GENTAUR Belgium BVBA BE0473327336 Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45
GENTAUR U.S.A Genprice Inc,Logistics 547 Yurok Circle, SanJose, CA 95123
Tel (408) 780-0908, Fax (408) 780-0908, [email protected]

Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, Gentaur another in time delivery

Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 2) (HSP70-2) (HSP70.2)

 HS71B_HUMAN             Reviewed;         641 AA.
P0DMV9; B4E3B6; P08107; P19790; Q5JQI4; Q5SP17; Q9UQL9; Q9UQM0;
27-MAY-2015, integrated into UniProtKB/Swiss-Prot.
27-MAY-2015, sequence version 1.
02-JUN-2021, entry version 51.
RecName: Full=Heat shock 70 kDa protein 1B {ECO:0000312|HGNC:HGNC:5233};
AltName: Full=Heat shock 70 kDa protein 2;
Short=HSP70-2 {ECO:0000303|PubMed:14656967, ECO:0000303|PubMed:2538825};
Short=HSP70.2;
Name=HSPA1B {ECO:0000312|HGNC:HGNC:5233};
Synonyms=HSP72 {ECO:0000303|PubMed:24318877};
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [GENOMIC DNA].
PubMed=1700760; DOI=10.1007/bf00187095;
Milner C.M., Campbell R.D.;
"Structure and expression of the three MHC-linked HSP70 genes.";
Immunogenetics 32:242-251(1990).
[2]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Shiina S., Tamiya G., Oka A., Inoko H.;
"Homo sapiens 2,229,817bp genomic DNA of 6p21.3 HLA class I region.";
Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
[3]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA], AND VARIANT SER-499.
PubMed=14656967; DOI=10.1101/gr.1736803;
Xie T., Rowen L., Aguado B., Ahearn M.E., Madan A., Qin S., Campbell R.D.,
Hood L.;
"Analysis of the gene-dense major histocompatibility complex class III
region and its comparison to mouse.";
Genome Res. 13:2621-2636(2003).
[4]
NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANTS VAL-95; VAL-467 AND
SER-499.
NIEHS SNPs program;
Submitted (FEB-2006) to the EMBL/GenBank/DDBJ databases.
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=14574404; DOI=10.1038/nature02055;
Mungall A.J., Palmer S.A., Sims S.K., Edwards C.A., Ashurst J.L.,
Wilming L., Jones M.C., Horton R., Hunt S.E., Scott C.E., Gilbert J.G.R.,
Clamp M.E., Bethel G., Milne S., Ainscough R., Almeida J.P., Ambrose K.D.,
Andrews T.D., Ashwell R.I.S., Babbage A.K., Bagguley C.L., Bailey J.,
Banerjee R., Barker D.J., Barlow K.F., Bates K., Beare D.M., Beasley H.,
Beasley O., Bird C.P., Blakey S.E., Bray-Allen S., Brook J., Brown A.J.,
Brown J.Y., Burford D.C., Burrill W., Burton J., Carder C., Carter N.P.,
Chapman J.C., Clark S.Y., Clark G., Clee C.M., Clegg S., Cobley V.,
Collier R.E., Collins J.E., Colman L.K., Corby N.R., Coville G.J.,
Culley K.M., Dhami P., Davies J., Dunn M., Earthrowl M.E., Ellington A.E.,
Evans K.A., Faulkner L., Francis M.D., Frankish A., Frankland J.,
French L., Garner P., Garnett J., Ghori M.J., Gilby L.M., Gillson C.J.,
Glithero R.J., Grafham D.V., Grant M., Gribble S., Griffiths C.,
Griffiths M.N.D., Hall R., Halls K.S., Hammond S., Harley J.L., Hart E.A.,
Heath P.D., Heathcott R., Holmes S.J., Howden P.J., Howe K.L., Howell G.R.,
Huckle E., Humphray S.J., Humphries M.D., Hunt A.R., Johnson C.M.,
Joy A.A., Kay M., Keenan S.J., Kimberley A.M., King A., Laird G.K.,
Langford C., Lawlor S., Leongamornlert D.A., Leversha M., Lloyd C.R.,
Lloyd D.M., Loveland J.E., Lovell J., Martin S., Mashreghi-Mohammadi M.,
Maslen G.L., Matthews L., McCann O.T., McLaren S.J., McLay K., McMurray A.,
Moore M.J.F., Mullikin J.C., Niblett D., Nickerson T., Novik K.L.,
Oliver K., Overton-Larty E.K., Parker A., Patel R., Pearce A.V., Peck A.I.,
Phillimore B.J.C.T., Phillips S., Plumb R.W., Porter K.M., Ramsey Y.,
Ranby S.A., Rice C.M., Ross M.T., Searle S.M., Sehra H.K., Sheridan E.,
Skuce C.D., Smith S., Smith M., Spraggon L., Squares S.L., Steward C.A.,
Sycamore N., Tamlyn-Hall G., Tester J., Theaker A.J., Thomas D.W.,
Thorpe A., Tracey A., Tromans A., Tubby B., Wall M., Wallis J.M.,
West A.P., White S.S., Whitehead S.L., Whittaker H., Wild A., Willey D.J.,
Wilmer T.E., Wood J.M., Wray P.W., Wyatt J.C., Young L., Younger R.M.,
Bentley D.R., Coulson A., Durbin R.M., Hubbard T., Sulston J.E., Dunham I.,
Rogers J., Beck S.;
"The DNA sequence and analysis of human chromosome 6.";
Nature 425:805-811(2003).
[6]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
TISSUE=Brain, Muscle, Pancreas, PNS, and Skin;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA project:
the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[7]
NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 360-424.
PubMed=2538825; DOI=10.1073/pnas.86.6.1968;
Sargent C.A., Dunham I., Trowsdale J., Campbell R.D.;
"Human major histocompatibility complex contains genes for the major heat
shock protein HSP70.";
Proc. Natl. Acad. Sci. U.S.A. 86:1968-1972(1989).
[8]
PROTEIN SEQUENCE OF 4-49; 57-71; 77-155; 160-187; 221-247; 273-311;
326-342; 349-357; 362-416; 424-447; 459-469; 510-517; 540-550; 574-595 AND
598-641, AND IDENTIFICATION BY MASS SPECTROMETRY.
TISSUE=Embryonic kidney;
Bienvenut W.V., Waridel P., Quadroni M.;
Submitted (MAR-2009) to UniProtKB.
[9]
PROTEIN SEQUENCE OF 37-49; 57-71; 78-88; 113-126; 160-187; 221-247;
302-311; 329-342; 349-357; 362-384; 540-550 AND 574-589, AND IDENTIFICATION
BY MASS SPECTROMETRY.
TISSUE=Brain, Cajal-Retzius cell, and Fetal brain cortex;
Lubec G., Afjehi-Sadat L., Chen W.-Q., Sun Y.;
Submitted (DEC-2008) to UniProtKB.
[10]
PROTEIN SEQUENCE OF 551-567, METHYLATION AT LYS-561, MUTAGENESIS OF
LYS-561, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=23349634; DOI=10.1371/journal.pgen.1003210;
Cloutier P., Lavallee-Adam M., Faubert D., Blanchette M., Coulombe B.;
"A newly uncovered group of distantly related lysine methyltransferases
preferentially interact with molecular chaperones to regulate their
activity.";
PLoS Genet. 9:E1003210-E1003210(2013).
[11]
INTERACTION WITH TERT.
PubMed=11274138; DOI=10.1074/jbc.c100055200;
Forsythe H.L., Jarvis J.L., Turner J.W., Elmore L.W., Holt S.E.;
"Stable association of hsp90 and p23, but Not hsp70, with active human
telomerase.";
J. Biol. Chem. 276:15571-15574(2001).
[12]
INTERACTION WITH DNAJC7.
PubMed=12853476; DOI=10.1093/emboj/cdg362;
Brychzy A., Rein T., Winklhofer K.F., Hartl F.U., Young J.C.,
Obermann W.M.;
"Cofactor Tpr2 combines two TPR domains and a J domain to regulate the
Hsp70/Hsp90 chaperone system.";
EMBO J. 22:3613-3623(2003).
[13]
INTERACTION WITH TSC2, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=15963462; DOI=10.1016/j.bbrc.2005.05.175;
Nellist M., Burgers P.C., van den Ouweland A.M.W., Halley D.J.J.,
Luider T.M.;
"Phosphorylation and binding partner analysis of the TSC1-TSC2 complex.";
Biochem. Biophys. Res. Commun. 333:818-826(2005).
[14]
INTERACTION WITH PPP5C, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=15383005; DOI=10.1042/bj20040690;
Zeke T., Morrice N., Vazquez-Martin C., Cohen P.T.;
"Human protein phosphatase 5 dissociates from heat-shock proteins and is
proteolytically activated in response to arachidonic acid and the
microtubule-depolymerizing drug nocodazole.";
Biochem. J. 385:45-56(2005).
[15]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., Mann M.;
"Global, in vivo, and site-specific phosphorylation dynamics in signaling
networks.";
Cell 127:635-648(2006).
[16]
INTERACTION WITH IRAK1BP1, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=17233114; DOI=10.1089/dna.2006.25.704;
Haag Breese E., Uversky V.N., Georgiadis M.M., Harrington M.A.;
"The disordered amino-terminus of SIMPL interacts with members of the 70-
kDa heat-shock protein family.";
DNA Cell Biol. 25:704-714(2006).
[17]
FUNCTION AS A RECEPTOR FOR ROTAVIRUS A.
PubMed=16537599; DOI=10.1128/jvi.80.7.3322-3331.2006;
Perez-Vargas J., Romero P., Lopez S., Arias C.F.;
"The peptide-binding and ATPase domains of recombinant hsc70 are required
to interact with rotavirus and reduce its infectivity.";
J. Virol. 80:3322-3331(2006).
[18]
INTERACTION WITH DNAJC9.
PubMed=17182002; DOI=10.1016/j.bbrc.2006.12.013;
Han C., Chen T., Li N., Yang M., Wan T., Cao X.;
"HDJC9, a novel human type C DnaJ/HSP40 member interacts with and
cochaperones HSP70 through the J domain.";
Biochem. Biophys. Res. Commun. 353:280-285(2007).
[19]
IDENTIFICATION IN A MRNP GRANULE COMPLEX, IDENTIFICATION BY MASS
SPECTROMETRY, AND SUBCELLULAR LOCATION.
PubMed=17289661; DOI=10.1074/mcp.m600346-mcp200;
Joeson L., Vikesaa J., Krogh A., Nielsen L.K., Hansen T., Borup R.,
Johnsen A.H., Christiansen J., Nielsen F.C.;
"Molecular composition of IMP1 ribonucleoprotein granules.";
Mol. Cell. Proteomics 6:798-811(2007).
[20]
INTERACTION WITH DNAJC7.
PubMed=18620420; DOI=10.1021/bi800770g;
Moffatt N.S., Bruinsma E., Uhl C., Obermann W.M., Toft D.;
"Role of the cochaperone Tpr2 in Hsp90 chaperoning.";
Biochemistry 47:8203-8213(2008).
[21]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18691976; DOI=10.1016/j.molcel.2008.07.007;
Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,
Greff Z., Keri G., Stemmann O., Mann M.;
"Kinase-selective enrichment enables quantitative phosphoproteomics of the
kinome across the cell cycle.";
Mol. Cell 31:438-448(2008).
[22]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY
[LARGE SCALE ANALYSIS].
PubMed=19413330; DOI=10.1021/ac9004309;
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.;
"Lys-N and trypsin cover complementary parts of the phosphoproteome in a
refined SCX-based approach.";
Anal. Chem. 81:4493-4501(2009).
[23]
ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-108; LYS-246 AND LYS-348, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=19608861; DOI=10.1126/science.1175371;
Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M., Walther T.C.,
Olsen J.V., Mann M.;
"Lysine acetylation targets protein complexes and co-regulates major
cellular functions.";
Science 325:834-840(2009).
[24]
INTERACTION WITH TRIM5.
PubMed=20053985; DOI=10.1074/jbc.m109.040618;
Hwang C.Y., Holl J., Rajan D., Lee Y., Kim S., Um M., Kwon K.S., Song B.;
"Hsp70 interacts with the retroviral restriction factor TRIM5alpha and
assists the folding of TRIM5alpha.";
J. Biol. Chem. 285:7827-7837(2010).
[25]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-631; SER-633 AND THR-636, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=20068231; DOI=10.1126/scisignal.2000475;
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.;
"Quantitative phosphoproteomics reveals widespread full phosphorylation
site occupancy during mitosis.";
Sci. Signal. 3:RA3-RA3(2010).
[26]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21269460; DOI=10.1186/1752-0509-5-17;
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T.,
Bennett K.L., Superti-Furga G., Colinge J.;
"Initial characterization of the human central proteome.";
BMC Syst. Biol. 5:17-17(2011).
[27]
INTERACTION WITH CHCHD3.
PubMed=21081504; DOI=10.1074/jbc.m110.171975;
Darshi M., Mendiola V.L., Mackey M.R., Murphy A.N., Koller A.,
Perkins G.A., Ellisman M.H., Taylor S.S.;
"ChChd3, an inner mitochondrial membrane protein, is essential for
maintaining crista integrity and mitochondrial function.";
J. Biol. Chem. 286:2918-2932(2011).
[28]
FUNCTION, AND INTERACTION WITH ATF5.
PubMed=22528486; DOI=10.1074/jbc.m112.363622;
Liu X., Liu D., Qian D., Dai J., An Y., Jiang S., Stanley B., Yang J.,
Wang B., Liu X., Liu D.X.;
"Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5
(ATF5) protein and promotes proteasome- and caspase-dependent ATF5
degradation in hepatocellular carcinoma cells.";
J. Biol. Chem. 287:19599-19609(2012).
[29]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=22905912; DOI=10.1021/pr300539b;
Rosenow A., Noben J.P., Jocken J., Kallendrusch S., Fischer-Posovszky P.,
Mariman E.C., Renes J.;
"Resveratrol-induced changes of the human adipocyte secretion profile.";
J. Proteome Res. 11:4733-4743(2012).
[30]
IDENTIFICATION BY MASS SPECTROMETRY, FUNCTION, AND INTERACTION WITH FOXP3.
PubMed=23973223; DOI=10.1016/j.immuni.2013.08.006;
Chen Z., Barbi J., Bu S., Yang H.Y., Li Z., Gao Y., Jinasena D., Fu J.,
Lin F., Chen C., Zhang J., Yu N., Li X., Shan Z., Nie J., Gao Z., Tian H.,
Li Y., Yao Z., Zheng Y., Park B.V., Pan Z., Zhang J., Dang E., Li Z.,
Wang H., Luo W., Li L., Semenza G.L., Zheng S.G., Loser K., Tsun A.,
Greene M.I., Pardoll D.M., Pan F., Li B.;
"The ubiquitin ligase Stub1 negatively modulates regulatory T cell
suppressive activity by promoting degradation of the transcription factor
Foxp3.";
Immunity 39:272-285(2013).
[31]
METHYLATION AT LYS-561, MUTAGENESIS OF LYS-561, AND INTERACTION WITH
METTL21A.
PubMed=23921388; DOI=10.1074/jbc.m113.483248;
Jakobsson M.E., Moen A., Bousset L., Egge-Jacobsen W., Kernstock S.,
Melki R., Falnes P.O.;
"Identification and characterization of a novel human methyltransferase
modulating Hsp70 function through lysine methylation.";
J. Biol. Chem. 288:27752-27763(2013).
[32]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma, and Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[33]
INTERACTION WITH PRKN.
PubMed=24270810; DOI=10.1038/nature12748;
Hasson S.A., Kane L.A., Yamano K., Huang C.H., Sliter D.A., Buehler E.,
Wang C., Heman-Ackah S.M., Hessa T., Guha R., Martin S.E., Youle R.J.;
"High-content genome-wide RNAi screens identify regulators of parkin
upstream of mitophagy.";
Nature 504:291-295(2013).
[34]
REVIEW.
PubMed=24012426; DOI=10.1016/j.tibs.2013.08.001;
Mayer M.P.;
"Hsp70 chaperone dynamics and molecular mechanism.";
Trends Biochem. Sci. 38:507-514(2013).
[35]
FUNCTION, AND INTERACTION WITH STUB1 AND SMAD3.
PubMed=24613385; DOI=10.1016/j.bbrc.2014.02.124;
Shang Y., Xu X., Duan X., Guo J., Wang Y., Ren F., He D., Chang Z.;
"Hsp70 and Hsp90 oppositely regulate TGF-beta signaling through
CHIP/Stub1.";
Biochem. Biophys. Res. Commun. 446:387-392(2014).
[36]
FUNCTION, AND INTERACTION WITH BAG1; BAG2; BAG3 AND HSPH1.
PubMed=24318877; DOI=10.1074/jbc.m113.521997;
Rauch J.N., Gestwicki J.E.;
"Binding of human nucleotide exchange factors to heat shock protein 70
(Hsp70) generates functionally distinct complexes in vitro.";
J. Biol. Chem. 289:1402-1414(2014).
[37]
INTERACTION WITH NOD2.
PubMed=24790089; DOI=10.1074/jbc.m114.557686;
Mohanan V., Grimes C.L.;
"The molecular chaperone HSP70 binds to and stabilizes NOD2, an important
protein involved in Crohn disease.";
J. Biol. Chem. 289:18987-18998(2014).
[38]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Liver;
PubMed=24275569; DOI=10.1016/j.jprot.2013.11.014;
Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D., Wang L.,
Ye M., Zou H.;
"An enzyme assisted RP-RPLC approach for in-depth analysis of human liver
phosphoproteome.";
J. Proteomics 96:253-262(2014).
[39]
METHYLATION [LARGE SCALE ANALYSIS] AT ARG-469 AND LYS-561, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Colon carcinoma;
PubMed=24129315; DOI=10.1074/mcp.o113.027870;
Guo A., Gu H., Zhou J., Mulhern D., Wang Y., Lee K.A., Yang V., Aguiar M.,
Kornhauser J., Jia X., Ren J., Beausoleil S.A., Silva J.C., Vemulapalli V.,
Bedford M.T., Comb M.J.;
"Immunoaffinity enrichment and mass spectrometry analysis of protein
methylation.";
Mol. Cell. Proteomics 13:372-387(2014).
[40]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=25944712; DOI=10.1002/pmic.201400617;
Vaca Jacome A.S., Rabilloud T., Schaeffer-Reiss C., Rompais M., Ayoub D.,
Lane L., Bairoch A., Van Dorsselaer A., Carapito C.;
"N-terminome analysis of the human mitochondrial proteome.";
Proteomics 15:2519-2524(2015).
[41]
INTERACTION WITH DNAJC8.
PubMed=27133716; DOI=10.1016/j.bbrc.2016.03.152;
Ito N., Kamiguchi K., Nakanishi K., Sokolovskya A., Hirohashi Y.,
Tamura Y., Murai A., Yamamoto E., Kanaseki T., Tsukahara T., Kochin V.,
Chiba S., Shimohama S., Sato N., Torigoe T.;
"A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of
spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain
independent manner.";
Biochem. Biophys. Res. Commun. 474:626-633(2016).
[42]
REVIEW.
PubMed=26865365; DOI=10.1007/s12192-016-0676-6;
Radons J.;
"The human HSP70 family of chaperones: where do we stand?";
Cell Stress Chaperones 21:379-404(2016).
[43]
FUNCTION, INTERACTION WITH NEDD1, AND SUBCELLULAR LOCATION.
PubMed=27137183; DOI=10.1007/s00018-016-2236-8;
Fang C.T., Kuo H.H., Pan T.S., Yu F.C., Yih L.H.;
"HSP70 regulates the function of mitotic centrosomes.";
Cell. Mol. Life Sci. 73:3949-3960(2016).
[44]
FUNCTION, ACETYLATION AT LYS-77, MUTAGENESIS OF LYS-77, AND INTERACTION
WITH NAA10; HSP40; HOPX; STUB1; HSP90 AND HDAC4.
PubMed=27708256; DOI=10.1038/ncomms12882;
Seo J.H., Park J.H., Lee E.J., Vo T.T., Choi H., Kim J.Y., Jang J.K.,
Wee H.J., Lee H.S., Jang S.H., Park Z.Y., Jeong J., Lee K.J., Seok S.H.,
Park J.Y., Lee B.J., Lee M.N., Oh G.T., Kim K.W.;
"ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding
and degradation.";
Nat. Commun. 7:12882-12882(2016).
[45]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 1-382 IN COMPLEX WITH ADP, AND
ATP-BINDING.
PubMed=10216320; DOI=10.1107/s0907444999002103;
Osipiuk J., Walsh M.A., Freeman B.C., Morimoto R.I., Joachimiak A.;
"Structure of a new crystal form of human hsp70 ATPase domain.";
Acta Crystallogr. D 55:1105-1107(1999).
[46]
X-RAY CRYSTALLOGRAPHY (1.77 ANGSTROMS) OF 389-641 IN COMPLEX WITH ATP
ANALOG, AND ATP-BINDING.
PubMed=20179333; DOI=10.1107/s0907444909053979;
Shida M., Arakawa A., Ishii R., Kishishita S., Takagi T.,
Kukimoto-Niino M., Sugano S., Tanaka A., Shirouzu M., Yokoyama S.;
"Direct inter-subdomain interactions switch between the closed and open
forms of the Hsp70 nucleotide-binding domain in the nucleotide-free
state.";
Acta Crystallogr. D 66:223-232(2010).
[47]
X-RAY CRYSTALLOGRAPHY (2.14 ANGSTROMS) OF 1-387 IN COMPLEX WITH ADP, AND
ATP-BINDING.
PubMed=20072699; DOI=10.1371/journal.pone.0008625;
Wisniewska M., Karlberg T., Lehtio L., Johansson I., Kotenyova T.,
Moche M., Schuler H.;
"Crystal structures of the ATPase domains of four human Hsp70 isoforms:
HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78.";
PLoS ONE 5:E8625-E8625(2010).
[48]
X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 1-388 IN COMPLEX WITH BAG5.
PubMed=20223214; DOI=10.1016/j.str.2010.01.004;
Arakawa A., Handa N., Ohsawa N., Shida M., Kigawa T., Hayashi F.,
Shirouzu M., Yokoyama S.;
"The C-terminal BAG domain of BAG5 induces conformational changes of the
Hsp70 nucleotide-binding domain for ADP-ATP exchange.";
Structure 18:309-319(2010).
[49]
X-RAY CRYSTALLOGRAPHY (1.58 ANGSTROMS) OF 1-388, ATP-BINDING, AND
MUTAGENESIS OF ASP-10 AND ASP-199.
PubMed=21608060; DOI=10.1002/pro.663;
Arakawa A., Handa N., Shirouzu M., Yokoyama S.;
"Biochemical and structural studies on the high affinity of Hsp70 for
ADP.";
Protein Sci. 20:1367-1379(2011).
-!- FUNCTION: Molecular chaperone implicated in a wide variety of cellular
processes, including protection of the proteome from stress, folding
and transport of newly synthesized polypeptides, activation of
proteolysis of misfolded proteins and the formation and dissociation of
protein complexes. Plays a pivotal role in the protein quality control
system, ensuring the correct folding of proteins, the re-folding of
misfolded proteins and controlling the targeting of proteins for
subsequent degradation. This is achieved through cycles of ATP binding,
ATP hydrolysis and ADP release, mediated by co-chaperones. The co-
chaperones have been shown to not only regulate different steps of the
ATPase cycle, but they also have an individual specificity such that
one co-chaperone may promote folding of a substrate while another may
promote degradation. The affinity for polypeptides is regulated by its
nucleotide bound state. In the ATP-bound form, it has a low affinity
for substrate proteins. However, upon hydrolysis of the ATP to ADP, it
undergoes a conformational change that increases its affinity for
substrate proteins. It goes through repeated cycles of ATP hydrolysis
and nucleotide exchange, which permits cycles of substrate binding and
release. The co-chaperones are of three types: J-domain co-chaperones
such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide
exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70
from the ADP-bound to the ATP-bound state thereby promoting substrate
release), and the TPR domain chaperones such as HOPX and STUB1
(PubMed:24012426, PubMed:26865365, PubMed:24318877). Maintains protein
homeostasis during cellular stress through two opposing mechanisms:
protein refolding and degradation. Its acetylation/deacetylation state
determines whether it functions in protein refolding or protein
degradation by controlling the competitive binding of co-chaperones
HOPX and STUB1. During the early stress response, the acetylated form
binds to HOPX which assists in chaperone-mediated protein refolding,
thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that
promotes ubiquitin-mediated protein degradation (PubMed:27708256).
Regulates centrosome integrity during mitosis, and is required for the
maintenance of a functional mitotic centrosome that supports the
assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances
STUB1-mediated SMAD3 ubiquitination and degradation and facilitates
STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385).
Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in
regulatory T-cells (Treg) during inflammation (PubMed:23973223).
{ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223,
ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385,
ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256,
ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.
-!- FUNCTION: (Microbial infection) In case of rotavirus A infection,
serves as a post-attachment receptor for the virus to facilitate entry
into the cell. {ECO:0000269|PubMed:16537599}.
-!- SUBUNIT: Component of the CatSper complex. Identified in a IGF2BP1-
dependent mRNP granule complex containing untranslated mRNAs
(PubMed:17289661). Interacts with CHCHD3, DNAJC7, IRAK1BP1, PPP5C and
TSC2 (PubMed:21081504, PubMed:12853476, PubMed:18620420,
PubMed:17233114, PubMed:15383005, PubMed:15963462). Interacts with
TERT; the interaction occurs in the absence of the RNA component, TERC,
and dissociates once the TERT complex has formed (PubMed:11274138).
Interacts with TRIM5 (via B30.2/SPRY domain) (PubMed:20053985).
Interacts with METTL21A (PubMed:23921388). Interacts with PRKN
(PubMed:24270810). Interacts with FOXP3 (PubMed:23973223). Interacts
with NOD2; the interaction enhances NOD2 stability (PubMed:24790089).
Interacts with DNAJC9 (via J domain) (PubMed:17182002). Interacts with
ATF5; the interaction protects ATF5 from degradation via proteasome-
dependent and caspase-dependent processes (PubMed:22528486). Interacts
with NAA10, HSP40, HSP90 and HDAC4. The acetylated form and the non-
acetylated form interact with HOPX and STUB1 respectively
(PubMed:27708256). Interacts with NEDD1 (PubMed:27137183). Interacts
(via NBD) with BAG1, BAG2, BAG3 and HSPH1/HSP105 (PubMed:24318877).
Interacts with SMAD3 (PubMed:24613385). Interacts with DNAJC8
(PubMed:27133716). {ECO:0000269|PubMed:10216320,
ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:12853476,
ECO:0000269|PubMed:15383005, ECO:0000269|PubMed:15963462,
ECO:0000269|PubMed:17182002, ECO:0000269|PubMed:17233114,
ECO:0000269|PubMed:17289661, ECO:0000269|PubMed:18620420,
ECO:0000269|PubMed:20053985, ECO:0000269|PubMed:20072699,
ECO:0000269|PubMed:20179333, ECO:0000269|PubMed:20223214,
ECO:0000269|PubMed:21081504, ECO:0000269|PubMed:22528486,
ECO:0000269|PubMed:23921388, ECO:0000269|PubMed:23973223,
ECO:0000269|PubMed:24270810, ECO:0000269|PubMed:24318877,
ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:24790089,
ECO:0000269|PubMed:27133716, ECO:0000269|PubMed:27137183,
ECO:0000269|PubMed:27708256}.
-!- INTERACTION:
P0DMV9; P55085: F2RL1; NbExp=2; IntAct=EBI-14100688, EBI-4303189;
-!- SUBCELLULAR LOCATION: Cytoplasm {ECO:0000269|PubMed:17289661}.
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome
{ECO:0000269|PubMed:27137183}. Note=Localized in cytoplasmic mRNP
granules containing untranslated mRNAs.
-!- TISSUE SPECIFICITY: HSPA1B is testis-specific.
-!- INDUCTION: By heat shock.
-!- DOMAIN: The N-terminal nucleotide binding domain (NBD) (also known as
the ATPase domain) is responsible for binding and hydrolyzing ATP. The
C-terminal substrate-binding domain (SBD) (also known as peptide-
binding domain) binds to the client/substrate proteins. The two domains
are allosterically coupled so that, when ATP is bound to the NBD, the
SBD binds relatively weakly to clients. When ADP is bound in the NBD, a
conformational change enhances the affinity of the SBD for client
proteins. {ECO:0000305|PubMed:24012426, ECO:0000305|PubMed:26865365}.
-!- PTM: In response to cellular stress, acetylated at Lys-77 by NA110 and
then gradually deacetylated by HDAC4 at later stages. Acetylation
enhances its chaperone activity and also determines whether it will
function as a chaperone for protein refolding or degradation by
controlling its binding to co-chaperones HOPX and STUB1. The acetylated
form and the non-acetylated form bind to HOPX and STUB1 respectively.
Acetylation also protects cells against various types of cellular
stress. {ECO:0000269|PubMed:27708256}.
-!- SIMILARITY: Belongs to the heat shock protein 70 family. {ECO:0000305}.
-!- WEB RESOURCE: Name=NIEHS-SNPs;
URL="http://egp.gs.washington.edu/data/hspa1b/";
---------------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
Distributed under the Creative Commons Attribution (CC BY 4.0) License
---------------------------------------------------------------------------
EMBL; M59830; AAA63227.1; -; Genomic_DNA.
EMBL; BA000025; BAB63299.1; -; Genomic_DNA.
EMBL; AF134726; AAD21815.1; -; Genomic_DNA.
EMBL; DQ388429; ABD48956.1; -; Genomic_DNA.
EMBL; AL671762; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; BC009322; AAH09322.1; -; mRNA.
EMBL; BC018740; AAH18740.1; -; mRNA.
EMBL; BC057397; AAH57397.1; -; mRNA.
EMBL; BC063507; AAH63507.1; -; mRNA.
EMBL; M24744; AAA59845.1; -; Genomic_DNA.
CCDS; CCDS34415.1; -.
PIR; A29160; A29160.
PIR; A45871; A45871.
PIR; I59139; I59139.
PIR; I79540; I79540.
RefSeq; NP_005336.3; NM_005345.5.
RefSeq; NP_005337.2; NM_005346.4.
PDB; 4J8F; X-ray; 2.70 A; A=1-382, A=384-600.
PDB; 6FDT; NMR; -; B=633-641.
PDBsum; 4J8F; -.
PDBsum; 6FDT; -.
BMRB; P0DMV9; -.
SMR; P0DMV9; -.
CORUM; P0DMV9; -.
IntAct; P0DMV9; 12.
MINT; P0DMV9; -.
BindingDB; P0DMV9; -.
ChEMBL; CHEMBL3885585; -.
GlyConnect; 1296; 2 N-Linked glycans (2 sites).
GlyGen; P0DMV9; 2 sites.
iPTMnet; P0DMV9; -.
MetOSite; P0DMV9; -.
SwissPalm; P0DMV9; -.
BioMuta; HSPA1B; -.
REPRODUCTION-2DPAGE; IPI00304925; -.
EPD; P0DMV9; -.
jPOST; P0DMV9; -.
MassIVE; P0DMV9; -.
MaxQB; P0DMV9; -.
PRIDE; P0DMV9; -.
Antibodypedia; 65941; 106 antibodies.
DNASU; 3303; -.
Ensembl; ENST00000375650; ENSP00000364801; ENSG00000204388.
Ensembl; ENST00000391548; ENSP00000375391; ENSG00000224501.
Ensembl; ENST00000391555; ENSP00000375399; ENSG00000212866.
Ensembl; ENST00000445736; ENSP00000403530; ENSG00000231555.
Ensembl; ENST00000450744; ENSP00000393087; ENSG00000232804.
GeneID; 3303; -.
GeneID; 3304; -.
KEGG; hsa:3303; -.
KEGG; hsa:3304; -.
CTD; 3303; -.
CTD; 3304; -.
DisGeNET; 3303; -.
DisGeNET; 3304; -.
GeneCards; HSPA1B; -.
HGNC; HGNC:5233; HSPA1B.
HPA; ENSG00000204388; Tissue enhanced (vagina).
MIM; 140550; gene.
MIM; 603012; gene.
neXtProt; NX_P0DMV9; -.
OpenTargets; ENSG00000204388; -.
OpenTargets; ENSG00000204389; -.
VEuPathDB; HostDB:ENSG00000204388.6; -.
GeneTree; ENSGT00940000161215; -.
OMA; NQTAEVD; -.
OrthoDB; 288077at2759; -.
PhylomeDB; P0DMV9; -.
PathwayCommons; P0DMV9; -.
Reactome; R-HSA-3371453; Regulation of HSF1-mediated heat shock response.
Reactome; R-HSA-3371497; HSP90 chaperone cycle for steroid hormone receptors (SHR).
Reactome; R-HSA-3371568; Attenuation phase.
Reactome; R-HSA-3371571; HSF1-dependent transactivation.
Reactome; R-HSA-6798695; Neutrophil degranulation.
SIGNOR; P0DMV9; -.
BioGRID-ORCS; 3303; 13 hits in 570 CRISPR screens.
BioGRID-ORCS; 3304; 5 hits in 567 CRISPR screens.
ChiTaRS; HSPA1B; human.
Pharos; P0DMV9; Tbio.
PRO; PR:P0DMV9; -.
Proteomes; UP000005640; Chromosome 6.
RNAct; P0DMV9; protein.
Bgee; ENSG00000204388; Expressed in adenohypophysis and 251 other tissues.
ExpressionAtlas; P0DMV9; baseline and differential.
GO; GO:0016235; C:aggresome; IDA:UniProtKB.
GO; GO:0072562; C:blood microparticle; HDA:UniProtKB.
GO; GO:0005814; C:centriole; IDA:UniProtKB.
GO; GO:0005813; C:centrosome; IDA:UniProtKB.
GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
GO; GO:0005829; C:cytosol; IDA:UniProtKB.
GO; GO:0005783; C:endoplasmic reticulum; TAS:UniProtKB.
GO; GO:0070062; C:extracellular exosome; HDA:UniProtKB.
GO; GO:0005576; C:extracellular region; TAS:Reactome.
GO; GO:1904813; C:ficolin-1-rich granule lumen; TAS:Reactome.
GO; GO:0005925; C:focal adhesion; HDA:UniProtKB.
GO; GO:0016234; C:inclusion body; IDA:BHF-UCL.
GO; GO:0005739; C:mitochondrion; TAS:UniProtKB.
GO; GO:0016607; C:nuclear speck; IDA:UniProtKB.
GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0048471; C:perinuclear region of cytoplasm; IDA:UniProtKB.
GO; GO:0005886; C:plasma membrane; IBA:GO_Central.
GO; GO:0032991; C:protein-containing complex; IDA:UniProtKB.
GO; GO:1990904; C:ribonucleoprotein complex; IDA:UniProtKB.
GO; GO:0031982; C:vesicle; HDA:UniProtKB.
GO; GO:0005524; F:ATP binding; IDA:BHF-UCL.
GO; GO:0016887; F:ATPase activity; IDA:UniProtKB.
GO; GO:0055131; F:C3HC4-type RING finger domain binding; IPI:BHF-UCL.
GO; GO:0019899; F:enzyme binding; IPI:BHF-UCL.
GO; GO:0001664; F:G protein-coupled receptor binding; IDA:ParkinsonsUK-UCL.
GO; GO:0031072; F:heat shock protein binding; IPI:UniProtKB.
GO; GO:0042826; F:histone deacetylase binding; IPI:BHF-UCL.
GO; GO:0051787; F:misfolded protein binding; IBA:GO_Central.
GO; GO:0044183; F:protein folding chaperone; IDA:BHF-UCL.
GO; GO:0047485; F:protein N-terminus binding; IPI:UniProtKB.
GO; GO:0003723; F:RNA binding; HDA:UniProtKB.
GO; GO:0005102; F:signaling receptor binding; IPI:UniProtKB.
GO; GO:0031625; F:ubiquitin protein ligase binding; IPI:ParkinsonsUK-UCL.
GO; GO:0051082; F:unfolded protein binding; IDA:UniProtKB.
GO; GO:0001618; F:virus receptor activity; IEA:UniProtKB-KW.
GO; GO:0046034; P:ATP metabolic process; IDA:BHF-UCL.
GO; GO:0070370; P:cellular heat acclimation; IMP:UniProtKB.
GO; GO:0034605; P:cellular response to heat; IDA:UniProtKB.
GO; GO:0034599; P:cellular response to oxidative stress; TAS:ParkinsonsUK-UCL.
GO; GO:0034620; P:cellular response to unfolded protein; IBA:GO_Central.
GO; GO:0051085; P:chaperone cofactor-dependent protein refolding; IBA:GO_Central.
GO; GO:0006402; P:mRNA catabolic process; IDA:UniProtKB.
GO; GO:0043066; P:negative regulation of apoptotic process; IMP:UniProtKB.
GO; GO:0060548; P:negative regulation of cell death; IDA:ParkinsonsUK-UCL.
GO; GO:0030308; P:negative regulation of cell growth; IMP:UniProtKB.
GO; GO:0008285; P:negative regulation of cell population proliferation; IMP:UniProtKB.
GO; GO:2001240; P:negative regulation of extrinsic apoptotic signaling pathway in absence of ligand; IMP:BHF-UCL.
GO; GO:0090084; P:negative regulation of inclusion body assembly; IDA:UniProtKB.
GO; GO:0031397; P:negative regulation of protein ubiquitination; IDA:ParkinsonsUK-UCL.
GO; GO:0043312; P:neutrophil degranulation; TAS:Reactome.
GO; GO:0045648; P:positive regulation of erythrocyte differentiation; IMP:UniProtKB.
GO; GO:0010628; P:positive regulation of gene expression; IMP:BHF-UCL.
GO; GO:0032757; P:positive regulation of interleukin-8 production; IMP:UniProtKB.
GO; GO:0090063; P:positive regulation of microtubule nucleation; IMP:UniProtKB.
GO; GO:0051092; P:positive regulation of NF-kappaB transcription factor activity; IMP:UniProtKB.
GO; GO:0070434; P:positive regulation of nucleotide-binding oligomerization domain containing 2 signaling pathway; IMP:UniProtKB.
GO; GO:0032436; P:positive regulation of proteasomal ubiquitin-dependent protein catabolic process; IBA:GO_Central.
GO; GO:1903265; P:positive regulation of tumor necrosis factor-mediated signaling pathway; IMP:UniProtKB.
GO; GO:0042026; P:protein refolding; IDA:UniProtKB.
GO; GO:0050821; P:protein stabilization; IMP:UniProtKB.
GO; GO:1900034; P:regulation of cellular response to heat; TAS:Reactome.
GO; GO:1901673; P:regulation of mitotic spindle assembly; IMP:UniProtKB.
GO; GO:0031396; P:regulation of protein ubiquitination; IDA:BHF-UCL.
GO; GO:0016192; P:vesicle-mediated transport; IBA:GO_Central.
DisProt; DP02353; -.
Gene3D; 1.20.1270.10; -; 1.
Gene3D; 2.60.34.10; -; 1.
InterPro; IPR043129; ATPase_NBD.
InterPro; IPR018181; Heat_shock_70_CS.
InterPro; IPR029048; HSP70_C_sf.
InterPro; IPR029047; HSP70_peptide-bd_sf.
InterPro; IPR013126; Hsp_70_fam.
PANTHER; PTHR19375; PTHR19375; 1.
Pfam; PF00012; HSP70; 1.
SUPFAM; SSF100920; SSF100920; 1.
SUPFAM; SSF100934; SSF100934; 1.
SUPFAM; SSF53067; SSF53067; 2.
PROSITE; PS00297; HSP70_1; 1.
PROSITE; PS00329; HSP70_2; 1.
PROSITE; PS01036; HSP70_3; 1.
1: Evidence at protein level;
3D-structure; Acetylation; ATP-binding; Chaperone; Cytoplasm; Cytoskeleton;
Direct protein sequencing; Host cell receptor for virus entry;
Host-virus interaction; Methylation; Nucleotide-binding; Phosphoprotein;
Receptor; Reference proteome; Stress response.
INIT_MET 1
/note="Removed"
/evidence="ECO:0007744|PubMed:19413330"
CHAIN 2..641
/note="Heat shock 70 kDa protein 1B"
/id="PRO_0000433115"
NP_BIND 12..15
/note="ATP"
NP_BIND 202..204
/note="ATP"
NP_BIND 268..275
/note="ATP"
NP_BIND 339..342
/note="ATP"
REGION 2..386
/note="Nucleotide-binding domain (NBD)"
/evidence="ECO:0000250|UniProtKB:P11142"
REGION 394..509
/note="Substrate-binding domain (SBD)"
/evidence="ECO:0000250|UniProtKB:P11142"
REGION 614..641
/note="Disordered"
/evidence="ECO:0000256|SAM:MobiDB-lite"
BINDING 71
/note="ATP"
MOD_RES 2
/note="N-acetylalanine"
/evidence="ECO:0007744|PubMed:19413330"
MOD_RES 77
/note="N6-acetyllysine"
/evidence="ECO:0000269|PubMed:27708256"
MOD_RES 108
/note="N6-acetyllysine"
/evidence="ECO:0007744|PubMed:19608861"
MOD_RES 246
/note="N6-acetyllysine"
/evidence="ECO:0007744|PubMed:19608861"
MOD_RES 348
/note="N6-acetyllysine"
/evidence="ECO:0007744|PubMed:19608861"
MOD_RES 469
/note="Omega-N-methylarginine"
/evidence="ECO:0007744|PubMed:24129315"
MOD_RES 561
/note="N6,N6,N6-trimethyllysine; by METTL21A; alternate"
/evidence="ECO:0000269|PubMed:23349634,
ECO:0000269|PubMed:23921388, ECO:0007744|PubMed:24129315"
MOD_RES 561
/note="N6,N6-dimethyllysine; alternate"
/evidence="ECO:0007744|PubMed:24129315"
MOD_RES 631
/note="Phosphoserine"
/evidence="ECO:0007744|PubMed:20068231"
MOD_RES 633
/note="Phosphoserine"
/evidence="ECO:0007744|PubMed:20068231"
MOD_RES 636
/note="Phosphothreonine"
/evidence="ECO:0007744|PubMed:20068231"
VARIANT 95
/note="I -> V"
/evidence="ECO:0000269|Ref.4"
/id="VAR_032152"
VARIANT 467
/note="A -> V (in dbSNP:rs538280104)"
/evidence="ECO:0000269|Ref.4"
/id="VAR_032153"
VARIANT 499
/note="N -> S (in dbSNP:rs483638)"
/evidence="ECO:0000269|PubMed:14656967, ECO:0000269|Ref.4"
/id="VAR_029054"
MUTAGEN 10
/note="D->A: Reduces affinity for ADP."
/evidence="ECO:0000269|PubMed:21608060"
MUTAGEN 77
/note="K->Q: No loss of acetylation and ATPase activity.
Exhibits normal protein refolding activity during the early
phase but exhibits defects in ubiquitin-mediated protein
degradation during the later phase."
/evidence="ECO:0000269|PubMed:27708256"
MUTAGEN 77
/note="K->R: Significant loss of acetylation and ATPase
activity. Decreased binding to HOPX and HSP90 and increased
binding to STUB1 and NAA10. Impaired capacity for protein
refolding during the early phase after stress but shows
normal protein degradation activity in the late phase."
/evidence="ECO:0000269|PubMed:27708256"
MUTAGEN 199
/note="D->A: Reduces affinity for ADP."
/evidence="ECO:0000269|PubMed:21608060"
MUTAGEN 561
/note="K->R: Complete loss of in vitro methylation by
METTL21A."
/evidence="ECO:0000269|PubMed:23349634,
ECO:0000269|PubMed:23921388"
STRAND 637..639
/evidence="ECO:0007829|PDB:6FDT"
SEQUENCE 641 AA; 70052 MW; 78F513118C96DE66 CRC64;
MAKAAAIGID LGTTYSCVGV FQHGKVEIIA NDQGNRTTPS YVAFTDTERL IGDAAKNQVA
LNPQNTVFDA KRLIGRKFGD PVVQSDMKHW PFQVINDGDK PKVQVSYKGE TKAFYPEEIS
SMVLTKMKEI AEAYLGYPVT NAVITVPAYF NDSQRQATKD AGVIAGLNVL RIINEPTAAA
IAYGLDRTGK GERNVLIFDL GGGTFDVSIL TIDDGIFEVK ATAGDTHLGG EDFDNRLVNH
FVEEFKRKHK KDISQNKRAV RRLRTACERA KRTLSSSTQA SLEIDSLFEG IDFYTSITRA
RFEELCSDLF RSTLEPVEKA LRDAKLDKAQ IHDLVLVGGS TRIPKVQKLL QDFFNGRDLN
KSINPDEAVA YGAAVQAAIL MGDKSENVQD LLLLDVAPLS LGLETAGGVM TALIKRNSTI
PTKQTQIFTT YSDNQPGVLI QVYEGERAMT KDNNLLGRFE LSGIPPAPRG VPQIEVTFDI
DANGILNVTA TDKSTGKANK ITITNDKGRL SKEEIERMVQ EAEKYKAEDE VQRERVSAKN
ALESYAFNMK SAVEDEGLKG KISEADKKKV LDKCQEVISW LDANTLAEKD EFEHKRKELE
QVCNPIISGL YQGAGGPGPG GFGAQGPKGG SGSGPTIEEV D


Related products :

Catalog number Product name Quantity
U0873r CLIA Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,HSP70.1_HSP70.2,Hsp70-1,HSP70-1_HSP70-2,Hspa1,Hspa1a,Rat,Rattus norvegicus 96T
E0873r ELISA kit Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,HSP70.1_HSP70.2,Hsp70-1,HSP70-1_HSP70-2,Hspa1,Hspa1a,Rat,Rattus norvegicus 96T
E0873r ELISA Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,HSP70.1_HSP70.2,Hsp70-1,HSP70-1_HSP70-2,Hspa1,Hspa1a,Rat,Rattus norvegicus 96T
E0873m ELISA kit Heat shock 70 kDa protein 1A,Heat shock 70 kDa protein 3,Hsp68,HSP70.3,Hsp70-3,Hsp70A1,Hspa1a,Mouse,Mus musculus 96T
U0873m CLIA Heat shock 70 kDa protein 1A,Heat shock 70 kDa protein 3,Hsp68,HSP70.3,Hsp70-3,Hsp70A1,Hspa1a,Mouse,Mus musculus 96T
E0873m ELISA Heat shock 70 kDa protein 1A,Heat shock 70 kDa protein 3,Hsp68,HSP70.3,Hsp70-3,Hsp70A1,Hspa1a,Mouse,Mus musculus 96T
E0873b ELISA Bos taurus,Bovine,Heat shock 70 kDa protein 1,Heat shock 70 kDa protein 1A,HSP70.1,HSP70-1,HSPA1A 96T
U0873b CLIA Bos taurus,Bovine,Heat shock 70 kDa protein 1,Heat shock 70 kDa protein 1A,HSP70.1,HSP70-1,HSPA1A 96T
E0873b ELISA kit Bos taurus,Bovine,Heat shock 70 kDa protein 1,Heat shock 70 kDa protein 1A,HSP70.1,HSP70-1,HSPA1A 96T
E0873h ELISA Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,Homo sapiens,HSP70.1_HSP70.2,HSP70-1_HSP70-2,HSPA1,HSPA1A,Human 96T
U0873h CLIA Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,Homo sapiens,HSP70.1_HSP70.2,HSP70-1_HSP70-2,HSPA1,HSPA1A,Human 96T
E0873h ELISA kit Heat shock 70 kDa protein 1_2,Heat shock 70 kDa protein 1A_1B,Homo sapiens,HSP70.1_HSP70.2,HSP70-1_HSP70-2,HSPA1,HSPA1A,Human 96T
10-663-45058 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 1 mg
10-663-45057 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 0.1 mg
10-663-45057 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 0.5 mg
10-663-45058 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 0.5 mg
10-663-45058 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 0.1 mg
10-663-45057 Chlamydia Trachomatis HSP70 Protein (dnaK) - Heat shock protein 70-1; Heat shock 70 kDa protein 1; HSP70-1 N_A 1 mg
20-372-60095 heat shock 70kDa protein 1-like - Mouse monoclonal anti-human HSPA1L antibody; Heat shock 70 kDa protein 1-like; Heat shock 70 kDa protein 1-Hom; HSP70-Hom Monoclonal 0.1 mg
MEDCLA337-1 Heat Shock Protein 70 (HSP70), Heat Shock Cognate Protein 70 (HSC70), Clone 8B11, Mab anti_Hu,Ms,Rt; prfn_NO frzn, IH_WB 1 ml.
MEDCLA337-01 Heat Shock Protein 70 (HSP70), Heat Shock Cognate Protein 70 (HSC70), Clone 8B11, Mab anti_Hu,Ms,Rt; prfn_NO frzn, IH_WB 0.1 ml.
AS05 083A rabbit polyclonal HSP70 per HSC70 Heat shock protein 70 per Heat shock cognate protein 70, Affinity purified 50
YSGSPA758E Heat Shock Protein 70 (Hsp70), Heat Shock Cognate 70 (Hsc70), ~72&73kD, Rabbit anti_Fish; WB 100 µl.
YSGSPA758C Heat Shock Protein 70 (Hsp70), Heat Shock Cognate 70 (Hsc70), ~72&73kD, Rabbit anti_Fish; WB 25 µl.
10-663-45490 Dnak ATPase binding domain (DnakATPaseBD) - Heat shock protein 70; Heat shock 70 kDa protein; HSP70 N_A 0.02 mg
Pathways :
WP2199: Seed Development
WP1502: Mitochondrial biogenesis
WP2203: TSLP Signaling Pathway
WP1049: G Protein Signaling Pathways
WP1692: Protein export
WP931: G Protein Signaling Pathways
WP1650: Fluorobenzoate degradation
WP1659: Glycine, serine and threonine metabolism
WP2292: Chemokine signaling pathway
WP1199: Apoptosis Modulation by HSP70
WP1700: Selenoamino acid metabolism
WP1438: Influenza A virus infection
WP1888: Post-translational protein modification
WP1663: Homologous recombination
WP2371: Parkinsons Disease Pathway
WP1673: Naphthalene and anthracene degradation
WP384: Apoptosis Modulation by HSP70
WP1531: Vitamin D synthesis
WP1909: Signal regulatory protein (SIRP) family interactions
WP1616: ABC transporters
WP2032: TSH signaling pathway
WP1678: Nucleotide excision repair
WP73: G Protein Signaling Pathways
WP1690: Propanoate metabolism
WP843: Apoptosis Modulation by HSP70

Related Genes :
[Hspa1b Hsp70-2 Hspa2] Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 1) (HSP70-1) (HSP70.1)
[HSPA1B HSP72] Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 2) (HSP70-2) (HSP70.2)
[Hspa1b Hcp70.1 Hsp70-1 Hsp70a1 Hspa1] Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 1) (HSP70.1)
[HSP70-4 HSC70-4 HSP70 MED37_2 MED37C At3g12580 T16H11.7 T2E22.11] Heat shock 70 kDa protein 4 (Heat shock cognate 70 kDa protein 4) (Heat shock cognate protein 70-4) (AtHsc70-4) (Heat shock protein 70-4) (AtHsp70-4)
[Hspa1a Hsp70-1 Hspa1] Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 2) (HSP70-2) (HSP70.2)
[HSPA1A HSP72 HSPA1 HSX70] Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 1) (HSP70-1) (HSP70.1)
[Hspa1a Hsp70-3 Hsp70A1] Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 3) (HSP70.3) (Hsp68)
[HSPA1B HSP70-2] Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 2) (HSP70.2)
[HSPA1A HSP70-1] Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 1) (HSP70.1)
[HSPA5 GRP78] Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein)
[Hspa5 Grp78] Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein) (Steroidogenesis-activator polypeptide)
[HSPA5 GRP78] Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein)
[HSPA1B] Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 2) (HSP70.2)
[Hspa5 Grp78] Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein)
[HSPA5 GRP78] Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein)
[HSPA5 GRP78] Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein) (Fragment)
[HSPA5 GRP78 I79_019946] Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein)
[HSPA1A HSPA1] Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 1) (HSP70.1)
[HSPBP1 HSPBP PP1845] Hsp70-binding protein 1 (HspBP1) (Heat shock protein-binding protein 1) (Hsp70-binding protein 2) (HspBP2) (Hsp70-interacting protein 1) (Hsp70-interacting protein 2)
[HSPA9 GRP75 HSPA9B mt-HSP70] Stress-70 protein, mitochondrial (75 kDa glucose-regulated protein) (GRP-75) (Heat shock 70 kDa protein 9) (Mortalin) (MOT) (Peptide-binding protein 74) (PBP74)
[HSPA5 GRP78] Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein)
[SSB1 YG101 YDL229W] Ribosome-associated molecular chaperone SSB1 (EC 3.6.4.10) (Cold-inducible protein YG101) (Heat shock protein SSB1) (Hsp70 chaperone Ssb)
[HSPA14 HSP60 HSP70L1] Heat shock 70 kDa protein 14 (HSP70-like protein 1) (Heat shock protein HSP60)
[SSB2 YG103 YNL209W N1333] Ribosome-associated molecular chaperone SSB2 (EC 3.6.4.10) (Heat shock protein SSB2) (Hsp70 chaperone Ssb)
[HSPA5 GRP78] Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein)
[HSPA5 GRP78] Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein)
[HSPA1 Hsp70] Heat shock 70 kDa protein 1
[Hspa8 Hsc70 Hsc73] Heat shock cognate 71 kDa protein (EC 3.6.4.10) (Heat shock 70 kDa protein 8)
[Hspa9 Grp75 Hsp74 Hspa9a] Stress-70 protein, mitochondrial (75 kDa glucose-regulated protein) (GRP-75) (Heat shock 70 kDa protein 9) (Mortalin) (Peptide-binding protein 74) (PBP74) (p66 MOT)
[HSPA8 HSC70 HSP73 HSPA10] Heat shock cognate 71 kDa protein (EC 3.6.4.10) (Heat shock 70 kDa protein 8) (Lipopolysaccharide-associated protein 1) (LAP-1) (LPS-associated protein 1)

Bibliography :
[20156737] Nuclear HSP90 and HSP70 in COPD patients treated with formoterol or formoterol and corticosteroids.