GENTAUR Belgium BVBA BE0473327336 Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45
GENTAUR U.S.A Genprice Inc,Logistics 547 Yurok Circle, SanJose, CA 95123
Tel (408) 780-0908, Fax (408) 780-0908, [email protected]

Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, Gentaur another in time delivery

Cryptochrome-1 (AtCry) (Atcry1) (Blue light photoreceptor) (Protein BLUE LIGHT UNINHIBITED 1) (Protein ELONGATED HYPOCOTYL 4) (Protein OUT OF PHASE 2) (OOP2)

 CRY1_ARATH              Reviewed;         681 AA.
Q43125; Q43126; Q8L7Y1; Q9ASZ2; Q9M0S9; Q9ZPF0;
01-NOV-1997, integrated into UniProtKB/Swiss-Prot.
03-MAY-2011, sequence version 2.
31-JUL-2019, entry version 174.
RecName: Full=Cryptochrome-1 {ECO:0000303|PubMed:8953250};
Short=AtCry {ECO:0000303|PubMed:22421133};
Short=Atcry1 {ECO:0000303|PubMed:8953250};
AltName: Full=Blue light photoreceptor {ECO:0000303|PubMed:7756321};
AltName: Full=Protein BLUE LIGHT UNINHIBITED 1 {ECO:0000303|PubMed:12324610};
AltName: Full=Protein ELONGATED HYPOCOTYL 4 {ECO:0000303|PubMed:8232555};
AltName: Full=Protein OUT OF PHASE 2;
Short=OOP2;
Name=CRY1 {ECO:0000303|PubMed:8953250};
Synonyms=BLU1 {ECO:0000303|PubMed:12324610},
HY4 {ECO:0000303|PubMed:8232555};
OrderedLocusNames=At4g08920 {ECO:0000312|Araport:AT4G08920};
ORFNames=T3H13.14 {ECO:0000312|EMBL:AAD17364.1},
T3H13.5 {ECO:0000312|EMBL:AAD17364.1};
Arabidopsis thaliana (Mouse-ear cress).
Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
Spermatophyta; Magnoliopsida; eudicotyledons; Gunneridae;
Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae;
Arabidopsis.
NCBI_TaxID=3702;
[1]
NUCLEOTIDE SEQUENCE [MRNA].
STRAIN=cv. Columbia;
PubMed=8232555; DOI=10.1038/366162a0;
Ahmad M., Cashmore A.R.;
"HY4 gene of A. thaliana encodes a protein with characteristics of a
blue-light photoreceptor.";
Nature 366:162-166(1993).
[2]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
STRAIN=cv. Columbia;
PubMed=10617198; DOI=10.1038/47134;
Mayer K.F.X., Schueller C., Wambutt R., Murphy G., Volckaert G.,
Pohl T., Duesterhoeft A., Stiekema W., Entian K.-D., Terryn N.,
Harris B., Ansorge W., Brandt P., Grivell L.A., Rieger M.,
Weichselgartner M., de Simone V., Obermaier B., Mache R., Mueller M.,
Kreis M., Delseny M., Puigdomenech P., Watson M., Schmidtheini T.,
Reichert B., Portetelle D., Perez-Alonso M., Boutry M., Bancroft I.,
Vos P., Hoheisel J., Zimmermann W., Wedler H., Ridley P.,
Langham S.-A., McCullagh B., Bilham L., Robben J.,
van der Schueren J., Grymonprez B., Chuang Y.-J., Vandenbussche F.,
Braeken M., Weltjens I., Voet M., Bastiaens I., Aert R., Defoor E.,
Weitzenegger T., Bothe G., Ramsperger U., Hilbert H., Braun M.,
Holzer E., Brandt A., Peters S., van Staveren M., Dirkse W.,
Mooijman P., Klein Lankhorst R., Rose M., Hauf J., Koetter P.,
Berneiser S., Hempel S., Feldpausch M., Lamberth S., Van den Daele H.,
De Keyser A., Buysshaert C., Gielen J., Villarroel R., De Clercq R.,
van Montagu M., Rogers J., Cronin A., Quail M.A., Bray-Allen S.,
Clark L., Doggett J., Hall S., Kay M., Lennard N., McLay K., Mayes R.,
Pettett A., Rajandream M.A., Lyne M., Benes V., Rechmann S.,
Borkova D., Bloecker H., Scharfe M., Grimm M., Loehnert T.-H.,
Dose S., de Haan M., Maarse A.C., Schaefer M., Mueller-Auer S.,
Gabel C., Fuchs M., Fartmann B., Granderath K., Dauner D., Herzl A.,
Neumann S., Argiriou A., Vitale D., Liguori R., Piravandi E.,
Massenet O., Quigley F., Clabauld G., Muendlein A., Felber R.,
Schnabl S., Hiller R., Schmidt W., Lecharny A., Aubourg S.,
Chefdor F., Cooke R., Berger C., Monfort A., Casacuberta E.,
Gibbons T., Weber N., Vandenbol M., Bargues M., Terol J., Torres A.,
Perez-Perez A., Purnelle B., Bent E., Johnson S., Tacon D., Jesse T.,
Heijnen L., Schwarz S., Scholler P., Heber S., Francs P., Bielke C.,
Frishman D., Haase D., Lemcke K., Mewes H.-W., Stocker S.,
Zaccaria P., Bevan M., Wilson R.K., de la Bastide M., Habermann K.,
Parnell L., Dedhia N., Gnoj L., Schutz K., Huang E., Spiegel L.,
Sekhon M., Murray J., Sheet P., Cordes M., Abu-Threideh J.,
Stoneking T., Kalicki J., Graves T., Harmon G., Edwards J.,
Latreille P., Courtney L., Cloud J., Abbott A., Scott K., Johnson D.,
Minx P., Bentley D., Fulton B., Miller N., Greco T., Kemp K.,
Kramer J., Fulton L., Mardis E., Dante M., Pepin K., Hillier L.W.,
Nelson J., Spieth J., Ryan E., Andrews S., Geisel C., Layman D.,
Du H., Ali J., Berghoff A., Jones K., Drone K., Cotton M., Joshu C.,
Antonoiu B., Zidanic M., Strong C., Sun H., Lamar B., Yordan C.,
Ma P., Zhong J., Preston R., Vil D., Shekher M., Matero A., Shah R.,
Swaby I.K., O'Shaughnessy A., Rodriguez M., Hoffman J., Till S.,
Granat S., Shohdy N., Hasegawa A., Hameed A., Lodhi M., Johnson A.,
Chen E., Marra M.A., Martienssen R., McCombie W.R.;
"Sequence and analysis of chromosome 4 of the plant Arabidopsis
thaliana.";
Nature 402:769-777(1999).
[3]
GENOME REANNOTATION.
STRAIN=cv. Columbia;
PubMed=27862469; DOI=10.1111/tpj.13415;
Cheng C.Y., Krishnakumar V., Chan A.P., Thibaud-Nissen F., Schobel S.,
Town C.D.;
"Araport11: a complete reannotation of the Arabidopsis thaliana
reference genome.";
Plant J. 89:789-804(2017).
[4]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
STRAIN=cv. Columbia;
PubMed=14593172; DOI=10.1126/science.1088305;
Yamada K., Lim J., Dale J.M., Chen H., Shinn P., Palm C.J.,
Southwick A.M., Wu H.C., Kim C.J., Nguyen M., Pham P.K., Cheuk R.F.,
Karlin-Newmann G., Liu S.X., Lam B., Sakano H., Wu T., Yu G.,
Miranda M., Quach H.L., Tripp M., Chang C.H., Lee J.M., Toriumi M.J.,
Chan M.M., Tang C.C., Onodera C.S., Deng J.M., Akiyama K., Ansari Y.,
Arakawa T., Banh J., Banno F., Bowser L., Brooks S.Y., Carninci P.,
Chao Q., Choy N., Enju A., Goldsmith A.D., Gurjal M., Hansen N.F.,
Hayashizaki Y., Johnson-Hopson C., Hsuan V.W., Iida K., Karnes M.,
Khan S., Koesema E., Ishida J., Jiang P.X., Jones T., Kawai J.,
Kamiya A., Meyers C., Nakajima M., Narusaka M., Seki M., Sakurai T.,
Satou M., Tamse R., Vaysberg M., Wallender E.K., Wong C., Yamamura Y.,
Yuan S., Shinozaki K., Davis R.W., Theologis A., Ecker J.R.;
"Empirical analysis of transcriptional activity in the Arabidopsis
genome.";
Science 302:842-846(2003).
[5]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=12324610; DOI=10.1105/tpc.3.7.685;
Liscum E., Hangarter R.P.;
"Arabidopsis mutants lacking blue light-dependent inhibition of
hypocotyl elongation.";
Plant Cell 3:685-694(1991).
[6]
FUNCTION, AND COFACTOR.
PubMed=7756321; DOI=10.1021/bi00020a037;
Malhotra K., Kim S.-T., Batschauer A., Dawut L., Sancar A.;
"Putative blue-light photoreceptors from Arabidopsis thaliana and
Sinapis alba with a high degree of sequence homology to DNA photolyase
contain the two photolyase cofactors but lack DNA repair activity.";
Biochemistry 34:6892-6899(1995).
[7]
FUNCTION, DISRUPTION PHENOTYPE, AND MUTAGENESIS OF GLY-220; GLY-283;
GLY-340; GLY-347; GLU-515; GLU-531; PRO-549; GLU-559; ARG-576; ARG-581
AND ARG-611.
PubMed=8528277; DOI=10.1046/j.1365-313X.1995.08050653.x;
Ahmad M., Lin C., Cashmore A.R.;
"Mutations throughout an Arabidopsis blue-light photoreceptor impair
blue-light-responsive anthocyanin accumulation and inhibition of
hypocotyl elongation.";
Plant J. 8:653-658(1995).
[8]
CHARACTERIZATION.
PubMed=8953250; DOI=10.1046/j.1365-313X.1996.10050893.x;
Lin C., Ahmad M., Cashmore A.R.;
"Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-
dependent regulation of plant growth and development.";
Plant J. 10:893-902(1996).
[9]
FUNCTION, AND MUTAGENESIS OF GLY-340.
PubMed=9565033; DOI=10.1038/33701;
Ahmad M., Jarillo J.A., Smirnova O., Cashmore A.R.;
"Cryptochrome blue-light photoreceptors of Arabidopsis implicated in
phototropism.";
Nature 392:720-723(1998).
[10]
INTERACTION WITH PHYA, AND PHOSPHORYLATION.
PubMed=9651577; DOI=10.1016/S1097-2765(00)80094-5;
Ahmad M., Jarillo J.A., Smirnova O., Cashmore A.R.;
"The CRY1 blue light photoreceptor of Arabidopsis interacts with
phytochrome A in vitro.";
Mol. Cell 1:939-948(1998).
[11]
FUNCTION, AND DISRUPTION PHENOTYPE.
STRAIN=cv. Landsberg erecta;
PubMed=9733523; DOI=10.1104/pp.118.1.27;
Neff M.M., Chory J.;
"Genetic interactions between phytochrome A, phytochrome B, and
cryptochrome 1 during Arabidopsis development.";
Plant Physiol. 118:27-35(1998).
[12]
FUNCTION, AND DISRUPTION PHENOTYPE.
STRAIN=cv. Landsberg erecta;
PubMed=9765547; DOI=10.1104/pp.118.2.609;
Parks B.M., Cho M.H., Spalding E.P.;
"Two genetically separable phases of growth inhibition induced by blue
light in Arabidopsis seedlings.";
Plant Physiol. 118:609-615(1998).
[13]
DOMAINS.
PubMed=11114337; DOI=10.1016/S0092-8674(00)00184-7;
Yang H.-Q., Wu Y.-J., Tang R.-H., Liu D., Liu Y., Cashmore A.R.;
"The C termini of Arabidopsis cryptochromes mediate a constitutive
light response.";
Cell 103:815-827(2000).
[14]
INTERACTION WITH ADO1.
PubMed=11260718; DOI=10.1038/35068589;
Jarillo J.A., Capel J., Tang R.-H., Yang H.-Q., Alonso J.M.,
Ecker J.R., Cashmore A.R.;
"An Arabidopsis circadian clock component interacts with both CRY1 and
phyB.";
Nature 410:487-490(2001).
[15]
INTERACTION WITH COP1.
PubMed=11509693; DOI=10.1126/science.1063630;
Wang H., Ma L.-G., Li J.-M., Zhao H.-Y., Deng X.W.;
"Direct interaction of Arabidopsis cryptochromes with COP1 in light
control development.";
Science 294:154-158(2001).
[16]
INTERACTION WITH COP1.
PubMed=11752373; DOI=10.1105/tpc.13.12.2573;
Yang H.-Q., Tang R.-H., Cashmore A.R.;
"The signaling mechanism of Arabidopsis CRY1 involves direct
interaction with COP1.";
Plant Cell 13:2573-2587(2001).
[17]
INDUCTION BY CIRCADIAN CLOCK AND LIGHT, AND TISSUE SPECIFICITY.
PubMed=11743105; DOI=10.1104/pp.127.4.1607;
Toth R., Kevei E., Hall A., Millar A.J., Nagy F., Kozma-Bognar L.;
"Circadian clock-regulated expression of phytochrome and cryptochrome
genes in Arabidopsis.";
Plant Physiol. 127:1607-1616(2001).
[18]
PHOSPHORYLATION.
PubMed=12846824; DOI=10.1046/j.1432-1033.2003.03691.x;
Bouly J.-P., Giovani B., Djamei A., Mueller M., Zeugner A.,
Dudkin E.A., Batschauer A., Ahmad M.;
"Novel ATP-binding and autophosphorylation activity associated with
Arabidopsis and human cryptochrome-1.";
Eur. J. Biochem. 270:2921-2928(2003).
[19]
PHOSPHORYLATION.
PubMed=14523249; DOI=10.1105/tpc.013011;
Shalitin D., Yu X., Maymon M., Mockler T., Lin C.;
"Blue light-dependent in vivo and in vitro phosphorylation of
Arabidopsis cryptochrome 1.";
Plant Cell 15:2421-2429(2003).
[20]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=12857830; DOI=10.1104/pp.102.018481;
Whippo C.W., Hangarter R.P.;
"Second positive phototropism results from coordinated co-action of
the phototropins and cryptochromes.";
Plant Physiol. 132:1499-1507(2003).
[21]
FUNCTION.
PubMed=16093319; DOI=10.1073/pnas.0501011102;
Mao J., Zhang Y.C., Sang Y., Li Q.H., Yang H.Q.;
"A role for Arabidopsis cryptochromes and COP1 in the regulation of
stomatal opening.";
Proc. Natl. Acad. Sci. U.S.A. 102:12270-12275(2005).
[22]
ACTIVITY REGULATION.
PubMed=15751956; DOI=10.1021/bi047545g;
Partch C.L., Clarkson M.W., Ozgur S., Lee A.L., Sancar A.;
"Role of structural plasticity in signal transduction by the
cryptochrome blue-light photoreceptor.";
Biochemistry 44:3795-3805(2005).
[23]
SUBUNIT, AND MUTAGENESIS OF SER-66; GLY-347 AND ALA-462.
PubMed=15805487; DOI=10.1105/tpc.104.029645;
Sang Y., Li Q.-H., Rubio V., Zhang Y.-C., Mao J., Deng X.-W.,
Yang H.-Q.;
"N-terminal domain-mediated homodimerization is required for
photoreceptor activity of Arabidopsis CRYPTOCHROME 1.";
Plant Cell 17:1569-1584(2005).
[24]
SUBCELLULAR LOCATION.
PubMed=15610358; DOI=10.1111/j.1365-313X.2004.02281.x;
Koroleva O.A., Tomlinson M.L., Leader D., Shaw P., Doonan J.H.;
"High-throughput protein localization in Arabidopsis using
Agrobacterium-mediated transient expression of GFP-ORF fusions.";
Plant J. 41:162-174(2005).
[25]
AUTOPHOSPHORYLATION, COFACTOR, AND ATP-BINDING.
PubMed=17073458; DOI=10.1021/bi061556n;
Ozguer S., Sancar A.;
"Analysis of autophosphorylating kinase activities of Arabidopsis and
human cryptochromes.";
Biochemistry 45:13369-13374(2006).
[26]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=16703358; DOI=10.1007/s00425-006-0280-6;
Canamero R.C., Bakrim N., Bouly J.-P., Garay A., Dudkin E.E.,
Habricot Y., Ahmad M.;
"Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate
primary root elongation in Arabidopsis thaliana.";
Planta 224:995-1003(2006).
[27]
FUNCTION IN PCD, AND DISRUPTION PHENOTYPE.
PubMed=17075038; DOI=10.1073/pnas.0608139103;
Danon A., Coll N.S., Apel K.;
"Cryptochrome-1-dependent execution of programmed cell death induced
by singlet oxygen in Arabidopsis thaliana.";
Proc. Natl. Acad. Sci. U.S.A. 103:17036-17041(2006).
[28]
MUTAGENESIS OF ASP-21; SER-286; GLY-340 AND GLU-623.
STRAIN=cv. Columbia;
PubMed=18065688; DOI=10.1105/tpc.107.054312;
Ruckle M.E., DeMarco S.M., Larkin R.M.;
"Plastid signals remodel light signaling networks and are essential
for efficient chloroplast biogenesis in Arabidopsis.";
Plant Cell 19:3944-3960(2007).
[29]
SUBCELLULAR LOCATION.
PubMed=18003924; DOI=10.1073/pnas.0705082104;
Wu G., Spalding E.P.;
"Separate functions for nuclear and cytoplasmic cryptochrome 1 during
photomorphogenesis of Arabidopsis seedlings.";
Proc. Natl. Acad. Sci. U.S.A. 104:18813-18818(2007).
[30]
FUNCTION.
PubMed=18397371; DOI=10.1111/j.1365-313X.2008.03508.x;
Hong S.H., Kim H.J., Ryu J.S., Choi H., Jeong S., Shin J., Choi G.,
Nam H.G.;
"CRY1 inhibits COP1-mediated degradation of BIT1, a MYB transcription
factor, to activate blue light-dependent gene expression in
Arabidopsis.";
Plant J. 55:361-371(2008).
[31]
ATP BINDING.
PubMed=19327354; DOI=10.1016/j.febslet.2009.03.040;
Burney S., Hoang N., Caruso M., Dudkin E.A., Ahmad M., Bouly J.-P.;
"Conformational change induced by ATP binding correlates with enhanced
biological function of Arabidopsis cryptochrome.";
FEBS Lett. 583:1427-1433(2009).
[32]
FUNCTION, AND DISRUPTION PHENOTYPE.
STRAIN=cv. Columbia;
PubMed=19558423; DOI=10.1111/j.1469-8137.2009.02921.x;
Millenaar F.F., van Zanten M., Cox M.C., Pierik R., Voesenek L.A.,
Peeters A.J.;
"Differential petiole growth in Arabidopsis thaliana: photocontrol and
hormonal regulation.";
New Phytol. 184:141-152(2009).
[33]
REVIEW ON CRYPTOCHROMES.
PubMed=21841916; DOI=10.1199/tab.0135;
Yu X., Liu H., Klejnot J., Lin C.;
"The cryptochrome blue light receptors.";
Arabidopsis Book 8:E0135-E0135(2010).
[34]
REVIEW ON PHOTORECEPTORS.
PubMed=20705178; DOI=10.1016/S0070-2153(10)91002-8;
Kami C., Lorrain S., Hornitschek P., Fankhauser C.;
"Light-regulated plant growth and development.";
Curr. Top. Dev. Biol. 91:29-66(2010).
[35]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=20133010; DOI=10.1016/j.jplph.2009.12.003;
Zeng J., Wang Q., Lin J., Deng K., Zhao X., Tang D., Liu X.;
"Arabidopsis cryptochrome-1 restrains lateral roots growth by
inhibiting auxin transport.";
J. Plant Physiol. 167:670-673(2010).
[36]
FUNCTION, AND DISRUPTION PHENOTYPE.
STRAIN=cv. Columbia;
PubMed=20053798; DOI=10.1093/mp/ssp107;
Wu L., Yang H.-Q.;
"CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant
resistance to Pseudomonas syringae in Arabidopsis.";
Mol. Plant 3:539-548(2010).
[37]
FUNCTION, AND DISRUPTION PHENOTYPE.
STRAIN=cv. Landsberg erecta;
PubMed=20668058; DOI=10.1104/pp.110.160820;
Sellaro R., Crepy M., Trupkin S.A., Karayekov E., Buchovsky A.S.,
Rossi C., Casal J.J.;
"Cryptochrome as a sensor of the blue/green ratio of natural radiation
in Arabidopsis.";
Plant Physiol. 154:401-409(2010).
[38]
MUTAGENESIS OF LEU-407.
STRAIN=cv. Columbia, and cv. Landsberg erecta;
PubMed=20926618; DOI=10.1104/pp.110.160895;
Exner V., Alexandre C., Rosenfeldt G., Alfarano P., Nater M.,
Caflisch A., Gruissem W., Batschauer A., Hennig L.;
"A gain-of-function mutation of Arabidopsis cryptochrome1 promotes
flowering.";
Plant Physiol. 154:1633-1645(2010).
[39]
FUNCTION, DISRUPTION PHENOTYPE, SUBCELLULAR LOCATION, AND INTERACTION
WITH SPA1.
STRAIN=cv. Columbia;
PubMed=21511872; DOI=10.1101/gad.2025111;
Lian H.-L., He S.-B., Zhang Y.-C., Zhu D.-M., Zhang J.-Y., Jia K.-P.,
Sun S.-X., Li L., Yang H.-Q.;
"Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines
a dynamic signaling mechanism.";
Genes Dev. 25:1023-1028(2011).
[40]
FUNCTION, DISRUPTION PHENOTYPE, AND INTERACTION WITH SPA1 AND SPA4.
PubMed=21511871; DOI=10.1101/gad.2025011;
Liu B., Zuo Z., Liu H., Liu X., Lin C.;
"Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1
activity in response to blue light.";
Genes Dev. 25:1029-1034(2011).
[41]
FUNCTION.
PubMed=21467031; DOI=10.1074/jbc.M111.228940;
Mueller P., Ahmad M.;
"Light-activated cryptochrome reacts with molecular oxygen to form a
flavin-superoxide radical pair consistent with magnetoreception.";
J. Biol. Chem. 286:21033-21040(2011).
[42]
FUNCTION, AND MUTAGENESIS OF TRP-324.
PubMed=21875594; DOI=10.1016/j.jmb.2011.08.031;
Kondoh M., Shiraishi C., Mueller P., Ahmad M., Hitomi K.,
Getzoff E.D., Terazima M.;
"Light-induced conformational changes in full-length Arabidopsis
thaliana cryptochrome.";
J. Mol. Biol. 413:128-137(2011).
[43]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=21265897; DOI=10.1111/j.1365-313X.2010.04434.x;
Foreman J., Johansson H., Hornitschek P., Josse E.-M., Fankhauser C.,
Halliday K.J.;
"Light receptor action is critical for maintaining plant biomass at
warm ambient temperatures.";
Plant J. 65:441-452(2011).
[44]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=21457375; DOI=10.1111/j.1365-313X.2011.04598.x;
Keller M.M., Jaillais Y., Pedmale U.V., Moreno J.E., Chory J.,
Ballare C.L.;
"Cryptochrome 1 and phytochrome B control shade-avoidance responses in
Arabidopsis via partially independent hormonal cascades.";
Plant J. 67:195-207(2011).
[45]
MUTAGENESIS OF ASP-396.
PubMed=22890584; DOI=10.1002/anie.201203476;
Burney S., Wenzel R., Kottke T., Roussel T., Hoang N., Bouly J.P.,
Bittl R., Heberle J., Ahmad M.;
"Single amino acid substitution reveals latent photolyase activity in
Arabidopsis cry1.";
Angew. Chem. Int. Ed. 51:9356-9360(2012).
[46]
INTERACTION WITH PHYB, AND MUTAGENESIS OF LEU-407.
PubMed=22577138; DOI=10.1074/jbc.M112.360545;
Hughes R.M., Vrana J.D., Song J., Tucker C.L.;
"Light-dependent, dark-promoted interaction between Arabidopsis
cryptochrome 1 and phytochrome B proteins.";
J. Biol. Chem. 287:22165-22172(2012).
[47]
MUTAGENESIS OF GLY-380, AND SUBCELLULAR LOCATION.
PubMed=21765176; DOI=10.1093/mp/ssr052;
Gu N.-N., Zhang Y.-C., Yang H.-Q.;
"Substitution of a conserved glycine in the PHR domain of Arabidopsis
cryptochrome 1 confers a constitutive light response.";
Mol. Plant 5:85-97(2012).
[48]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=22786870; DOI=10.1105/tpc.112.100099;
Shaikhali J., de Dios Barajas-Lopez J., Oetvoes K., Kremnev D.,
Garcia A.S., Srivastava V., Wingsle G., Bako L., Strand A.;
"The CRYPTOCHROME1-dependent response to excess light is mediated
through the transcriptional activators ZINC FINGER PROTEIN EXPRESSED
IN INFLORESCENCE MERISTEM LIKE1 and ZML2 in Arabidopsis.";
Plant Cell 24:3009-3025(2012).
[49]
FUNCTION, AND DISRUPTION PHENOTYPE.
STRAIN=cv. Columbia, and cv. Landsberg erecta;
PubMed=22855128; DOI=10.1007/s11103-012-9950-x;
Fox A.R., Soto G.C., Jones A.M., Casal J.J., Muschietti J.P.,
Mazzella M.A.;
"cry1 and GPA1 signaling genetically interact in hook opening and
anthocyanin synthesis in Arabidopsis.";
Plant Mol. Biol. 80:315-324(2012).
[50]
FUNCTION, AND DISRUPTION PHENOTYPE.
STRAIN=cv. Columbia;
PubMed=22147516; DOI=10.1104/pp.111.187237;
Boccalandro H.E., Giordano C.V., Ploschuk E.L., Piccoli P.N.,
Bottini R., Casal J.J.;
"Phototropins but not cryptochromes mediate the blue light-specific
promotion of stomatal conductance, while both enhance photosynthesis
and transpiration under full sunlight.";
Plant Physiol. 158:1475-1484(2012).
[51]
FUNCTION.
PubMed=22421133; DOI=10.1073/pnas.1118959109;
Maeda K., Robinson A.J., Henbest K.B., Hogben H.J., Biskup T.,
Ahmad M., Schleicher E., Weber S., Timmel C.R., Hore P.J.;
"Magnetically sensitive light-induced reactions in cryptochrome are
consistent with its proposed role as a magnetoreceptor.";
Proc. Natl. Acad. Sci. U.S.A. 109:4774-4779(2012).
[52]
FUNCTION, DISRUPTION PHENOTYPE, AND INDUCTION BY TEMPERATURE.
STRAIN=cv. Columbia;
PubMed=23511208; DOI=10.1038/msb.2013.7;
Gould P.D., Ugarte N., Domijan M., Costa M., Foreman J., Macgregor D.,
Rose K., Griffiths J., Millar A.J., Finkenstaedt B., Penfield S.,
Rand D.A., Halliday K.J., Hall A.J.W.;
"Network balance via CRY signalling controls the Arabidopsis circadian
clock over ambient temperatures.";
Mol. Syst. Biol. 9:650-650(2013).
[53]
FUNCTION, AND DISRUPTION PHENOTYPE.
STRAIN=cv. Landsberg erecta;
PubMed=22681544; DOI=10.1111/j.1365-3040.2012.02554.x;
Nameth B., Dinka S.J., Chatfield S.P., Morris A., English J.,
Lewis D., Oro R., Raizada M.N.;
"The shoot regeneration capacity of excised Arabidopsis cotyledons is
established during the initial hours after injury and is modulated by
a complex genetic network of light signalling.";
Plant Cell Environ. 36:68-86(2013).
[54]
FUNCTION.
STRAIN=cv. Landsberg erecta;
PubMed=23398192; DOI=10.1111/tpj.12144;
Herbel V., Orth C., Wenzel R., Ahmad M., Bittl R., Batschauer A.;
"Lifetimes of Arabidopsis cryptochrome signaling states in vivo.";
Plant J. 74:583-592(2013).
[55]
FUNCTION.
PubMed=25157750; DOI=10.1021/ja506084f;
Cailliez F., Mueller P., Gallois M., de la Lande A.;
"ATP binding and aspartate protonation enhance photoinduced electron
transfer in plant cryptochrome.";
J. Am. Chem. Soc. 136:12974-12986(2014).
[56]
FUNCTION, AND DISRUPTION PHENOTYPE.
STRAIN=cv. Columbia;
PubMed=24126495; DOI=10.1093/mp/sst093;
Jia K.-P., Luo Q., He S.-B., Lu X.-D., Yang H.-Q.;
"Strigolactone-regulated hypocotyl elongation is dependent on
cryptochrome and phytochrome signaling pathways in Arabidopsis.";
Mol. Plant 7:528-540(2014).
[57]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=26095447; DOI=10.1002/bem.21927;
Xu C., Li Y., Yu Y., Zhang Y., Wei S.;
"Suppression of Arabidopsis flowering by near-null magnetic field is
affected by light.";
Bioelectromagnetics 36:476-479(2015).
[58]
INTERACTION WITH TCP2.
PubMed=26596765; DOI=10.1093/jxb/erv495;
He Z., Zhao X., Kong F., Zuo Z., Liu X.;
"TCP2 positively regulates HY5/HYH and photomorphogenesis in
Arabidopsis.";
J. Exp. Bot. 67:775-785(2015).
[59]
FUNCTION, DISRUPTION PHENOTYPE, MUTAGENESIS OF SER-66; GLY-220;
GLY-283; GLY-337; GLY-340; GLY-347 AND ALA-462, AND DOMAINS.
PubMed=25721730; DOI=10.1016/j.molp.2015.02.008;
He S.B., Wang W.X., Zhang J.Y., Xu F., Lian H.L., Li L., Yang H.Q.;
"The CNT1 domain of Arabidopsis CRY1 Alone is sufficient to mediate
blue light inhibition of hypocotyl elongation.";
Mol. Plant 8:822-825(2015).
[60]
FUNCTION, AND DISRUPTION PHENOTYPE.
STRAIN=cv. Wassilewskija;
PubMed=25728686; DOI=10.1111/nph.13341;
Consentino L., Lambert S., Martino C., Jourdan N., Bouchet P.-E.,
Witczak J., Castello P., El-Esawi M., Corbineau F., d'Harlingue A.,
Ahmad M.;
"Blue-light dependent reactive oxygen species formation by Arabidopsis
cryptochrome may define a novel evolutionarily conserved signaling
mechanism.";
New Phytol. 206:1450-1462(2015).
[61]
FUNCTION, AND MUTAGENESIS OF TRP-324 AND TRP-400.
PubMed=26313597; DOI=10.1080/15592324.2015.1063758;
El-Esawi M., Glascoe A., Engle D., Ritz T., Link J., Ahmad M.;
"Cellular metabolites modulate in vivo signaling of Arabidopsis
cryptochrome-1.";
Plant Signal. Behav. 10:E1063758-E1063758(2015).
[62]
FUNCTION, INDUCTION BY LOW BLUE LIGHT, INTERACTION WITH PIF4 AND PIF5,
AND SUBCELLULAR LOCATION.
PubMed=26724867; DOI=10.1016/j.cell.2015.12.018;
Pedmale U.V., Huang S.S., Zander M., Cole B.J., Hetzel J., Ljung K.,
Reis P.A., Sridevi P., Nito K., Nery J.R., Ecker J.R., Chory J.;
"Cryptochromes interact directly with PIFs to control plant growth in
limiting blue light.";
Cell 164:233-245(2016).
[63]
X-RAY CRYSTALLOGRAPHY (2.45 ANGSTROMS) OF 1-509 IN COMPLEX WITH ATP;
FAD AND MAGNESIUM, DISULFIDE BONDS, AND BINDING SITES.
PubMed=15299148; DOI=10.1073/pnas.0404851101;
Brautigam C.A., Smith B.S., Ma Z., Palnitkar M., Tomchick D.R.,
Machius M., Deisenhofer J.;
"Structure of the photolyase-like domain of cryptochrome 1 from
Arabidopsis thaliana.";
Proc. Natl. Acad. Sci. U.S.A. 101:12142-12147(2004).
-!- FUNCTION: Photoreceptor that mediates primarily blue light
inhibition of hypocotyl elongation and photoperiodic control of
floral initiation, and regulates other light responses, including
circadian rhythms, tropic growth, stomata opening, guard cell
development, root development, bacterial and viral pathogen
responses, abiotic stress responses, cell cycles, programmed cell
death, apical dominance, fruit and ovule development, seed
dormancy, and magnetoreception. Photoexcited cryptochromes
interact with signaling partner proteins to alter gene expression
at both transcriptional and post-translational levels and,
consequently, regulate the corresponding metabolic and
developmental programs (PubMed:21841916). Blue-light absorbing
flavoprotein that activates reversible flavin photoreduction via
an electron transport chain comprising a tryptophan triad (W-324,
W-377 and W-400), accompanied by a large conformational change
upon photoexcitation, or via an alternative electron transport
that involves small metabolites, including NADPH, NADH, and ATP.
The half-life of the activated signaling state is about 5 minutes
(PubMed:26313597, PubMed:25157750, PubMed:23398192,
PubMed:21875594, PubMed:21467031). Also involved in the detection
of blue/green ratio in light (shade under leaf canopies) and
subsequent adaptations on plant growth and development
(PubMed:20668058). In darkness, the dark reoxidation of flavin
occurs and leads to inactivated state (PubMed:21467031,
PubMed:23398192). Perceives low blue light (LBL) and responds by
directly contacting two bHLH transcription factors, PIF4 and PIF5,
at chromatin on E-box variant 5'-CA[CT]GTG-3' to promote their
activity and stimulate specific gene expression to adapt global
physiology (e.g. hypocotyl elongation and hyponastic growth in low
blue light) (PubMed:26724867, PubMed:19558423). When activated by
high-intensity blue light, catalyzes direct enzymatic conversion
of molecular oxygen O(2) to reactive oxygen species (ROS) and
hydrogen peroxide H(2)O(2) in vitro. ROS accumulation upon
activation by blue light leads to cell death in protoplasts
(PubMed:25728686). Seems essential for blue-light-triggered and
singlet oxygen-mediated programmed cell death (PCD)
(PubMed:17075038). Required for the induction of nuclear genes
encoding photoprotective components by GATA24 and GATA28 in
extreme light intensities that exceed the electron utilization
capacity of the chloroplast (PubMed:22786870). Involved in
shortening the circadian clock period, especially at 27 degrees
Celsius, in blue light (BL) and required to maintain clock genes
expression rhythm (PubMed:23511208). Mediates blue light-induced
gene expression and hypocotyl elongation through the inhibition of
COP1-mediated degradation of the transcription factors BIT1 and
HY5 and via the activation of anion channels at the plasma
membrane, probably via auxin signaling (PubMed:21511872,
PubMed:21511871, PubMed:16093319, PubMed:18397371,
PubMed:12324610, PubMed:8528277, PubMed:9765547, PubMed:25721730).
Required for the hypocotyl hook formation in darkness
(PubMed:22855128). Involved in blue light-dependent stomatal
opening, CHS gene expression, transpiration, inhibition of stem
growth and increase of root growth, probably by regulating
abscisic acid (ABA) (PubMed:22147516, PubMed:16093319,
PubMed:16703358, PubMed:7756321, PubMed:9565033). Prevents lateral
roots growth by inhibiting auxin transport (PubMed:20133010).
Necessary for shade avoidance syndrome (SAS), characterized by
leaf hyponasty and reduced lamina/petiole ratio, when exposed to
blue light attenuation (PubMed:21457375). Together with
phototropins, involved in phototropism regulation by various blue
light fluence; blue light attenuates phototropism in high fluence
rates (100 umol.m-2.s-1) but enhances phototropism in low fluence
rates (<1.0 umol.m-2.s-1) (PubMed:12857830). Required for blue/UV-
A wavelengths-mediated inhibition of explants shoot regeneration
in vitro (e.g. new shoot apical meristems regeneration from
excised cotyledons) (PubMed:22681544). Modulates anthocyanin
accumulation in a PHYA-dependent manner in far-red-light. Acts as
a PHYA/PHYB-dependent modulator of chlorophyll accumulation in red
light. Contributes to most blue light deetiolation responses
(PubMed:9733523, PubMed:8528277). May act as a chemical
magnetoreceptor, via magnetically sensitive kinetics and quantum
yields of photo-induced flavin / tryptophan radical pairs
(PubMed:22421133). The effect of near-null magnetic field on
flowering is altered by changes of blue light cycle and intensity
in a CRY1/CRY2-dependent manner (PubMed:26095447). Involved in the
strigolactone signaling that regulates hypocotyl growth in
response to blue light (PubMed:24126495). Modulates temperature-
dependent growth and physiology maintenance, especially at warm
ambient temperatures, via HFR1-dependent activity
(PubMed:21265897). {ECO:0000269|PubMed:12324610,
ECO:0000269|PubMed:12857830, ECO:0000269|PubMed:16093319,
ECO:0000269|PubMed:16703358, ECO:0000269|PubMed:17075038,
ECO:0000269|PubMed:18397371, ECO:0000269|PubMed:19558423,
ECO:0000269|PubMed:20133010, ECO:0000269|PubMed:20668058,
ECO:0000269|PubMed:21265897, ECO:0000269|PubMed:21457375,
ECO:0000269|PubMed:21467031, ECO:0000269|PubMed:21511871,
ECO:0000269|PubMed:21511872, ECO:0000269|PubMed:21875594,
ECO:0000269|PubMed:22147516, ECO:0000269|PubMed:22421133,
ECO:0000269|PubMed:22681544, ECO:0000269|PubMed:22786870,
ECO:0000269|PubMed:22855128, ECO:0000269|PubMed:23398192,
ECO:0000269|PubMed:23511208, ECO:0000269|PubMed:24126495,
ECO:0000269|PubMed:25157750, ECO:0000269|PubMed:25721730,
ECO:0000269|PubMed:25728686, ECO:0000269|PubMed:26095447,
ECO:0000269|PubMed:26313597, ECO:0000269|PubMed:26724867,
ECO:0000269|PubMed:7756321, ECO:0000269|PubMed:8528277,
ECO:0000269|PubMed:9565033, ECO:0000269|PubMed:9733523,
ECO:0000269|PubMed:9765547, ECO:0000303|PubMed:21841916}.
-!- FUNCTION: Implicated in promoting R protein-mediated resistance to
Pseudomonas syringae pv. tomato (Pst.) DC3000 under continuous
light conditions. Promotes systemic acquired resistance (SAR) and
PR gene expression triggered by P. syringae.
{ECO:0000269|PubMed:20053798}.
-!- COFACTOR:
Name=FAD; Xref=ChEBI:CHEBI:57692;
Evidence={ECO:0000269|PubMed:17073458,
ECO:0000269|PubMed:7756321};
Note=Binds 1 FAD per subunit. {ECO:0000269|PubMed:17073458,
ECO:0000269|PubMed:7756321};
-!- COFACTOR:
Name=(6R)-5,10-methylene-5,6,7,8-tetrahydrofolate;
Xref=ChEBI:CHEBI:15636; Evidence={ECO:0000269|PubMed:7756321};
Note=Binds 1 5,10-methenyltetrahydrofolate (MTHF) per subunit.
{ECO:0000269|PubMed:7756321};
-!- ACTIVITY REGULATION: Light exposure induces a conformational
change in the C-terminal domain CCT1 required for activity.
{ECO:0000269|PubMed:15751956}.
-!- SUBUNIT: Homodimer. Interacts with ADO1, COP1 and PHYA. Interacts
specifically with the dark/far-red (Pr) state of PHYB, but not
with the red light-activated (Pfr) (PubMed:22577138). Interacts
with PIF4 and PIF5 in the nucleus in response to low blue light
(LBL) (PubMed:26724867). Binds to SPA1 and SPA4 in response to
blue light, this interaction prevents SPA1/COP1 complex formation
and thus avoid COP1-dependent degradation of the transcription
factor HY5 by the proteasome and promotes hypocotyl elongation
(PubMed:21511872, PubMed:21511871). Interacts with TCP2
(PubMed:26596765). Binding to ATP mediates conformational changes
which facilitate flavin binding (PubMed:19327354,
PubMed:17073458). {ECO:0000269|PubMed:11260718,
ECO:0000269|PubMed:11509693, ECO:0000269|PubMed:11752373,
ECO:0000269|PubMed:15299148, ECO:0000269|PubMed:15805487,
ECO:0000269|PubMed:17073458, ECO:0000269|PubMed:19327354,
ECO:0000269|PubMed:21511871, ECO:0000269|PubMed:21511872,
ECO:0000269|PubMed:22577138, ECO:0000269|PubMed:26596765,
ECO:0000269|PubMed:26724867, ECO:0000269|PubMed:9651577}.
-!- INTERACTION:
Self; NbExp=6; IntAct=EBI-300703, EBI-300703;
P43254:COP1; NbExp=4; IntAct=EBI-300703, EBI-301649;
P06593:PHYA3 (xeno); NbExp=2; IntAct=EBI-300703, EBI-630413;
-!- SUBCELLULAR LOCATION: Cytoplasm {ECO:0000269|PubMed:18003924}.
Nucleus {ECO:0000269|PubMed:15610358, ECO:0000269|PubMed:18003924,
ECO:0000269|PubMed:26724867}. Nucleus, PML body
{ECO:0000269|PubMed:21511872, ECO:0000269|PubMed:21765176}.
Note=The nuclear pool is involved in hypocotyl and petiole growth
inhibition and anthocyanin production, while the cytoplasmic pool
is involved in root growth and cotyledon expansion
(PubMed:18003924). Present in nuclear bodies (NBs)
(PubMed:21511872, PubMed:21765176). {ECO:0000269|PubMed:18003924,
ECO:0000269|PubMed:21511872, ECO:0000269|PubMed:21765176}.
-!- TISSUE SPECIFICITY: Widely expressed (PubMed:8953250). Expressed
in the aerial tissues (e.g. cotyledons and leaf primordia), but
not detected in the roots (PubMed:11743105).
{ECO:0000269|PubMed:11743105, ECO:0000269|PubMed:8953250}.
-!- INDUCTION: Expression levels display circadian oscillations under
constant conditions, with a high amplitude and an early phase,
with maximal expression around 4-6 hours of the light phase.
Induced by light (PubMed:11743105). Transcripts levels oscillate
weakly and proportionally to temperature, but protein levels are
stable, with higher levels at low temperature (12 degrees Celsius)
(PubMed:23511208). Accumulates in response to low blue light (LBL)
(PubMed:26724867). {ECO:0000269|PubMed:11743105,
ECO:0000269|PubMed:23511208, ECO:0000269|PubMed:26724867}.
-!- DOMAIN: The N-terminal domain CNT1 (1-489) is sufficient for
autophosphorylation and is required for dimerization. The C-
terminal domain CCT1 (490-681) of the homodimer binds to COP1.
-!- PTM: Autophosphorylated; in response to blue light and when in
complex with FAD cofactor (PubMed:12846824, PubMed:14523249,
PubMed:9651577, PubMed:17073458). Kinase activity is optimal in
the presence of magnesium ions, about 30 percent of the optimal
activity in the presence of manganese ions, but inactive with
calcium ions (PubMed:17073458). Adopts an open conformation when
phosphorylated upon photoexcitation and thus interacts with
signaling partner proteins (PubMed:21841916).
{ECO:0000269|PubMed:12846824, ECO:0000269|PubMed:14523249,
ECO:0000269|PubMed:17073458, ECO:0000269|PubMed:9651577,
ECO:0000303|PubMed:21841916}.
-!- DISRUPTION PHENOTYPE: Prevents the shortening of period at 27
degrees Celsius, resulting in a long period phenotype. The double
mutant cry1 cry2 is impaired in blue light signaling, resulting in
long-period, lower-amplitude oscillations at 12 and 17 degrees
Celsius and completely abolishing rhythms at 27 degrees Celsius
(PubMed:23511208). Plants show reduced root and hypocotyl
elongation in an anion channels activation-dependent manner at the
plasma membrane, as well a reduced anthocyanin accumulation in
blue light (PubMed:8528277, PubMed:12324610, PubMed:16703358,
PubMed:21511871, PubMed:21511872, PubMed:9765547). Impaired
blue/UV-A wavelengths-mediated inhibition of shoot regeneration
(PubMed:22681544). Impaired detection of blue/green ratio in light
leading to abnormal inhibition of hypocotyl growth
(PubMed:20668058). Reduced attenuating effect of high fluence
rates of blue light. This phenotype is stronger in the cry1 cry2
double mutant. Slow rate of curvature at low fluence rates of blue
light in cry1 cry2 (PubMed:12857830). Lower anthocyanin
accumulation in the phyB cry1 double mutant exposed to far-red
light. Reduced chlorophyll levels in the phyB cry1 double mutant
exposed to red light. In blue light, impaired cotyledon unfolding
and smaller cotyledons, longer hypocotyls and less chlorophyll
(PubMed:9733523). Impaired accumulation of reactive oxygen species
(ROS) in double mutant cry1 cry2 exposed to high-intensity blue
light (PubMed:25728686). Altered blue-light-triggered and singlet
oxygen-mediated programmed cell death (PCD) (PubMed:17075038). The
double mutant cry1 cry2 exhibits a reduced impact of near-null
magnetic field on flowering in lower blue light intensity and
short days (PubMed:26095447). Reduced hyponastic growth
(differential growth-driven upward leaf movement) in low blue
light fluence (PubMed:19558423). The double mutant cry1 cry2 is
hyposensitive to the strigolactone analog GR24 (PubMed:24126495).
The mutant cry1 exposed to a background of red light show severely
impaired stomatal opening responses to blue light. The double
mutant cry1 cry2 has reduced stomatal conductance, transpiration,
and photosynthesis, particularly under the high irradiance of full
sunlight at midday, associated with elevated abscisic acid levels
(PubMed:22147516). The cry1 mutants grown in complete darkness
have premature opening of the hypocotyl hook (PubMed:22855128).
Reduced expression of nuclear genes encoding photoprotective
components in response to extreme high light (PubMed:22786870).
Reduced shade avoidance syndrome (SAS) when exposed to blue light
attenuation (PubMed:21457375). Reduced growth at warm ambient
temperatures (PubMed:21265897). Down-regulated local resistance
and systemic acquired resistance (SAR) to Pseudomonas syringae pv.
tomato (Pst.) DC3000 under continuous light conditions, leading to
pathogen proliferation (PubMed:20053798). When grown in blue
light, increased growth of lateral roots and reduced sensitivity
to auxin (IAA) on this phenotype (PubMed:20133010).
{ECO:0000269|PubMed:12324610, ECO:0000269|PubMed:12857830,
ECO:0000269|PubMed:16703358, ECO:0000269|PubMed:17075038,
ECO:0000269|PubMed:19558423, ECO:0000269|PubMed:20053798,
ECO:0000269|PubMed:20133010, ECO:0000269|PubMed:20668058,
ECO:0000269|PubMed:21265897, ECO:0000269|PubMed:21457375,
ECO:0000269|PubMed:21511871, ECO:0000269|PubMed:21511872,
ECO:0000269|PubMed:22147516, ECO:0000269|PubMed:22681544,
ECO:0000269|PubMed:22786870, ECO:0000269|PubMed:22855128,
ECO:0000269|PubMed:23511208, ECO:0000269|PubMed:24126495,
ECO:0000269|PubMed:25728686, ECO:0000269|PubMed:26095447,
ECO:0000269|PubMed:8528277, ECO:0000269|PubMed:9733523,
ECO:0000269|PubMed:9765547}.
-!- SIMILARITY: Belongs to the DNA photolyase class-1 family.
{ECO:0000305}.
-!- CAUTION: Was originally thought to be a DNA photolyase.
{ECO:0000305|PubMed:8232555}.
-!- SEQUENCE CAUTION:
Sequence=AAB28725.2; Type=Frameshift; Positions=546; Evidence={ECO:0000305};
Sequence=AAD17364.1; Type=Erroneous gene model prediction; Evidence={ECO:0000305};
Sequence=CAB78016.1; Type=Erroneous gene model prediction; Evidence={ECO:0000305};
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
Distributed under the Creative Commons Attribution (CC BY 4.0) License
-----------------------------------------------------------------------
EMBL; S66907; AAB28724.1; -; mRNA.
EMBL; S66909; AAB28725.2; ALT_FRAME; mRNA.
EMBL; AF128396; AAD17364.1; ALT_SEQ; Genomic_DNA.
EMBL; AL161513; CAB78016.1; ALT_SEQ; Genomic_DNA.
EMBL; CP002687; AEE82696.1; -; Genomic_DNA.
EMBL; AF361588; AAK32756.1; -; mRNA.
EMBL; AY124863; AAM70572.1; -; mRNA.
PIR; H85089; H85089.
PIR; S39058; S39058.
RefSeq; NP_567341.1; NM_116961.5.
PDB; 1U3C; X-ray; 2.60 A; A=1-509.
PDB; 1U3D; X-ray; 2.45 A; A=1-509.
PDBsum; 1U3C; -.
PDBsum; 1U3D; -.
SMR; Q43125; -.
BioGrid; 11769; 7.
IntAct; Q43125; 3.
MINT; Q43125; -.
STRING; 3702.AT4G08920.1; -.
iPTMnet; Q43125; -.
PaxDb; Q43125; -.
PRIDE; Q43125; -.
EnsemblPlants; AT4G08920.1; AT4G08920.1; AT4G08920.
GeneID; 826470; -.
Gramene; AT4G08920.1; AT4G08920.1; AT4G08920.
KEGG; ath:AT4G08920; -.
Araport; AT4G08920; -.
TAIR; locus:2138728; AT4G08920.
eggNOG; KOG0133; Eukaryota.
eggNOG; COG0415; LUCA.
HOGENOM; HOG000245621; -.
InParanoid; Q43125; -.
KO; K12118; -.
OMA; AINAYMW; -.
OrthoDB; 378952at2759; -.
EvolutionaryTrace; Q43125; -.
PRO; PR:Q43125; -.
Proteomes; UP000006548; Chromosome 4.
ExpressionAtlas; Q43125; baseline and differential.
Genevisible; Q43125; AT.
GO; GO:0005737; C:cytoplasm; IDA:TAIR.
GO; GO:0016604; C:nuclear body; IDA:UniProtKB.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0016605; C:PML body; IEA:UniProtKB-SubCell.
GO; GO:0005524; F:ATP binding; IDA:UniProtKB.
GO; GO:0009882; F:blue light photoreceptor activity; IDA:TAIR.
GO; GO:0071949; F:FAD binding; IDA:UniProtKB.
GO; GO:0042802; F:identical protein binding; IPI:IntAct.
GO; GO:0016301; F:kinase activity; IDA:UniProtKB.
GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
GO; GO:0004672; F:protein kinase activity; IDA:TAIR.
GO; GO:0046283; P:anthocyanin-containing compound metabolic process; IMP:UniProtKB.
GO; GO:0060918; P:auxin transport; IMP:UniProtKB.
GO; GO:0009785; P:blue light signaling pathway; TAS:TAIR.
GO; GO:0010617; P:circadian regulation of calcium ion oscillation; IMP:TAIR.
GO; GO:0007623; P:circadian rhythm; IEP:UniProtKB.
GO; GO:0006952; P:defense response; IEA:UniProtKB-KW.
GO; GO:0009583; P:detection of light stimulus; IMP:TAIR.
GO; GO:0072387; P:flavin adenine dinucleotide metabolic process; IDA:UniProtKB.
GO; GO:1901332; P:negative regulation of lateral root development; IMP:UniProtKB.
GO; GO:0055114; P:oxidation-reduction process; IMP:TAIR.
GO; GO:0009640; P:photomorphogenesis; IMP:TAIR.
GO; GO:0010117; P:photoprotection; IMP:UniProtKB.
GO; GO:0009638; P:phototropism; IMP:UniProtKB.
GO; GO:0099402; P:plant organ development; IMP:UniProtKB.
GO; GO:1901529; P:positive regulation of anion channel activity; IMP:UniProtKB.
GO; GO:1900426; P:positive regulation of defense response to bacterium; IMP:UniProtKB.
GO; GO:1902448; P:positive regulation of shade avoidance; IMP:UniProtKB.
GO; GO:1901672; P:positive regulation of systemic acquired resistance; IMP:UniProtKB.
GO; GO:0046777; P:protein autophosphorylation; IDA:UniProtKB.
GO; GO:0018298; P:protein-chromophore linkage; IEA:UniProtKB-KW.
GO; GO:0042752; P:regulation of circadian rhythm; IMP:UniProtKB.
GO; GO:0010310; P:regulation of hydrogen peroxide metabolic process; IDA:UniProtKB.
GO; GO:1901371; P:regulation of leaf morphogenesis; IMP:UniProtKB.
GO; GO:0010075; P:regulation of meristem growth; IGI:TAIR.
GO; GO:2000377; P:regulation of reactive oxygen species metabolic process; IDA:UniProtKB.
GO; GO:2000652; P:regulation of secondary cell wall biogenesis; IDA:TAIR.
GO; GO:0051510; P:regulation of unidimensional cell growth; IMP:TAIR.
GO; GO:0009646; P:response to absence of light; IMP:UniProtKB.
GO; GO:0009637; P:response to blue light; IDA:UniProtKB.
GO; GO:0010218; P:response to far red light; IMP:UniProtKB.
GO; GO:0009644; P:response to high light intensity; IMP:UniProtKB.
GO; GO:0009416; P:response to light stimulus; IDA:UniProtKB.
GO; GO:0010244; P:response to low fluence blue light stimulus by blue low-fluence system; IMP:UniProtKB.
GO; GO:0071000; P:response to magnetism; IDA:UniProtKB.
GO; GO:0010114; P:response to red light; IMP:UniProtKB.
GO; GO:1902347; P:response to strigolactone; IMP:UniProtKB.
GO; GO:0009414; P:response to water deprivation; IGI:TAIR.
GO; GO:0010343; P:singlet oxygen-mediated programmed cell death; IMP:TAIR.
GO; GO:0010118; P:stomatal movement; IMP:UniProtKB.
DisProt; DP00474; -.
Gene3D; 3.40.50.620; -; 1.
InterPro; IPR036134; Crypto/Photolyase_FAD-like_sf.
InterPro; IPR036155; Crypto/Photolyase_N_sf.
InterPro; IPR005101; Cryptochr/Photolyase_FAD-bd.
InterPro; IPR002081; Cryptochrome/DNA_photolyase_1.
InterPro; IPR020978; Cryptochrome_C.
InterPro; IPR014134; Cryptochrome_pln.
InterPro; IPR018394; DNA_photolyase_1_CS_C.
InterPro; IPR006050; DNA_photolyase_N.
InterPro; IPR014729; Rossmann-like_a/b/a_fold.
Pfam; PF12546; Cryptochrome_C; 1.
Pfam; PF00875; DNA_photolyase; 1.
Pfam; PF03441; FAD_binding_7; 1.
PRINTS; PR00147; DNAPHOTLYASE.
SUPFAM; SSF48173; SSF48173; 1.
SUPFAM; SSF52425; SSF52425; 1.
TIGRFAMs; TIGR02766; crypt_chrom_pln; 1.
PROSITE; PS00394; DNA_PHOTOLYASES_1_1; 1.
PROSITE; PS00691; DNA_PHOTOLYASES_1_2; 1.
PROSITE; PS51645; PHR_CRY_ALPHA_BETA; 1.
1: Evidence at protein level;
3D-structure; Apoptosis; ATP-binding; Chromophore; Complete proteome;
Cytoplasm; Disulfide bond; FAD; Flavoprotein; Magnesium;
Metal-binding; Nucleotide-binding; Nucleus; Phosphoprotein;
Photoreceptor protein; Plant defense; Receptor; Reference proteome;
Sensory transduction.
CHAIN 1 681 Cryptochrome-1.
/FTId=PRO_0000085121.
DOMAIN 12 141 Photolyase/cryptochrome alpha/beta.
{ECO:0000255}.
NP_BIND 247 251 FAD. {ECO:0000244|PDB:1U3C,
ECO:0000244|PDB:1U3D,
ECO:0000269|PubMed:15299148}.
NP_BIND 359 360 ATP. {ECO:0000244|PDB:1U3D,
ECO:0000269|PubMed:15299148}.
NP_BIND 390 392 FAD. {ECO:0000244|PDB:1U3C,
ECO:0000244|PDB:1U3D,
ECO:0000269|PubMed:15299148}.
REGION 1 489 CNT1, binds chromophores to sense blue
light and mediate CRY dimerization.
{ECO:0000303|PubMed:25721730}.
REGION 490 681 CCT1/CCE1, mediates blue light signaling.
{ECO:0000269|PubMed:11114337,
ECO:0000303|PubMed:25721730}.
METAL 238 238 Magnesium 1; via carbonyl oxygen.
{ECO:0000244|PDB:1U3C,
ECO:0000269|PubMed:15299148}.
METAL 241 241 Magnesium 2; via carbonyl oxygen.
{ECO:0000244|PDB:1U3C,
ECO:0000269|PubMed:15299148}.
METAL 244 244 Magnesium 2. {ECO:0000244|PDB:1U3C,
ECO:0000244|PDB:1U3D,
ECO:0000269|PubMed:15299148}.
METAL 246 246 Magnesium 1. {ECO:0000244|PDB:1U3C,
ECO:0000269|PubMed:15299148}.
METAL 246 246 Magnesium 2. {ECO:0000244|PDB:1U3C,
ECO:0000244|PDB:1U3D,
ECO:0000269|PubMed:15299148}.
METAL 358 358 Magnesium 1; via tele nitrogen.
{ECO:0000244|PDB:1U3C,
ECO:0000269|PubMed:15299148}.
BINDING 235 235 FAD. {ECO:0000244|PDB:1U3C,
ECO:0000244|PDB:1U3D,
ECO:0000269|PubMed:15299148}.
BINDING 239 239 ATP. {ECO:0000244|PDB:1U3D,
ECO:0000269|PubMed:15299148}.
BINDING 293 293 FAD; via carbonyl oxygen.
{ECO:0000244|PDB:1U3D,
ECO:0000269|PubMed:15299148}.
BINDING 359 359 FAD. {ECO:0000244|PDB:1U3C,
ECO:0000244|PDB:1U3D,
ECO:0000269|PubMed:15299148}.
BINDING 409 409 ATP. {ECO:0000244|PDB:1U3D,
ECO:0000269|PubMed:15299148}.
SITE 324 324 Involved in electron transfer from the
protein surface to the FAD cofactor.
{ECO:0000269|PubMed:26313597,
ECO:0000303|PubMed:22421133}.
SITE 377 377 Involved in electron transfer from the
protein surface to the FAD cofactor.
{ECO:0000303|PubMed:22421133}.
SITE 400 400 Involved in electron transfer from the
protein surface to the FAD cofactor.
{ECO:0000269|PubMed:26313597,
ECO:0000303|PubMed:22421133}.
MOD_RES 616 616 Phosphoserine.
{ECO:0000250|UniProtKB:Q96524}.
MOD_RES 621 621 Phosphothreonine.
{ECO:0000250|UniProtKB:Q96524}.
DISULFID 80 190 {ECO:0000244|PDB:1U3C,
ECO:0000244|PDB:1U3D,
ECO:0000269|PubMed:15299148}.
MUTAGEN 21 21 D->N: In cry1-401; genomes uncoupled
mutant (gun) with defects in plastid-to-
nucleus signaling.
{ECO:0000269|PubMed:18065688}.
MUTAGEN 66 66 S->N: Loss of dimerization and activity.
Abnormal hypocotyl elongation in blue
light. {ECO:0000269|PubMed:15805487,
ECO:0000269|PubMed:25721730}.
MUTAGEN 220 220 G->D: In hy4-6; reduced anthocyanin
accumulation and abnormal hypocotyl
elongation in blue light.
{ECO:0000269|PubMed:25721730,
ECO:0000269|PubMed:8528277}.
MUTAGEN 283 283 G->E: In hy4-5; reduced anthocyanin
accumulation and abnormal hypocotyl
elongation in blue light.
{ECO:0000269|PubMed:25721730,
ECO:0000269|PubMed:8528277}.
MUTAGEN 286 286 S->N: In cry1-402; genomes uncoupled
mutant (gun) with defects in plastid-to-
nucleus signaling.
{ECO:0000269|PubMed:18065688}.
MUTAGEN 324 324 W->F: Impaired photoreduction in vitro,
but not in vivo or in whole cell
extracts, due to an alternative electron
transport that involves small
metabolites. Abolished intra-protein
electron transfer cascade and impaired
conformational change upon
photoexcitation.
{ECO:0000269|PubMed:21875594,
ECO:0000269|PubMed:26313597}.
MUTAGEN 337 337 G->D: Abnormal hypocotyl elongation in
blue light.
{ECO:0000269|PubMed:25721730}.
MUTAGEN 340 340 G->E: In cry1-404 and hy4-1; reduced
anthocyanin accumulation and abnormal
hypocotyl elongation in blue light. Loss
of activity. Genomes uncoupled mutant
(gun) with defects in plastid-to-nucleus
signaling. {ECO:0000269|PubMed:18065688,
ECO:0000269|PubMed:25721730,
ECO:0000269|PubMed:8528277,
ECO:0000269|PubMed:9565033}.
MUTAGEN 347 347 G->E: In hy4-16; reduced anthocyanin
accumulation and abnormal hypocotyl
elongation in blue light.
{ECO:0000269|PubMed:25721730,
ECO:0000269|PubMed:8528277}.
MUTAGEN 347 347 G->R: In hy4-15; reduced anthocyanin
accumulation and abnormal hypocotyl
elongation in blue light. Loss of
dimerization and activity.
{ECO:0000269|PubMed:15805487,
ECO:0000269|PubMed:25721730,
ECO:0000269|PubMed:8528277}.
MUTAGEN 380 380 G->R: Constitutive light response.
{ECO:0000269|PubMed:21765176}.
MUTAGEN 396 396 D->N: Upon illumination, formation of the
reduced anionic flavin (RED) flavin,
useful for DNA repair, rather than the
semi-reduced radical form (SR) flavin,
which is correlated with cryptochrome
activity. {ECO:0000269|PubMed:22890584}.
MUTAGEN 400 400 W->F: Impaired photoreduction in vitro,
but not in vivo or whole cell extracts,
due to an alternative electron transport
that involves small metabolites.
{ECO:0000269|PubMed:26313597}.
MUTAGEN 407 407 L->F: Gain of function mutant.
Hypersensitive toward blue, red, and far-
red light in hypocotyl growth inhibition.
Very early flowering in short-day
conditions, associated with enhanced
expression of CO and FT. Impaired
interaction with PHYB.
{ECO:0000269|PubMed:20926618,
ECO:0000269|PubMed:22577138}.
MUTAGEN 462 462 A->V: Loss of dimerization and activity.
Abnormal hypocotyl elongation in blue
light. {ECO:0000269|PubMed:15805487,
ECO:0000269|PubMed:25721730}.
MUTAGEN 515 515 E->K: In hy4-19; reduced anthocyanin
accumulation and abnormal hypocotyl
elongation in blue light.
{ECO:0000269|PubMed:8528277}.
MUTAGEN 531 531 E->K: In hy4-20; reduced anthocyanin
accumulation and abnormal hypocotyl
elongation in blue light.
{ECO:0000269|PubMed:8528277}.
MUTAGEN 549 549 P->L: In hy4-9; reduced anthocyanin
accumulation and abnormal hypocotyl
elongation in blue light.
{ECO:0000269|PubMed:8528277}.
MUTAGEN 559 559 E->K: In hy4-22; reduced anthocyanin
accumulation and abnormal hypocotyl
elongation in blue light.
{ECO:0000269|PubMed:8528277}.
MUTAGEN 576 576 R->K: In hy4-10; reduced anthocyanin
accumulation and abnormal hypocotyl
elongation in blue light.
{ECO:0000269|PubMed:8528277}.
MUTAGEN 581 581 R->K: In hy4-23; reduced anthocyanin
accumulation and abnormal hypocotyl
elongation in blue light.
{ECO:0000269|PubMed:8528277}.
MUTAGEN 611 611 R->K: In hy4-24; reduced anthocyanin
accumulation and abnormal hypocotyl
elongation in blue light.
{ECO:0000269|PubMed:8528277}.
MUTAGEN 623 623 E->K: In cry1-403; genomes uncoupled
mutant (gun) with defects in plastid-to-
nucleus signaling.
{ECO:0000269|PubMed:18065688}.
CONFLICT 40 40 I -> N (in Ref. 4; AAK32756).
{ECO:0000305}.
CONFLICT 654 654 G -> R (in Ref. 1; AAB28724).
{ECO:0000305}.
STRAND 14 20 {ECO:0000244|PDB:1U3D}.
STRAND 24 26 {ECO:0000244|PDB:1U3C}.
HELIX 28 36 {ECO:0000244|PDB:1U3D}.
STRAND 39 45 {ECO:0000244|PDB:1U3D}.
HELIX 47 50 {ECO:0000244|PDB:1U3D}.
HELIX 57 76 {ECO:0000244|PDB:1U3D}.
STRAND 81 85 {ECO:0000244|PDB:1U3D}.
HELIX 89 100 {ECO:0000244|PDB:1U3D}.
STRAND 104 108 {ECO:0000244|PDB:1U3D}.
HELIX 113 127 {ECO:0000244|PDB:1U3D}.
TURN 128 130 {ECO:0000244|PDB:1U3D}.
STRAND 132 136 {ECO:0000244|PDB:1U3D}.
HELIX 144 146 {ECO:0000244|PDB:1U3D}.
STRAND 150 152 {ECO:0000244|PDB:1U3D}.
HELIX 158 166 {ECO:0000244|PDB:1U3D}.
HELIX 187 189 {ECO:0000244|PDB:1U3D}.
HELIX 200 206 {ECO:0000244|PDB:1U3D}.
HELIX 209 212 {ECO:0000244|PDB:1U3D}.
HELIX 217 228 {ECO:0000244|PDB:1U3D}.
HELIX 231 234 {ECO:0000244|PDB:1U3D}.
TURN 235 240 {ECO:0000244|PDB:1U3D}.
STRAND 242 244 {ECO:0000244|PDB:1U3D}.
HELIX 251 255 {ECO:0000244|PDB:1U3D}.
HELIX 261 278 {ECO:0000244|PDB:1U3D}.
HELIX 281 305 {ECO:0000244|PDB:1U3D}.
TURN 308 312 {ECO:0000244|PDB:1U3D}.
TURN 318 321 {ECO:0000244|PDB:1U3D}.
HELIX 328 336 {ECO:0000244|PDB:1U3D}.
HELIX 342 354 {ECO:0000244|PDB:1U3D}.
HELIX 359 371 {ECO:0000244|PDB:1U3D}.
HELIX 377 387 {ECO:0000244|PDB:1U3D}.
HELIX 393 404 {ECO:0000244|PDB:1U3D}.
HELIX 419 426 {ECO:0000244|PDB:1U3D}.
HELIX 431 436 {ECO:0000244|PDB:1U3D}.
HELIX 438 440 {ECO:0000244|PDB:1U3D}.
HELIX 445 448 {ECO:0000244|PDB:1U3D}.
TURN 451 453 {ECO:0000244|PDB:1U3D}.
HELIX 456 462 {ECO:0000244|PDB:1U3D}.
TURN 467 469 {ECO:0000244|PDB:1U3D}.
HELIX 477 495 {ECO:0000244|PDB:1U3D}.
SEQUENCE 681 AA; 76695 MW; 372A7E6DDC2AC076 CRC64;
MSGSVSGCGS GGCSIVWFRR DLRVEDNPAL AAAVRAGPVI ALFVWAPEEE GHYHPGRVSR
WWLKNSLAQL DSSLRSLGTC LITKRSTDSV ASLLDVVKST GASQIFFNHL YDPLSLVRDH
RAKDVLTAQG IAVRSFNADL LYEPWEVTDE LGRPFSMFAA FWERCLSMPY DPESPLLPPK
KIISGDVSKC VADPLVFEDD SEKGSNALLA RAWSPGWSNG DKALTTFING PLLEYSKNRR
KADSATTSFL SPHLHFGEVS VRKVFHLVRI KQVAWANEGN EAGEESVNLF LKSIGLREYS
RYISFNHPYS HERPLLGHLK FFPWAVDENY FKAWRQGRTG YPLVDAGMRE LWATGWLHDR
IRVVVSSFFV KVLQLPWRWG MKYFWDTLLD ADLESDALGW QYITGTLPDS REFDRIDNPQ
FEGYKFDPNG EYVRRWLPEL SRLPTDWIHH PWNAPESVLQ AAGIELGSNY PLPIVGLDEA
KARLHEALSQ MWQLEAASRA AIENGSEEGL GDSAEVEEAP IEFPRDITME ETEPTRLNPN
RRYEDQMVPS ITSSLIRPEE DEESSLNLRN SVGDSRAEVP RNMVNTNQAQ QRRAEPASNQ
VTAMIPEFNI RIVAESTEDS TAESSSSGRR ERSGGIVPEW SPGYSEQFPS EENGIGGGST
TSSYLQNHHE ILNWRRLSQT G


Related products :

Catalog number Product name Quantity
32-160 GFP (Green fluorescence protein) is a 27 kDa protein derived from the jellyfish Aequorea victoria, which emits green light when excited by blue light. GFP cDNA produces a fluorescent product when expr 0.1 mL
GDS-12020 Blue light conversion tray. Converts UV to blue light
1209-10 Trypan Blue (0.4 percent ) Azidine Blue 3B; Benzamine Blue 3B; Benzo Blue 3B; Chlorazol Blue 3B; Diamine Blue 3B; Dianil Blue H3G ; Direct Blue 14; Niagara Blue 3B 10 ml
142306 Handimark Tapes - B-595 25mm Light Blue _ Handimark Tapes - B-595 25mm Light Blue AF Systems Consumables;Pack-RL; Width 25 mm Height 15 m 15 m Pcs Per Pack
142305 Handimark Tapes - B-595 50mm Light Blue _ Handimark Tapes - B-595 50mm Light Blue AF Systems Consumables;Pack-RL; Width 50 mm Height 15 m 15 m Pcs Per Pack
orb90560 Pink n' Blue Protein Ladder The Pink n' Blue Protein Ladder contains 11 proteins that resolve into sharp, tight bands in the range of 10-175 kDa. The Pink n' Blue Protein Ladder allows you to monitor 250
orb90570 FluorBright DNA Dye FluorBright DNA Dye is a non-mutagenic fluorescent reagent that produces instant visualization of DNA bands upon Blue Light or UV illumination of agarose gels. FluorGold Protein Dy 1 ml
EIAAB28903 BCP,Blue cone photoreceptor pigment,Blue-sensitive opsin,BOP,Homo sapiens,Human,OPN1SW,Short-wave-sensitive opsin 1
EIAAB28902 BCP,Blue cone photoreceptor pigment,Blue-sensitive opsin,BOP,Bos taurus,Bovine,OPN1SW,Short-wave-sensitive opsin 1
EIAAB11426 Bithoraxoid-like protein,BLP,Dncl2a,Dnlc2a,Dynein light chain 2A, cytoplasmic,Dynein light chain roadblock-type 1,Dynein-associated protein Km23,Dynlrb1,Rat,Rattus norvegicus,robl_LC7-like protein
EIAAB36553 Calpactin I light chain,Calpactin-1 light chain,Cellular ligand of annexin II,Nerve growth factor-induced protein 42C,p10 protein,p11,Protein S100-A10,Rat,Rattus norvegicus,S100 calcium-binding protei
EIAAB36550 ANX2LG,CAL1L,Calpactin I light chain,Calpactin-1 light chain,Cellular ligand of annexin II,CLP11,Homo sapiens,Human,p10 protein,p11,Protein S100-A10,S100 calcium-binding protein A10,S100A10
EIAAB36548 Bos taurus,Bovine,CAL1L,Calpactin I light chain,Calpactin-1 light chain,Cellular ligand of annexin II,CLP11,p10 protein,p11,Protein S100-A10,S100 calcium-binding protein A10,S100A10
199100-30 Handle, Light Blue 1
EIAAB36552 Cal1l,Calpactin I light chain,Calpactin-1 light chain,Cellular ligand of annexin II,Mouse,Mus musculus,p10 protein,p11,Protein S100-A10,S100 calcium-binding protein A10,S100a10
AS03 036 Antibody: Elip2 | early light inducible protein 2, Immunogen: Short peptide chosen from a sequence of early light-induced protein 2 of Arabidopsis thaliana AAD28779.1, Host: rabbit, polyclonal, Confir 200
AS03 033 Antibody: Elip1 | early light inducible protein 1, Immunogen: Short peptide chosen from a sequence of early light-induced protein 1 of Arabidopsis thaliana At3g22840, Host: rabbit, polyclonal, Confirm 200
RELS-BLUE blue protein STAIN
SMK112 MASK, LIGHT BLUE, 100_PK 1
BSI1038 BIOPSY CASSETTES IN P.O.M. LIGHT BLUE 1000
199100-00 BioDolphin-LB, Suction Kit, Light Blue 1
SMK112 MASK, LIGHT BLUE, 100_PK 1
FG-06 Fastgene Blue Light LED (trans) Illuminator, 280 x 340 x 80 mm
BSM910/AZ CAPDISK LIGHT BLUE FOR MICROTUBE 5x1000
FG-05 Fastgene Blue Light LED (trans) Illuminator, 210 x 210 x 30 mm
Pathways :
WP1493: Carbon assimilation C4 pathway
WP1665: Limonene and pinene degradation
WP2371: Parkinsons Disease Pathway
WP1675: Nitrogen metabolism
WP525: Mitochondrial Unfolded-Protein Response
WP1566: Citrate cycle (TCA cycle)
WP1892: Protein folding
WP1616: ABC transporters
WP2032: TSH signaling pathway
WP1685: Peptidoglycan biosynthesis
WP1692: Protein export
WP931: G Protein Signaling Pathways
WP1644: DNA replication
WP2199: Seed Development
WP1165: G Protein Signaling Pathways
WP2272: Pathogenic Escherichia coli infection
WP1700: Selenoamino acid metabolism
WP1657: Glycerolipid metabolism
WP1663: Homologous recombination
WP2324: AGE/RAGE pathway
WP1438: Influenza A virus infection
WP1531: Vitamin D synthesis
WP1888: Post-translational protein modification
WP1673: Naphthalene and anthracene degradation
WP35: G Protein Signaling Pathways

Related Genes :
[CRY1 BLU1 HY4 At4g08920 T3H13.14 T3H13.5] Cryptochrome-1 (AtCry) (Atcry1) (Blue light photoreceptor) (Protein BLUE LIGHT UNINHIBITED 1) (Protein ELONGATED HYPOCOTYL 4) (Protein OUT OF PHASE 2) (OOP2)
[CRY2 PHH1 SEL20 At1g04400 F19P19.14] Cryptochrome-2 (Atcry2) (Blue light photoreceptor) (Protein PHR homolog 1) (AtPHH1) (Protein SUPPRESSOR OF elf3 20)
[PHYB HY3 OOP1 At2g18790 MSF3.17] Phytochrome B (Protein LONG HYPOCOTYL 3) (Protein OUT OF PHASE 1)
[cry CG3772] Cryptochrome-1 (DmCRY1) (dcry) (Blue light photoreceptor)
[PHYA FHY2 FRE1 HY8 At1g09570 F14J9.23] Phytochrome A (Protein ELONGATED HYPOCOTYL 8) (Protein FAR RED ELONGATED 1) (Protein FAR RED ELONGATED HYPOCOTYL 2)
[HFR1 BHLH26 EN68 FBI1 REP1 RSF1 At1g02340 T6A9.4 T6A9_13] Transcription factor HFR1 (Basic helix-loop-helix protein 26) (AtbHLH26) (bHLH 26) (Protein LONG HYPOCOTYL IN FAR-RED 1) (Protein REDUCED PHYTOCHROME SIGNALING) (Reduced sensitivity to far-red light) (Transcription factor EN 68) (bHLH transcription factor bHLH026)
[FHY1 PAT3 At2g37678 F13M22] Protein FAR-RED ELONGATED HYPOCOTYL 1 (Protein PHYTOCHROME A SIGNAL TRANSDUCTION 3)
[Opn1sw Bcp] Short-wave-sensitive opsin 1 (S opsin) (Blue cone photoreceptor pigment) (Blue-sensitive opsin) (BOP) (Short wavelength-sensitive cone opsin)
[OPN1SW BCP] Short-wave-sensitive opsin 1 (Blue cone photoreceptor pigment) (Blue-sensitive opsin) (BOP)
[SHW1 At1g69935 T17F3] Protein SHORT HYPOCOTYL IN WHITE LIGHT 1
[bluF blrp ycgF b1163 JW1150] Blue light- and temperature-regulated antirepressor BluF (Blrp)
[PIF4 BHLH9 EN102 SRL2 At2g43010 MFL8.13] Transcription factor PIF4 (Basic helix-loop-helix protein 9) (AtbHLH9) (bHLH 9) (Phytochrome-interacting factor 4) (Short under red-light 2) (Transcription factor EN 102) (bHLH transcription factor bHLH009)
[PHOT1 JK224 NPH1 RPT1 At3g45780 T6D9_110] Phototropin-1 (EC 2.7.11.1) (Non-phototropic hypocotyl protein 1) (Root phototropism protein 1)
[Opn1sw Bcp] Short-wave-sensitive opsin 1 (S opsin) (Blue cone photoreceptor pigment) (Blue-sensitive opsin) (BOP) (Short wavelength-sensitive cone opsin)
[PHOT2 CAV1 KIN7 NPL1 At5g58140 K21L19.6] Phototropin-2 (EC 2.7.11.1) (Defective in chloroplast avoidance protein 1) (Non-phototropic hypocotyl 1-like protein 1) (AtKin7) (NPH1-like protein 1)
[ABC1K1 ACDO1 BDR1 PGR6 At4g31390 F3L17.6] Protein ACTIVITY OF BC1 COMPLEX KINASE 1, chloroplastic (ABC1-LIKE KINASE 1) (EC 2.7.-.-) (EC 2.7.11.1) (Protein ABC1-LIKE KINASE RELATED TO CHLOROPHYLL DEGRADATION AND OXIDATIVE STRESS 1) (AtACDO1) (Protein BLEACHING AND DWARF IN RED LIGHT 1) (Protein PROTON GRADIENT REGULATION 6)
[opn1sw2 bluops opn1sw1 sws2] Opsin-1, short-wave-sensitive 2 (Blue cone photoreceptor pigment) (Blue-sensitive opsin) (Opsin SWS-2)
[LHY At1g01060 T25K16.6] Protein LHY (MYB-related transcription factor LHY) (Protein LATE ELONGATED HYPOCOTYL)
[cph1 slr0473] Phytochrome-like protein cph1 (EC 2.7.13.3) (Bacteriophytochrome cph1) (Light-regulated histidine kinase 1)
[SPA1 At2g46340/At2g46350 F11C10.3/F11C10.4] Protein SUPPRESSOR OF PHYA-105 1 (EC 2.7.-.-)
[CRY1 PHLL1] Cryptochrome-1
[Cry1] Cryptochrome-1
[FHY3 At3g22170 MKA23.12] Protein FAR-RED ELONGATED HYPOCOTYL 3
[LHCB2.1 LHCB2.3 At2g05100 F15L11.2] Chlorophyll a-b binding protein 2.1, chloroplastic (Photosystem II light harvesting complex gene 2.1) (Protein LIGHT-HARVESTING CHLOROPHYLL B-BINDING 2.1)
[LAF1 MYB18 At4g25560 M7J2.70] Transcription factor LAF1 (Myb-related protein 18) (AtMYB18) (Protein LONG AFTER FAR-RED LIGHT 1)
[Cry2 Kiaa0658] Cryptochrome-2
[Dynlt1 Tctel1 Tctex-1 Tctex1] Dynein light chain Tctex-type 1 (Activator of G-protein signaling 2) (AGS2) (T-complex testis-specific protein 1) (TCTEX-1)
[LHCB2.4 At3g27690 MGF10.9] Chlorophyll a-b binding protein 2.4, chloroplastic (Photosystem II light harvesting complex gene 2.4) (Protein LIGHT-HARVESTING CHLOROPHYLL B-BINDING 2.4)
[Map1] T-kininogen 1 (Alpha-1-MAP) (Major acute phase protein) (T-kininogen I) (Thiostatin) [Cleaved into: T-kininogen 1 heavy chain (T-kininogen I heavy chain); T-kinin; T-kininogen 1 light chain (T-kininogen I light chain)]
[HY5 BZIP56 At5g11260 F2I11_150] Transcription factor HY5 (Protein LONG HYPOCOTYL 5) (bZIP transcription factor 56) (AtbZIP56)

Bibliography :
No related Items