:ribonucleoprotein complex; IDA:UniProtKB.
GO; GO:0071889; F:14-3-3 protein binding; IDA:UniProtKB.
GO; GO:0017091; F:AU-rich element binding; IDA:UniProtKB.
GO; GO:0019957; F:C-C chemokine binding; ISO:MGI.
GO; GO:0003677; F:DNA binding; IEA:UniProtKB-KW.
GO; GO:0019899; F:enzyme binding; ISO:MGI.
GO; GO:0031072; F:heat shock protein binding; ISO:MGI.
GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
GO; GO:0035925; F:mRNA 3'-UTR AU-rich region binding; IDA:UniProtKB.
GO; GO:0003729; F:mRNA binding; IDA:UniProtKB.
GO; GO:0019901; F:protein kinase binding; ISO:MGI.
GO; GO:0003723; F:RNA binding; ISO:MGI.
GO; GO:0070063; F:RNA polymerase binding; IDA:UniProtKB.
GO; GO:0061158; P:3'-UTR-mediated mRNA destabilization; IDA:UniProtKB.
GO; GO:0070935; P:3'-UTR-mediated mRNA stabilization; ISS:UniProtKB.
GO; GO:0071364; P:cellular response to epidermal growth factor stimulus; ISS:UniProtKB.
GO; GO:0044344; P:cellular response to fibroblast growth factor stimulus; IDA:UniProtKB.
GO; GO:0071385; P:cellular response to glucocorticoid stimulus; ISS:UniProtKB.
GO; GO:0097011; P:cellular response to granulocyte macrophage colony-stimulating factor stimulus; ISS:UniProtKB.
GO; GO:0071222; P:cellular response to lipopolysaccharide; IDA:UniProtKB.
GO; GO:0071356; P:cellular response to tumor necrosis factor; IDA:UniProtKB.
GO; GO:0035556; P:intracellular signal transduction; IDA:MGI.
GO; GO:0000165; P:MAPK cascade; IDA:UniProtKB.
GO; GO:0035278; P:miRNA mediated inhibition of translation; IDA:UniProtKB.
GO; GO:0006402; P:mRNA catabolic process; ISS:UniProtKB.
GO; GO:0051028; P:mRNA transport; ISS:UniProtKB.
GO; GO:0007275; P:multicellular organism development; IEA:UniProtKB-KW.
GO; GO:0045647; P:negative regulation of erythrocyte differentiation; ISS:UniProtKB.
GO; GO:0050728; P:negative regulation of inflammatory response; IMP:UniProtKB.
GO; GO:0045085; P:negative regulation of interleukin-2 biosynthetic process; IMP:UniProtKB.
GO; GO:0045638; P:negative regulation of myeloid cell differentiation; IMP:MGI.
GO; GO:1904246; P:negative regulation of polynucleotide adenylyltransferase activity; IMP:UniProtKB.
GO; GO:0000122; P:negative regulation of transcription from RNA polymerase II promoter; IMP:UniProtKB.
GO; GO:0032897; P:negative regulation of viral transcription; ISS:UniProtKB.
GO; GO:0000288; P:nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay; IDA:MGI.
GO; GO:0031086; P:nuclear-transcribed mRNA catabolic process, deadenylation-independent decay; ISS:UniProtKB.
GO; GO:0000289; P:nuclear-transcribed mRNA poly(A) tail shortening; IDA:MGI.
GO; GO:0038066; P:p38MAPK cascade; IDA:UniProtKB.
GO; GO:1901835; P:positive regulation of deadenylation-independent decapping of nuclear-transcribed mRNA; ISS:UniProtKB.
GO; GO:0045600; P:positive regulation of fat cell differentiation; IDA:UniProtKB.
GO; GO:2000637; P:positive regulation of gene silencing by miRNA; ISS:UniProtKB.
GO; GO:1904582; P:positive regulation of intracellular mRNA localization; ISS:UniProtKB.
GO; GO:0061014; P:positive regulation of mRNA catabolic process; IMP:UniProtKB.
GO; GO:1900153; P:positive regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay; IDA:UniProtKB.
GO; GO:0060213; P:positive regulation of nuclear-transcribed mRNA poly(A) tail shortening; IDA:UniProtKB.
GO; GO:1902172; P:regulation of keratinocyte apoptotic process; ISS:UniProtKB.
GO; GO:0045616; P:regulation of keratinocyte differentiation; ISS:UniProtKB.
GO; GO:0010837; P:regulation of keratinocyte proliferation; ISS:UniProtKB.
GO; GO:0043488; P:regulation of mRNA stability; IDA:UniProtKB.
GO; GO:0006357; P:regulation of transcription from RNA polymerase II promoter; IGI:MGI.
GO; GO:0032680; P:regulation of tumor necrosis factor production; ISS:UniProtKB.
GO; GO:0042594; P:response to starvation; ISS:UniProtKB.
GO; GO:0009611; P:response to wounding; IDA:UniProtKB.
GO; GO:0050779; P:RNA destabilization; IMP:MGI.
Gene3D; 4.10.1000.10; -; 2.
InterPro; IPR000571; Znf_CCCH.
InterPro; IPR036855; Znf_CCCH_sf.
Pfam; PF00642; zf-CCCH; 2.
SMART; SM00356; ZnF_C3H1; 2.
SUPFAM; SSF90229; SSF90229; 2.
PROSITE; PS50103; ZF_C3H1; 2.
1: Evidence at protein level;
3D-structure; Complete proteome; Cytoplasm; Developmental protein;
DNA-binding; Exosome; Metal-binding; mRNA transport; Nucleus;
Phosphoprotein; Reference proteome; Repeat; Ribonucleoprotein;
Transport; Ubl conjugation; Zinc; Zinc-finger.
CHAIN 1 319 mRNA decay activator protein ZFP36.
/FTId=PRO_0000089164.
REPEAT 63 67 P-P-P-P-G.
REPEAT 190 194 P-P-P-P-G.
REPEAT 211 215 P-P-P-P-G.
ZN_FING 95 123 C3H1-type 1. {ECO:0000255|PROSITE-
ProRule:PRU00723}.
ZN_FING 133 161 C3H1-type 2. {ECO:0000255|PROSITE-
ProRule:PRU00723}.
REGION 1 166 Necessary for localization of ARE-
containing mRNAs to processing bodies
(PBs). {ECO:0000250|UniProtKB:P26651}.
REGION 1 92 Necessary and sufficient for the
association with mRNA decay enzymes and
mRNA decay activation.
{ECO:0000250|UniProtKB:P26651}.
REGION 1 15 Necessary for nuclear export.
{ECO:0000250|UniProtKB:P47973}.
REGION 87 160 Necessary for nuclear localization.
{ECO:0000250|UniProtKB:P47973}.
REGION 89 165 Necessary for RNA-binding.
{ECO:0000250|UniProtKB:P26651}.
REGION 92 319 Necessary for localization of ARE-
containing mRNAs to processing bodies
(PBs). {ECO:0000250|UniProtKB:P26651}.
REGION 95 186 Necessary for interaction with PABPN1.
{ECO:0000269|PubMed:22844456}.
REGION 166 319 Necessary for mRNA decay activation.
{ECO:0000250|UniProtKB:P26651}.
REGION 305 319 Interaction with CNOT1.
{ECO:0000250|UniProtKB:P26651}.
MOD_RES 52 52 Phosphoserine; by MAPKAPK2.
{ECO:0000269|PubMed:14688255,
ECO:0000269|PubMed:15014438,
ECO:0000269|PubMed:20595389}.
MOD_RES 58 58 Phosphoserine.
{ECO:0000250|UniProtKB:P26651}.
MOD_RES 80 80 Phosphoserine.
{ECO:0000269|PubMed:14688255}.
MOD_RES 82 82 Phosphoserine.
{ECO:0000269|PubMed:14688255}.
MOD_RES 84 84 Phosphothreonine.
{ECO:0000250|UniProtKB:P26651}.
MOD_RES 85 85 Phosphoserine.
{ECO:0000269|PubMed:14688255}.
MOD_RES 178 178 Phosphoserine; by MAPKAPK2.
{ECO:0000269|PubMed:14688255,
ECO:0000269|PubMed:15014438,
ECO:0000269|PubMed:20595389}.
MOD_RES 189 189 Phosphoserine.
{ECO:0000250|UniProtKB:P26651}.
MOD_RES 210 210 Phosphoserine.
{ECO:0000250|UniProtKB:P26651}.
MOD_RES 220 220 Phosphoserine; by MAPK1; in vitro.
{ECO:0000269|PubMed:7768935}.
MOD_RES 250 250 Phosphothreonine.
{ECO:0000269|PubMed:14688255}.
MOD_RES 269 269 Phosphoserine.
{ECO:0000250|UniProtKB:P26651}.
MOD_RES 289 289 Phosphoserine.
{ECO:0000250|UniProtKB:P26651}.
MOD_RES 316 316 Phosphoserine.
{ECO:0000269|PubMed:14688255}.
MUTAGEN 52 52 S->A: Impairs phosphorylation by
MAPKAPK2, decreases its stability and
cytoplasmic localization, increases
interaction with PPP2CA, inhibits binding
to 14-3-3 proteins, but does not impair
binding to ARE-containing transcripts,
recruitment of mRNA decay factors and
ZFP36-mediated deadenylation and decay of
ARE-containing transcripts; when
associated with A-178.
{ECO:0000269|PubMed:15014438,
ECO:0000269|PubMed:16508014,
ECO:0000269|PubMed:16508015,
ECO:0000269|PubMed:17170118,
ECO:0000269|PubMed:20595389,
ECO:0000269|PubMed:21078877}.
MUTAGEN 64 66 PPP->SSS: Abolished interaction with
GIGYF2 and impaired TTP-mediated mRNA
repression; when associated with 191-S--
S-193. {ECO:0000269|PubMed:26763119}.
MUTAGEN 178 178 S->A: Reduces both interaction with 14-3-
3 proteins and YWHAB-induced cytoplasmic
localization. Impairs phosphorylation by
MAPKAPK2, decreases its stability and
cytoplasmic localization, increases
interaction with PPP2CA, inhibits binding
to 14-3-3 proteins, but does not impair
binding to ARE-containing transcripts,
recruitment of mRNA decay factors and
ZFP36-mediated deadenylation and decay of
ARE-containing transcripts; when
associated with A-52.
{ECO:0000269|PubMed:11886850,
ECO:0000269|PubMed:15014438,
ECO:0000269|PubMed:16508014,
ECO:0000269|PubMed:16508015,
ECO:0000269|PubMed:17170118,
ECO:0000269|PubMed:20595389,
ECO:0000269|PubMed:21078877}.
MUTAGEN 191 193 PPP->SSS: Abolished interaction with
GIGYF2 and impaired TTP-mediated mRNA
repression; when associated with 64-S--S-
66. {ECO:0000269|PubMed:26763119}.
MUTAGEN 212 214 PPP->SSS: Does not affect interaction
with GIGYF2.
{ECO:0000269|PubMed:26763119}.
MUTAGEN 303 303 P->A: Stimulates interaction with
SH3KBP1. {ECO:0000269|PubMed:20221403}.
HELIX 103 106 {ECO:0000244|PDB:1M9O}.
TURN 111 115 {ECO:0000244|PDB:1M9O}.
STRAND 120 122 {ECO:0000244|PDB:1M9O}.
HELIX 125 127 {ECO:0000244|PDB:1M9O}.
SEQUENCE 319 AA; 33613 MW; 860DD6DDA80386F8 CRC64;
MDLSAIYESL QSMSHDLSSD HGGTESLGGL WNINSDSIPS GVTSRLTGRS TSLVEGRSCG
WVPPPPGFAP LAPRPGPELS PSPTSPTATP TTSSRYKTEL CRTYSESGRC RYGAKCQFAH
GLGELRQANR HPKYKTELCH KFYLQGRCPY GSRCHFIHNP TEDLALPGQP HVLRQSISFS
GLPSGRRSSP PPPGFSGPSL SSCSFSPSSS PPPPGDLPLS PSAFSAAPGT PVTRRDPNQA
CCPSCRRSTT PSTIWGPLGG LARSPSAHSL GSDPDDYASS GSSLGGSDSP VFEAGVFGPP
QTPAPPRRLP IFNRISVSE


Related products :

Catalog number Product name Quantity
EIAAB44515 Growth factor-inducible nuclear protein NUP475,Mouse,Mus musculus,Protein TIS11A,TIS11,Tis11,Tis11a,TPA-induced sequence 11,Tristetraprolin,TTP,Zfp36,Zfp-36,Zinc finger protein 36
EIAAB44514 G0_G1 switch regulatory protein 24,G0S24,Growth factor-inducible nuclear protein NUP475,Homo sapiens,Human,Protein TIS11A,RNF162A,TIS11,TIS11A,Tristetraprolin,TTP,TTP,ZFP36,Zfp-36,Zinc finger protein
18-003-42519 Tristetraproline - TTP; Zinc finger protein 36 homolog; Zfp-36; TIS11A protein; TIS11; Growth factor-inducible nuclear protein NUP475; G0_G1 switch regulatory protein 24 Polyclonal 0.05 mg Aff Pur
18-003-43203 Tristetraproline - TTP; Zinc finger protein 36 homolog; Zfp-36; TIS11A protein; TIS11; Growth factor-inducible nuclear protein NUP475; G0_G1 switch regulatory protein 24 Polyclonal 0.05 mg Aff Pur
28-572 Early Growth Response Protein 1 (EGR1, Krox-24 protein, nerve growth factor-induced protein A, Transcription factor ETR103, Zinc finger protein 225) belongs to the EGR family of C2H2-type zinc-finger 0.1 mg
27-526 Early Growth Response Protein 1 (EGR1, Krox-24 protein, nerve growth factor-induced protein A, Transcription factor ETR103, Zinc finger protein 225) belongs to the EGR family of C2H2-type zinc-finger 0.05 mg
EIAAB44513 Bos taurus,Bovine,Protein TIS11A,TIS11,Tristetraprolin,TTP,ZFP36,Zfp-36,Zinc finger protein 36 homolog
EIAAB47352 CT-ZFP48,EBV-induced zinc finger protein,Epstein-Barr virus-induced zinc finger protein,Homo sapiens,Human,Zinc finger protein 271,Zinc finger protein dp,Zinc finger protein HZF7,Zinc finger protein Z
EIAAB44512 Protein TIS11A,Rat,Rattus norvegicus,TIS11,Tis11a,Tristetraprolin,TTP,Zfp36,Zfp-36,Zinc finger protein 36
18-003-42165 Early growth response protein 1 - EGR-1; Krox-24 protein; Transcription factor Zif268; Nerve growth factor-induced protein A; NGFI-A; Transcription factor ETR103; Zinc finger protein 225; AT225 Polycl 0.05 mg Aff Pur
U0416r CLIA Early growth response protein 1,Egr1,EGR-1,Nerve growth factor-induced protein A,NGFI-A,Rat,Rattus norvegicus,Transcription factor Zif268,Zinc finger protein Krox-24 96T
E0416r ELISA kit Early growth response protein 1,Egr1,EGR-1,Nerve growth factor-induced protein A,NGFI-A,Rat,Rattus norvegicus,Transcription factor Zif268,Zinc finger protein Krox-24 96T
E0416r ELISA Early growth response protein 1,Egr1,EGR-1,Nerve growth factor-induced protein A,NGFI-A,Rat,Rattus norvegicus,Transcription factor Zif268,Zinc finger protein Krox-24 96T
EIAAB46821 Bif1,Bone morphogenetic protein-induced factor 1,Brain-specific protein 1,Bsg1,Mouse,Mus musculus,Zbtb24,Zinc finger and BTB domain-containing protein 24,Zinc finger protein 450,Znf450
U0416h CLIA AT225,Early growth response protein 1,EGR1,EGR-1,Homo sapiens,Human,KROX24,Nerve growth factor-induced protein A,NGFI-A,Transcription factor ETR103,Transcription factor Zif268,Zinc finger protein 96T
E0416m ELISA kit Early growth response protein 1,Egr1,EGR-1,Egr-1,Krox-24,Mouse,Mus musculus,Nerve growth factor-induced protein A,NGFI-A,Transcription factor Zif268,Zinc finger protein Krox-24 96T
E0416m ELISA Early growth response protein 1,Egr1,EGR-1,Egr-1,Krox-24,Mouse,Mus musculus,Nerve growth factor-induced protein A,NGFI-A,Transcription factor Zif268,Zinc finger protein Krox-24 96T
U0416m CLIA Early growth response protein 1,Egr1,EGR-1,Egr-1,Krox-24,Mouse,Mus musculus,Nerve growth factor-induced protein A,NGFI-A,Transcription factor Zif268,Zinc finger protein Krox-24 96T
EIAAB41165 Mouse,Mus musculus,p53-dependent damage-inducible nuclear protein 1,p53DINP1,Sip,Stress-induced protein,TEAP,Thymus-expressed acidic protein,Trp53inp1,Tumor protein p53-inducible nuclear protein 1
EIAAB41166 p53-dependent damage-inducible nuclear protein 1,p53DINP1,Rat,Rattus norvegicus,Sip,Stress-induced protein,TEAP,Thymus-expressed acidic protein,Trp53inp1,Tumor protein p53-inducible nuclear protein 1
EIAAB46820 Bif1,Bone morphogenetic protein-induced factor 1,Rat,Rattus norvegicus,Zbtb24,Zinc finger and BTB domain-containing protein 24,Zinc finger protein 450,Znf450
EIAAB47907 GIOT2,GIOT-2,Gonadotropin-inducible ovary transcription repressor 2,Homo sapiens,Human,KOX7,Zinc finger protein 44,Zinc finger protein 55,Zinc finger protein 58,Zinc finger protein KOX7,ZNF44,ZNF55,ZN
EIAAB43277 Homo sapiens,Human,OTU domain-containing protein 7C,OTUD7C,Putative DNA-binding protein A20,TNF alpha-induced protein 3,TNFAIP3,Tumor necrosis factor alpha-induced protein 3,Zinc finger protein A20
28-842 ZFP36 is a probable regulatory protein with a novel zinc finger structure involved in regulating the response to growth factors. Knockdown of ZFP36 increased both cognate macrophage gene mRNAs and inf 0.05 mg
E0416h ELISA kit AT225,Early growth response protein 1,EGR1,EGR-1,Homo sapiens,Human,KROX24,Nerve growth factor-induced protein A,NGFI-A,Transcription factor ETR103,Transcription factor Zif268,Zinc finger p 96T


 

GENTAUR Belgium BVBA BE0473327336
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45

Fax 0032 16 50 90 45
info@gentaur.com | Gentaur





GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531 Fax 020 8445 9411
uk@gentaur.com | Gentaur

 

 




GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50

Fax 01 43 25 01 60
RCS Paris B 484 237 888

SIRET 48423788800017

BNP PARIBAS PARIS PL MAUBERT BIC BNPAFRPPPRG

france@gentaur.com | Gentaur

GENTAUR GmbH
Marienbongard 20
52062 Aachen Deutschland
Support Karolina Elandt
Tel: 0035929830070
Fax: (+49) 241 56 00 47 88

Logistic :0241 40 08 90 86
Bankleitzahl 39050000
IBAN lautet DE8839050000107569353
Handelsregister Aachen HR B 16058
Umsatzsteuer-Identifikationsnummer *** DE 815175831
Steuernummer 201/5961/3925
de@gentaur.com | Gentaur

GENTAUR U.S.A
Genprice Inc, Logistics
547, Yurok Circle
San Jose, CA 95123
CA 95123
Tel (408) 780-0908,
Fax (408) 780-0908,
sales@genprice.com

Genprice Inc, Invoices and accounting
6017 Snell Ave, Ste 357
San Jose, CA 95123




GENTAUR Nederland BV
NL850396268B01 KVK nummer 52327027
Kuiper 1
5521 DG Eersel Nederland
Tel:  0208-080893  Fax: 0497-517897
nl@gentaur.com | Gentaur
IBAN: NL04 RABO 0156 9854 62   SWIFT RABONL2U






GENTAUR Spain
tel:0911876558
spain@gentaur.com | Gentaur






ГЕНТАУЪР БЪЛГАРИЯ
ID # 201 358 931 /BULSTAT
София 1000, ул. "Граф Игнатиев" 53 вх. В, ет. 2
Tel 0035924682280 Fax 0035924808322
e-mail: Sofia@gentaur.com | Gentaur
IBAN: BG11FINV91501014771636
BIC: FINVBGSF

GENTAUR Poland Sp. z o.o.


ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
TEL Gdansk 058 710 33 44 FAX  058 710 33 48              

poland@gentaur.com | Gentaur

Other countries

Österreich +43720880899

Canada Montreal +15149077481

Ceská republika Praha +420246019719

Danmark +4569918806

Finland Helsset +358942419041

Magyarország Budapest +3619980547

Ireland Dublin+35316526556

Luxembourg+35220880274

Norge Oslo+4721031366

Sverige Stockholm+46852503438

Schweiz Züri+41435006251

US New York+17185132983

GENTAUR Italy
SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6
24122 Bergamo Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com | Gentaur