GENTAUR Belgium BVBA BE0473327336 Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45
GENTAUR U.S.A Genprice Inc,Logistics 547 Yurok Circle, SanJose, CA 95123
Tel (408) 780-0908, Fax (408) 780-0908, [email protected]

Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, Gentaur another in time delivery

Eukaryotic initiation factor 4A-III (eIF-4A-III) (eIF4A-III) (EC 3.6.4.13) (ATP-dependent RNA helicase DDX48) (ATP-dependent RNA helicase eIF4A-3) (DEAD box protein 48) (Eukaryotic initiation factor 4A-like NUK-34) (Eukaryotic translation initiation factor 4A isoform 3) (Nuclear matrix protein 265) (NMP 265) (hNMP 265) [Cleaved into: Eukaryotic initiation factor 4A-III, N-terminally processed]

 IF4A3_HUMAN             Reviewed;         411 AA.
P38919; Q15033; Q6IBQ2; Q96A18;
01-FEB-1995, integrated into UniProtKB/Swiss-Prot.
23-JAN-2007, sequence version 4.
05-JUN-2019, entry version 222.
RecName: Full=Eukaryotic initiation factor 4A-III;
Short=eIF-4A-III;
Short=eIF4A-III;
EC=3.6.4.13 {ECO:0000269|PubMed:16170325, ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:22961380};
AltName: Full=ATP-dependent RNA helicase DDX48;
AltName: Full=ATP-dependent RNA helicase eIF4A-3;
AltName: Full=DEAD box protein 48;
AltName: Full=Eukaryotic initiation factor 4A-like NUK-34;
AltName: Full=Eukaryotic translation initiation factor 4A isoform 3;
AltName: Full=Nuclear matrix protein 265;
Short=NMP 265;
Short=hNMP 265;
Contains:
RecName: Full=Eukaryotic initiation factor 4A-III, N-terminally processed;
Name=EIF4A3; Synonyms=DDX48, KIAA0111;
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [MRNA].
TISSUE=Skin;
Leffers H., Wiemann S., Ansorge W.;
"Cloning and sequencing of a putative human translation initiation
factor with similarity to initiation factor 4AII.";
Submitted (JUN-1994) to the EMBL/GenBank/DDBJ databases.
[2]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
TISSUE=Bone marrow;
PubMed=7788527; DOI=10.1093/dnares/2.1.37;
Nagase T., Miyajima N., Tanaka A., Sazuka T., Seki N., Sato S.,
Tabata S., Ishikawa K., Kawarabayasi Y., Kotani H., Nomura N.;
"Prediction of the coding sequences of unidentified human genes. III.
The coding sequences of 40 new genes (KIAA0081-KIAA0120) deduced by
analysis of cDNA clones from human cell line KG-1.";
DNA Res. 2:37-43(1995).
[3]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
TISSUE=Heart;
PubMed=14702039; DOI=10.1038/ng1285;
Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
"Complete sequencing and characterization of 21,243 full-length human
cDNAs.";
Nat. Genet. 36:40-45(2004).
[4]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.;
"Cloning of human full open reading frames in Gateway(TM) system entry
vector (pDONR201).";
Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases.
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=16625196; DOI=10.1038/nature04689;
Zody M.C., Garber M., Adams D.J., Sharpe T., Harrow J., Lupski J.R.,
Nicholson C., Searle S.M., Wilming L., Young S.K., Abouelleil A.,
Allen N.R., Bi W., Bloom T., Borowsky M.L., Bugalter B.E., Butler J.,
Chang J.L., Chen C.-K., Cook A., Corum B., Cuomo C.A., de Jong P.J.,
DeCaprio D., Dewar K., FitzGerald M., Gilbert J., Gibson R.,
Gnerre S., Goldstein S., Grafham D.V., Grocock R., Hafez N.,
Hagopian D.S., Hart E., Norman C.H., Humphray S., Jaffe D.B.,
Jones M., Kamal M., Khodiyar V.K., LaButti K., Laird G., Lehoczky J.,
Liu X., Lokyitsang T., Loveland J., Lui A., Macdonald P., Major J.E.,
Matthews L., Mauceli E., McCarroll S.A., Mihalev A.H., Mudge J.,
Nguyen C., Nicol R., O'Leary S.B., Osoegawa K., Schwartz D.C.,
Shaw-Smith C., Stankiewicz P., Steward C., Swarbreck D.,
Venkataraman V., Whittaker C.A., Yang X., Zimmer A.R., Bradley A.,
Hubbard T., Birren B.W., Rogers J., Lander E.S., Nusbaum C.;
"DNA sequence of human chromosome 17 and analysis of rearrangement in
the human lineage.";
Nature 440:1045-1049(2006).
[6]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
Venter J.C.;
Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
[7]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
TISSUE=Lymph, Placenta, and Skin;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[8]
PROTEIN SEQUENCE OF 2-14, CLEAVAGE OF INITIATOR METHIONINE,
ACETYLATION AT ALA-2, AND IDENTIFICATION BY MASS SPECTROMETRY.
TISSUE=T-cell;
Bienvenut W.V., Kanor S., Tissot J.-D., Quadroni M.;
Submitted (MAY-2006) to UniProtKB.
[9]
PROTEIN SEQUENCE OF 340-358, AND IDENTIFICATION BY MASS SPECTROMETRY.
TISSUE=Brain, and Cajal-Retzius cell;
Lubec G., Vishwanath V.;
Submitted (MAR-2007) to UniProtKB.
[10]
PARTIAL PROTEIN SEQUENCE, SUBCELLULAR LOCATION, AND TISSUE
SPECIFICITY.
TISSUE=Leukocyte;
PubMed=10623621; DOI=10.1006/bbrc.1999.1973;
Holzmann K., Gerner C., Poeltl A., Schaefer R., Obrist P.,
Ensinger C., Grimm R., Sauermann G.;
"A human common nuclear matrix protein homologous to eukaryotic
translation initiation factor 4A.";
Biochem. Biophys. Res. Commun. 267:339-344(2000).
[11]
IDENTIFICATION BY MASS SPECTROMETRY, IDENTIFICATION IN THE
SPLICEOSOMAL C COMPLEX, FUNCTION, SUBCELLULAR LOCATION, AND SUBUNIT.
PubMed=11991638; DOI=10.1017/S1355838202021088;
Jurica M.S., Licklider L.J., Gygi S.P., Grigorieff N., Moore M.J.;
"Purification and characterization of native spliceosomes suitable for
three-dimensional structural analysis.";
RNA 8:426-439(2002).
[12]
FUNCTION IN MRNA SPLICING AND NONSENSE-MEDIATED MRNA DECAY,
INTERACTION WITH MAGOH AND RBM8A, AND RNA-BINDING.
PubMed=15034551; DOI=10.1038/nsmb750;
Shibuya T., Tange T.O., Sonenberg N., Moore M.J.;
"eIF4AIII binds spliced mRNA in the exon junction complex and is
essential for nonsense-mediated decay.";
Nat. Struct. Mol. Biol. 11:346-351(2004).
[13]
IDENTIFICATION BY MASS SPECTROMETRY, IDENTIFICATION IN THE EXON
JUNCTION COMPLEX, INTERACTION WITH NXF1 AND ALYREF/THOC4, RNA-BINDING,
AND SUBCELLULAR LOCATION.
PubMed=14730019; DOI=10.1261/rna.5230104;
Chan C.C., Dostie J., Diem M.D., Feng W., Mann M., Rappsilber J.,
Dreyfuss G.;
"eIF4A3 is a novel component of the exon junction complex.";
RNA 10:200-209(2004).
[14]
POSSIBLE INTERACTION WITH NOM1.
PubMed=15715967; DOI=10.1016/j.gene.2004.12.027;
Simmons H.M., Ruis B.L., Kapoor M., Hudacek A.W., Conklin K.F.;
"Identification of NOM1, a nucleolar, eIF4A binding protein encoded
within the chromosome 7q36 breakpoint region targeted in cases of
pediatric acute myeloid leukemia.";
Gene 347:137-145(2005).
[15]
FUNCTION.
PubMed=16209946; DOI=10.1016/j.molcel.2005.08.012;
Gehring N.H., Kunz J.B., Neu-Yilik G., Breit S., Viegas M.H.,
Hentze M.W., Kulozik A.E.;
"Exon-junction complex components specify distinct routes of nonsense-
mediated mRNA decay with differential cofactor requirements.";
Mol. Cell 20:65-75(2005).
[16]
FUNCTION, CATALYTIC ACTIVITY, IDENTIFICATION IN THE CORE EXON JUNCTION
COMPLEX, INTERACTION WITH CASC3, MUTAGENESIS OF LYS-88, AND
RNA-BINDING.
PubMed=16170325; DOI=10.1038/nsmb990;
Ballut L., Marchadier B., Baguet A., Tomasetto C., Seraphin B.,
Le Hir H.;
"The exon junction core complex is locked onto RNA by inhibition of
eIF4AIII ATPase activity.";
Nat. Struct. Mol. Biol. 12:861-869(2005).
[17]
IDENTIFICATION IN THE CORE EXON JUNCTION COMPLEX, IDENTIFICATION IN A
MRNA SPLICING-DEPENDENT EXON JUNCTION COMPLEX, AND IDENTIFICATION BY
MASS SPECTROMETRY.
PubMed=16314458; DOI=10.1261/rna.2155905;
Tange T.O., Shibuya T., Jurica M.S., Moore M.J.;
"Biochemical analysis of the EJC reveals two new factors and a stable
tetrameric protein core.";
RNA 11:1869-1883(2005).
[18]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
Mann M.;
"Global, in vivo, and site-specific phosphorylation dynamics in
signaling networks.";
Cell 127:635-648(2006).
[19]
INTERACTION WITH CASC3 AND MAGOH, AND MUTAGENESIS.
PubMed=16495234; DOI=10.1261/rna.2190706;
Shibuya T., Tange T.O., Stroupe M.E., Moore M.J.;
"Mutational analysis of human eIF4AIII identifies regions necessary
for exon junction complex formation and nonsense-mediated mRNA
decay.";
RNA 12:360-374(2006).
[20]
FUNCTION IN ATPASE AND RNA-HELICASE ACTIVITY, AND CATALYTIC ACTIVITY.
PubMed=17375189; DOI=10.1371/journal.pone.0000303;
Noble C.G., Song H.;
"MLN51 stimulates the RNA-helicase activity of eIF4AIII.";
PLoS ONE 2:E303-E303(2007).
[21]
INTERACTION WITH POLDIP3.
PubMed=18423201; DOI=10.1016/j.cell.2008.02.031;
Ma X.M., Yoon S.O., Richardson C.J., Julich K., Blenis J.;
"SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced
translation efficiency of spliced mRNAs.";
Cell 133:303-313(2008).
[22]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18691976; DOI=10.1016/j.molcel.2008.07.007;
Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,
Greff Z., Keri G., Stemmann O., Mann M.;
"Kinase-selective enrichment enables quantitative phosphoproteomics of
the kinome across the cell cycle.";
Mol. Cell 31:438-448(2008).
[23]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-163, AND IDENTIFICATION
BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18669648; DOI=10.1073/pnas.0805139105;
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
Elledge S.J., Gygi S.P.;
"A quantitative atlas of mitotic phosphorylation.";
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
[24]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS
SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19413330; DOI=10.1021/ac9004309;
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
Mohammed S.;
"Lys-N and trypsin cover complementary parts of the phosphoproteome in
a refined SCX-based approach.";
Anal. Chem. 81:4493-4501(2009).
[25]
FUNCTION IN MRNA TRANSLATION.
PubMed=19409878; DOI=10.1016/j.bbrc.2009.04.123;
Lee H.C., Choe J., Chi S.G., Kim Y.K.;
"Exon junction complex enhances translation of spliced mRNAs at
multiple steps.";
Biochem. Biophys. Res. Commun. 384:334-340(2009).
[26]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS
SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19369195; DOI=10.1074/mcp.M800588-MCP200;
Oppermann F.S., Gnad F., Olsen J.V., Hornberger R., Greff Z., Keri G.,
Mann M., Daub H.;
"Large-scale proteomics analysis of the human kinome.";
Mol. Cell. Proteomics 8:1751-1764(2009).
[27]
ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-296 AND LYS-321, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19608861; DOI=10.1126/science.1175371;
Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
Walther T.C., Olsen J.V., Mann M.;
"Lysine acetylation targets protein complexes and co-regulates major
cellular functions.";
Science 325:834-840(2009).
[28]
ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1 AND ALA-2, PHOSPHORYLATION
[LARGE SCALE ANALYSIS] AT SER-12 AND THR-163, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS
SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=20068231; DOI=10.1126/scisignal.2000475;
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
Mann M.;
"Quantitative phosphoproteomics reveals widespread full
phosphorylation site occupancy during mitosis.";
Sci. Signal. 3:RA3-RA3(2010).
[29]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21269460; DOI=10.1186/1752-0509-5-17;
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
"Initial characterization of the human central proteome.";
BMC Syst. Biol. 5:17-17(2011).
[30]
ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1 AND ALA-2, PHOSPHORYLATION
[LARGE SCALE ANALYSIS] AT SER-12, CLEAVAGE OF INITIATOR METHIONINE
[LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE
SCALE ANALYSIS].
PubMed=21406692; DOI=10.1126/scisignal.2001570;
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
Blagoev B.;
"System-wide temporal characterization of the proteome and
phosphoproteome of human embryonic stem cell differentiation.";
Sci. Signal. 4:RS3-RS3(2011).
[31]
INTERACTION WITH CWC22, AND MUTAGENESIS OF ASP-270; ASP-273;
276-THR-ILE-277 AND 301-ASN--THR-303.
PubMed=22959432; DOI=10.1016/j.celrep.2012.08.017;
Steckelberg A.L., Boehm V., Gromadzka A.M., Gehring N.H.;
"CWC22 connects pre-mRNA splicing and exon junction complex
assembly.";
Cell Rep. 2:454-461(2012).
[32]
FUNCTION.
PubMed=22203037; DOI=10.1128/MCB.06130-11;
Michelle L., Cloutier A., Toutant J., Shkreta L., Thibault P.,
Durand M., Garneau D., Gendron D., Lapointe E., Couture S., Le Hir H.,
Klinck R., Elela S.A., Prinos P., Chabot B.;
"Proteins associated with the exon junction complex also control the
alternative splicing of apoptotic regulators.";
Mol. Cell. Biol. 32:954-967(2012).
[33]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS
SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=22223895; DOI=10.1074/mcp.M111.015131;
Bienvenut W.V., Sumpton D., Martinez A., Lilla S., Espagne C.,
Meinnel T., Giglione C.;
"Comparative large-scale characterisation of plant vs. mammal proteins
reveals similar and idiosyncratic N-alpha acetylation features.";
Mol. Cell. Proteomics 11:M111.015131-M111.015131(2012).
[34]
FUNCTION, CATALYTIC ACTIVITY, ACTIVITY REGULATION, IDENTIFICATION IN
THE SPLICEOSOME C COMPLEX, INTERACTION WITH CASC3; CWC22; MAGOH;
PRPF19 AND RBM8A, SUBCELLULAR LOCATION, AND MUTAGENESIS OF ASP-401 AND
GLU-402.
PubMed=22961380; DOI=10.1038/nsmb.2380;
Barbosa I., Haque N., Fiorini F., Barrandon C., Tomasetto C.,
Blanchette M., Le Hir H.;
"Human CWC22 escorts the helicase eIF4AIII to spliceosomes and
promotes exon junction complex assembly.";
Nat. Struct. Mol. Biol. 19:983-990(2012).
[35]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS
SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=22814378; DOI=10.1073/pnas.1210303109;
Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
Aldabe R.;
"N-terminal acetylome analyses and functional insights of the N-
terminal acetyltransferase NatB.";
Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
[36]
INTERACTION WITH CWC22, AND MUTAGENESIS OF THR-334.
PubMed=23236153; DOI=10.1073/pnas.1219725110;
Alexandrov A., Colognori D., Shu M.D., Steitz J.A.;
"Human spliceosomal protein CWC22 plays a role in coupling splicing to
exon junction complex deposition and nonsense-mediated decay.";
Proc. Natl. Acad. Sci. U.S.A. 109:21313-21318(2012).
[37]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-12 AND THR-163, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma, and Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[38]
IDENTIFICATION IN THE EXON JUNCTION COMPLEX.
PubMed=23917022; DOI=10.4161/rna.25827;
Singh K.K., Wachsmuth L., Kulozik A.E., Gehring N.H.;
"Two mammalian MAGOH genes contribute to exon junction complex
composition and nonsense-mediated decay.";
RNA Biol. 10:1291-1298(2013).
[39]
FUNCTION, AND VARIANT RCPS GLY-270.
PubMed=24360810; DOI=10.1016/j.ajhg.2013.11.020;
Favaro F.P., Alvizi L., Zechi-Ceide R.M., Bertola D., Felix T.M.,
de Souza J., Raskin S., Twigg S.R., Weiner A.M., Armas P.,
Margarit E., Calcaterra N.B., Andersen G.R., McGowan S.J.,
Wilkie A.O., Richieri-Costa A., de Almeida M.L., Passos-Bueno M.R.;
"A noncoding expansion in EIF4A3 causes Richieri-Costa-Pereira
syndrome, a craniofacial disorder associated with limb defects.";
Am. J. Hum. Genet. 94:120-128(2014).
[40]
SUMOYLATION [LARGE SCALE ANALYSIS] AT LYS-19, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=25218447; DOI=10.1038/nsmb.2890;
Hendriks I.A., D'Souza R.C., Yang B., Verlaan-de Vries M., Mann M.,
Vertegaal A.C.;
"Uncovering global SUMOylation signaling networks in a site-specific
manner.";
Nat. Struct. Mol. Biol. 21:927-936(2014).
[41]
SUMOYLATION [LARGE SCALE ANALYSIS] AT LYS-19, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=25772364; DOI=10.1016/j.celrep.2015.02.033;
Hendriks I.A., Treffers L.W., Verlaan-de Vries M., Olsen J.V.,
Vertegaal A.C.;
"SUMO-2 orchestrates chromatin modifiers in response to DNA damage.";
Cell Rep. 10:1778-1791(2015).
[42]
SUMOYLATION [LARGE SCALE ANALYSIS] AT LYS-19, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=25755297; DOI=10.1074/mcp.O114.044792;
Xiao Z., Chang J.G., Hendriks I.A., Sigurdsson J.O., Olsen J.V.,
Vertegaal A.C.;
"System-wide analysis of SUMOylation dynamics in response to
replication stress reveals novel small ubiquitin-like modified target
proteins and acceptor lysines relevant for genome stability.";
Mol. Cell. Proteomics 14:1419-1434(2015).
[43]
INTERACTION WITH NCBP3.
PubMed=26382858; DOI=10.1038/ncomms9192;
Gebhardt A., Habjan M., Benda C., Meiler A., Haas D.A., Hein M.Y.,
Mann A., Mann M., Habermann B., Pichlmair A.;
"mRNA export through an additional cap-binding complex consisting of
NCBP1 and NCBP3.";
Nat. Commun. 6:8192-8192(2015).
[44]
SUMOYLATION [LARGE SCALE ANALYSIS] AT LYS-19; LYS-314 AND LYS-382, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=28112733; DOI=10.1038/nsmb.3366;
Hendriks I.A., Lyon D., Young C., Jensen L.J., Vertegaal A.C.,
Nielsen M.L.;
"Site-specific mapping of the human SUMO proteome reveals co-
modification with phosphorylation.";
Nat. Struct. Mol. Biol. 24:325-336(2017).
[45] {ECO:0000244|PDB:2J0Q, ECO:0000244|PDB:2J0S, ECO:0000244|PDB:2J0U}
X-RAY CRYSTALLOGRAPHY (2.21 ANGSTROMS) OF 2-411 IN THE EJC COMPLEX
WITH CASC3; MAGOH; RBM8A; ATP ANALOG AND POLY URACIL.
PubMed=16923391; DOI=10.1016/j.cell.2006.08.006;
Bono F., Ebert J., Lorentzen E., Conti E.;
"The crystal structure of the exon junction complex reveals how it
maintains a stable grip on mRNA.";
Cell 126:713-725(2006).
[46] {ECO:0000244|PDB:2HXY, ECO:0000244|PDB:2HYI}
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) IN THE EJC COMPLEX WITH CASC3;
MAGOH; RBM8A; ATP ANALOG AND POLY URACIL.
PubMed=16931718; DOI=10.1126/science.1131981;
Andersen C.B., Ballut L., Johansen J.S., Chamieh H., Nielsen K.H.,
Oliveira C.L., Pedersen J.S., Seraphin B., Le Hir H., Andersen G.R.;
"Structure of the exon junction core complex with a trapped DEAD-box
ATPase bound to RNA.";
Science 313:1968-1972(2006).
[47]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) IN THE EJC COMPLEX WITH CASC3;
MAGOH; RBM8A; ATP ANALOG AND POLY URACIL.
PubMed=19033377; DOI=10.1261/rna.1283109;
Nielsen K.H., Chamieh H., Andersen C.B., Fredslund F., Hamborg K.,
Le Hir H., Andersen G.R.;
"Mechanism of ATP turnover inhibition in the EJC.";
RNA 15:67-75(2009).
[48] {ECO:0000244|PDB:2XB2}
X-RAY CRYSTALLOGRAPHY (3.40 ANGSTROMS) IN THE EJC COMPLEX WITH CASC3;
MAGOH; RBM8A; UPF3B; UPF2; RNA AND ATP ANALOG, AND IDENTIFICATION IN
THE EJC COMPLEX WITH UPF3A.
PubMed=20479275; DOI=10.1073/pnas.1000993107;
Buchwald G., Ebert J., Basquin C., Sauliere J., Jayachandran U.,
Bono F., Le Hir H., Conti E.;
"Insights into the recruitment of the NMD machinery from the crystal
structure of a core EJC-UPF3b complex.";
Proc. Natl. Acad. Sci. U.S.A. 107:10050-10055(2010).
[49] {ECO:0000244|PDB:4C9B}
X-RAY CRYSTALLOGRAPHY (2.00 ANGSTROMS) IN COMPLEX WITH CWC22, AND
MUTAGENESIS OF CYS-99 AND 300-ALA-ASN-301.
PubMed=24218557; DOI=10.1073/PNAS.1314684110;
Buchwald G., Schussler S., Basquin C., Le Hir H., Conti E.;
"Crystal structure of the human eIF4AIII-CWC22 complex shows how a
DEAD-box protein is inhibited by a MIF4G domain.";
Proc. Natl. Acad. Sci. U.S.A. 110:E4611-E4618(2013).
[50] {ECO:0000244|PDB:5XJC}
STRUCTURE BY ELECTRON MICROSCOPY (3.60 ANGSTROMS), FUNCTION, SUBUNIT,
AND SUBCELLULAR LOCATION.
PubMed=28502770; DOI=10.1016/j.cell.2017.04.033;
Zhang X., Yan C., Hang J., Finci L.I., Lei J., Shi Y.;
"An Atomic Structure of the Human Spliceosome.";
Cell 169:918-929(2017).
[51] {ECO:0000244|PDB:5MQF}
STRUCTURE BY ELECTRON MICROSCOPY (5.90 ANGSTROMS), FUNCTION, SUBUNIT,
SUBCELLULAR LOCATION, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=28076346; DOI=10.1038/nature21079;
Bertram K., Agafonov D.E., Liu W.T., Dybkov O., Will C.L.,
Hartmuth K., Urlaub H., Kastner B., Stark H., Luhrmann R.;
"Cryo-EM structure of a human spliceosome activated for step 2 of
splicing.";
Nature 542:318-323(2017).
[52] {ECO:0000244|PDB:5YZG}
STRUCTURE BY ELECTRON MICROSCOPY (4.10 ANGSTROMS), FUNCTION, SUBUNIT,
AND SUBCELLULAR LOCATION.
PubMed=29301961; DOI=10.1126/science.aar6401;
Zhan X., Yan C., Zhang X., Lei J., Shi Y.;
"Structure of a human catalytic step I spliceosome.";
Science 359:537-545(2018).
-!- FUNCTION: ATP-dependent RNA helicase (PubMed:16170325). Involved
in pre-mRNA splicing as component of the spliceosome
(PubMed:11991638, PubMed:22961380, PubMed:28502770,
PubMed:28076346, PubMed:29301961). Core component of the splicing-
dependent multiprotein exon junction complex (EJC) deposited at
splice junctions on mRNAs (PubMed:16209946, PubMed:16170325,
PubMed:16314458, PubMed:16923391, PubMed:16931718,
PubMed:19033377, PubMed:20479275). The EJC is a dynamic structure
consisting of core proteins and several peripheral nuclear and
cytoplasmic associated factors that join the complex only
transiently either during EJC assembly or during subsequent mRNA
metabolism. The EJC marks the position of the exon-exon junction
in the mature mRNA for the gene expression machinery and the core
components remain bound to spliced mRNAs throughout all stages of
mRNA metabolism thereby influencing downstream processes including
nuclear mRNA export, subcellular mRNA localization, translation
efficiency and nonsense-mediated mRNA decay (NMD). Its RNA-
dependent ATPase and RNA-helicase activities are induced by CASC3,
but abolished in presence of the MAGOH-RBM8A heterodimer, thereby
trapping the ATP-bound EJC core onto spliced mRNA in a stable
conformation. The inhibition of ATPase activity by the MAGOH-RBM8A
heterodimer increases the RNA-binding affinity of the EJC.
Involved in translational enhancement of spliced mRNAs after
formation of the 80S ribosome complex. Binds spliced mRNA in
sequence-independent manner, 20-24 nucleotides upstream of mRNA
exon-exon junctions. Shows higher affinity for single-stranded RNA
in an ATP-bound core EJC complex than after the ATP is hydrolyzed.
Involved in the splicing modulation of BCL2L1/Bcl-X (and probably
other apoptotic genes); specifically inhibits formation of
proapoptotic isoforms such as Bcl-X(S); the function is different
from the established EJC assembly (PubMed:22203037). Involved in
craniofacial development (PubMed:24360810).
{ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:15034551,
ECO:0000269|PubMed:16170325, ECO:0000269|PubMed:16209946,
ECO:0000269|PubMed:16314458, ECO:0000269|PubMed:16923391,
ECO:0000269|PubMed:16931718, ECO:0000269|PubMed:17375189,
ECO:0000269|PubMed:19033377, ECO:0000269|PubMed:19409878,
ECO:0000269|PubMed:20479275, ECO:0000269|PubMed:22203037,
ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:24360810,
ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770,
ECO:0000269|PubMed:29301961}.
-!- CATALYTIC ACTIVITY:
Reaction=ATP + H2O = ADP + H(+) + phosphate; Xref=Rhea:RHEA:13065,
ChEBI:CHEBI:15377, ChEBI:CHEBI:15378, ChEBI:CHEBI:30616,
ChEBI:CHEBI:43474, ChEBI:CHEBI:456216; EC=3.6.4.13;
Evidence={ECO:0000269|PubMed:16170325,
ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:22961380};
-!- ACTIVITY REGULATION: The ATPase activity is increased some 4-fold
in the presence of RNA. {ECO:0000269|PubMed:22961380}.
-!- SUBUNIT: Identified in the spliceosome C complex (PubMed:11991638,
PubMed:22961380, PubMed:28502770, PubMed:28076346,
PubMed:29301961). Core component of the mRNA splicing-dependent
exon junction complex (EJC); the core complex contains CASC3,
EIF4A3, MAGOH or MAGOHB, and RBM8A (PubMed:15034551,
PubMed:14730019, PubMed:16170325, PubMed:16314458,
PubMed:23917022, PubMed:16923391, PubMed:16931718,
PubMed:19033377, PubMed:20479275). Interacts with CASC3, MAGOH,
NXF1, RBM8A and ALYREF/THOC4 (PubMed:14730019, PubMed:16170325,
PubMed:16495234, PubMed:22961380). May interact with NOM1.
Interacts with POLDIP3 (PubMed:18423201). Interacts with CWC22 and
PRPF19 in an RNA-independent manner (PubMed:22959432,
PubMed:22961380, PubMed:23236153, PubMed:24218557). Direct
interaction with CWC22 is mediated by the helicase C-terminal
domain (PubMed:22959432, PubMed:24218557). Full interaction with
CWC22 occurs only when EIF4A3 is not part of the EJC and prevents
EIF4A3 binding to RNA. Identified in a complex composed of the EJC
core, UPF3B and UPF2. The EJC core can also interact with UPF3A
(in vitro) (PubMed:20479275). Interacts with NCBP3
(PubMed:26382858). {ECO:0000269|PubMed:11991638,
ECO:0000269|PubMed:14730019, ECO:0000269|PubMed:15034551,
ECO:0000269|PubMed:16170325, ECO:0000269|PubMed:16314458,
ECO:0000269|PubMed:16495234, ECO:0000269|PubMed:16923391,
ECO:0000269|PubMed:16931718, ECO:0000269|PubMed:18423201,
ECO:0000269|PubMed:19033377, ECO:0000269|PubMed:20479275,
ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380,
ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:23917022,
ECO:0000269|PubMed:24218557, ECO:0000269|PubMed:26382858,
ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770,
ECO:0000269|PubMed:29301961}.
-!- INTERACTION:
O15234:CASC3; NbExp=29; IntAct=EBI-299104, EBI-299118;
Q6PII3:CCDC174; NbExp=3; IntAct=EBI-299104, EBI-747830;
Q96GN5:CDCA7L; NbExp=3; IntAct=EBI-299104, EBI-5278764;
Q9HCG8:CWC22; NbExp=6; IntAct=EBI-299104, EBI-373289;
P61326:MAGOH; NbExp=30; IntAct=EBI-299104, EBI-299134;
Q5C9Z4:NOM1; NbExp=3; IntAct=EBI-299104, EBI-2685618;
Q53EL6:PDCD4; NbExp=5; IntAct=EBI-299104, EBI-935824;
Q9Y5S9:RBM8A; NbExp=21; IntAct=EBI-299104, EBI-447231;
Q9Y2W1:THRAP3; NbExp=2; IntAct=EBI-299104, EBI-352039;
Q9BZI7:UPF3B; NbExp=9; IntAct=EBI-299104, EBI-372780;
-!- SUBCELLULAR LOCATION: Nucleus {ECO:0000269|PubMed:10623621,
ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:22961380,
ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770,
ECO:0000269|PubMed:29301961}. Nucleus speckle
{ECO:0000269|PubMed:10623621}. Cytoplasm
{ECO:0000250|UniProtKB:Q3B8Q2}. Note=Nucleocytoplasmic shuttling
protein. Travels to the cytoplasm as part of the exon junction
complex (EJC) bound to mRNA. Detected in dendritic layer as well
as the nuclear and cytoplasmic (somatic) compartments of neurons.
Colocalizes with STAU1 and FMR1 in dendrites (By similarity).
{ECO:0000250|UniProtKB:Q3B8Q2}.
-!- TISSUE SPECIFICITY: Ubiquitously expressed.
{ECO:0000269|PubMed:10623621}.
-!- DISEASE: Richieri-Costa-Pereira syndrome (RCPS) [MIM:268305]: A
syndrome characterized by a unique pattern of anomalies consisting
of microstomia, micrognathia, abnormal fusion of mandible, cleft
palate/Robin sequence, absence of central lower incisors, minor
ears anomalies, hypoplastic first ray, abnormal tibiae,
hypoplastic halluces, and clubfeet. Learning disability is also a
common finding. {ECO:0000269|PubMed:24360810}. Note=The disease is
caused by mutations affecting the gene represented in this entry.
EIF4A3 mutations resulting in Richieri-Costa-Pereira syndrome
include a repeat expansion of 18 or 20 nucleotides in the 5'
untranslated region. Affected individuals have 14 to 16 repeats,
while healthy individuals have 3 to 12 repeats (PubMed:24360810).
{ECO:0000269|PubMed:24360810}.
-!- SIMILARITY: Belongs to the DEAD box helicase family. eIF4A
subfamily. {ECO:0000305}.
-!- SEQUENCE CAUTION:
Sequence=BAA04879.2; Type=Erroneous initiation; Note=Translation N-terminally shortened.; Evidence={ECO:0000305};
-----------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
Distributed under the Creative Commons Attribution (CC BY 4.0) License
-----------------------------------------------------------------------
EMBL; X79538; CAA56074.1; -; mRNA.
EMBL; D21853; BAA04879.2; ALT_INIT; mRNA.
EMBL; AK290608; BAF83297.1; -; mRNA.
EMBL; CR456750; CAG33031.1; -; mRNA.
EMBL; AC087741; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; CH471099; EAW89584.1; -; Genomic_DNA.
EMBL; BC003662; AAH03662.1; -; mRNA.
EMBL; BC004386; AAH04386.1; -; mRNA.
EMBL; BC011151; AAH11151.1; -; mRNA.
CCDS; CCDS11767.1; -.
PIR; S45142; S45142.
RefSeq; NP_055555.1; NM_014740.3.
PDB; 2HXY; X-ray; 3.30 A; A/B/C/D=23-411.
PDB; 2HYI; X-ray; 2.30 A; C/I=1-411.
PDB; 2J0Q; X-ray; 3.20 A; A/B=2-411.
PDB; 2J0S; X-ray; 2.21 A; A=2-411.
PDB; 2J0U; X-ray; 3.00 A; A/B=38-411.
PDB; 2XB2; X-ray; 3.40 A; A/X=1-411.
PDB; 3EX7; X-ray; 2.30 A; C/H=1-411.
PDB; 4C9B; X-ray; 2.00 A; A=1-411.
PDB; 5MQF; EM; 5.90 A; p=1-411.
PDB; 5XJC; EM; 3.60 A; u=1-411.
PDB; 5YZG; EM; 4.10 A; u=1-411.
PDB; 6ICZ; EM; 3.00 A; u=1-411.
PDB; 6QDV; EM; 3.30 A; 7=22-404.
PDBsum; 2HXY; -.
PDBsum; 2HYI; -.
PDBsum; 2J0Q; -.
PDBsum; 2J0S; -.
PDBsum; 2J0U; -.
PDBsum; 2XB2; -.
PDBsum; 3EX7; -.
PDBsum; 4C9B; -.
PDBsum; 5MQF; -.
PDBsum; 5XJC; -.
PDBsum; 5YZG; -.
PDBsum; 6ICZ; -.
PDBsum; 6QDV; -.
SMR; P38919; -.
BioGrid; 115119; 298.
ComplexPortal; CPX-1941; Exon junction core complex, MAGOH variant.
ComplexPortal; CPX-682; Exon junction core complex, MAGOHB variant.
CORUM; P38919; -.
DIP; DIP-33218N; -.
IntAct; P38919; 190.
MINT; P38919; -.
STRING; 9606.ENSP00000269349; -.
ChEMBL; CHEMBL4105832; -.
TCDB; 3.A.18.1.1; the nuclear mrna exporter (mrna-e) family.
iPTMnet; P38919; -.
PhosphoSitePlus; P38919; -.
SwissPalm; P38919; -.
BioMuta; EIF4A3; -.
DMDM; 20532400; -.
REPRODUCTION-2DPAGE; IPI00009328; -.
EPD; P38919; -.
jPOST; P38919; -.
MaxQB; P38919; -.
PaxDb; P38919; -.
PeptideAtlas; P38919; -.
PRIDE; P38919; -.
ProteomicsDB; 55305; -.
DNASU; 9775; -.
Ensembl; ENST00000269349; ENSP00000269349; ENSG00000141543.
Ensembl; ENST00000647795; ENSP00000497661; ENSG00000141543.
Ensembl; ENST00000649764; ENSP00000497641; ENSG00000141543.
GeneID; 9775; -.
KEGG; hsa:9775; -.
UCSC; uc002jxs.3; human.
CTD; 9775; -.
DisGeNET; 9775; -.
GeneCards; EIF4A3; -.
HGNC; HGNC:18683; EIF4A3.
HPA; HPA021878; -.
MalaCards; EIF4A3; -.
MIM; 268305; phenotype.
MIM;