GENTAUR Belgium BVBA BE0473327336 Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45
GENTAUR U.S.A Genprice Inc,Logistics 547 Yurok Circle, SanJose, CA 95123
Tel (408) 780-0908, Fax (408) 780-0908, [email protected]

Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, Gentaur another in time delivery

Mothers against decapentaplegic homolog 3 (MAD homolog 3) (Mad3) (Mothers against DPP homolog 3) (hMAD-3) (JV15-2) (SMAD family member 3) (SMAD 3) (Smad3) (hSMAD3)

 SMAD3_HUMAN             Reviewed;         425 AA.
P84022; A8K4B6; B7Z4Z5; B7Z6M9; B7Z9Q2; F5H383; O09064; O09144; O14510;
O35273; Q92940; Q93002; Q9GKR4;
05-JUL-2004, integrated into UniProtKB/Swiss-Prot.
05-JUL-2004, sequence version 1.
22-APR-2020, entry version 188.
RecName: Full=Mothers against decapentaplegic homolog 3;
Short=MAD homolog 3;
Short=Mad3;
Short=Mothers against DPP homolog 3;
Short=hMAD-3;
AltName: Full=JV15-2;
AltName: Full=SMAD family member 3;
Short=SMAD 3;
Short=Smad3;
Short=hSMAD3;
Name=SMAD3; Synonyms=MADH3;
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND PHOSPHORYLATION.
TISSUE=Placenta;
PubMed=8774881; DOI=10.1038/383168a0;
Zhang Y., Feng X.-H., Wu R.-Y., Derynck R.;
"Receptor-associated Mad homologues synergize as effectors of the TGF-beta
response.";
Nature 383:168-172(1996).
[2]
NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
PubMed=8673135; DOI=10.1038/ng0796-347;
Riggins G.J., Thiagalingam S., Rosenblum E., Weinstein C.L., Kern S.E.,
Hamilton S.R., Willson J.K.V., Markowitz S.D., Kinzler K.W.,
Vogelstein B.V.;
"Mad-related genes in the human.";
Nat. Genet. 13:347-349(1996).
[3]
NUCLEOTIDE SEQUENCE [GENOMIC DNA].
TISSUE=Colon carcinoma;
PubMed=9464505; DOI=10.1016/s0304-3835(97)00384-4;
Arai T., Akiyama Y., Okabe S., Ando M., Endo M., Yuasa Y.;
"Genomic structure of the human Smad3 gene and its infrequent alterations
in colorectal cancers.";
Cancer Lett. 122:157-163(1998).
[4]
NUCLEOTIDE SEQUENCE [GENOMIC DNA].
Hagiwara K., Yang K., McMenamin M.G., Freeman A.H., Bennett W.P.,
Nagashima M., Minter A.R., Miyazono K., Takenoshita S., Harris C.C.;
Submitted (SEP-1997) to the EMBL/GenBank/DDBJ databases.
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1; 2; 3 AND 4).
TISSUE=Brain;
PubMed=14702039; DOI=10.1038/ng1285;
Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A., Sudo H.,
Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M., Takahashi M.,
Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y., Abe K., Kamihara K.,
Katsuta N., Sato K., Tanikawa M., Yamazaki M., Ninomiya K., Ishibashi T.,
Yamashita H., Murakawa K., Fujimori K., Tanai H., Kimata M., Watanabe M.,
Hiraoka S., Chiba Y., Ishida S., Ono Y., Takiguchi S., Watanabe S.,
Yosida M., Hotuta T., Kusano J., Kanehori K., Takahashi-Fujii A., Hara H.,
Tanase T.-O., Nomura Y., Togiya S., Komai F., Hara R., Takeuchi K.,
Arita M., Imose N., Musashino K., Yuuki H., Oshima A., Sasaki N.,
Aotsuka S., Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y., Fujimori Y.,
Komiyama M., Tashiro H., Tanigami A., Fujiwara T., Ono T., Yamada K.,
Fujii Y., Ozaki K., Hirao M., Ohmori Y., Kawabata A., Hikiji T.,
Kobatake N., Inagaki H., Ikema Y., Okamoto S., Okitani R., Kawakami T.,
Noguchi S., Itoh T., Shigeta K., Senba T., Matsumura K., Nakajima Y.,
Mizuno T., Morinaga M., Sasaki M., Togashi T., Oyama M., Hata H.,
Watanabe M., Komatsu T., Mizushima-Sugano J., Satoh T., Shirai Y.,
Takahashi Y., Nakagawa K., Okumura K., Nagase T., Nomura N., Kikuchi H.,
Masuho Y., Yamashita R., Nakai K., Yada T., Nakamura Y., Ohara O.,
Isogai T., Sugano S.;
"Complete sequencing and characterization of 21,243 full-length human
cDNAs.";
Nat. Genet. 36:40-45(2004).
[6]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=16572171; DOI=10.1038/nature04601;
Zody M.C., Garber M., Sharpe T., Young S.K., Rowen L., O'Neill K.,
Whittaker C.A., Kamal M., Chang J.L., Cuomo C.A., Dewar K.,
FitzGerald M.G., Kodira C.D., Madan A., Qin S., Yang X., Abbasi N.,
Abouelleil A., Arachchi H.M., Baradarani L., Birditt B., Bloom S.,
Bloom T., Borowsky M.L., Burke J., Butler J., Cook A., DeArellano K.,
DeCaprio D., Dorris L. III, Dors M., Eichler E.E., Engels R., Fahey J.,
Fleetwood P., Friedman C., Gearin G., Hall J.L., Hensley G., Johnson E.,
Jones C., Kamat A., Kaur A., Locke D.P., Madan A., Munson G., Jaffe D.B.,
Lui A., Macdonald P., Mauceli E., Naylor J.W., Nesbitt R., Nicol R.,
O'Leary S.B., Ratcliffe A., Rounsley S., She X., Sneddon K.M.B.,
Stewart S., Sougnez C., Stone S.M., Topham K., Vincent D., Wang S.,
Zimmer A.R., Birren B.W., Hood L., Lander E.S., Nusbaum C.;
"Analysis of the DNA sequence and duplication history of human chromosome
15.";
Nature 440:671-675(2006).
[7]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L., Mobarry C.M.,
Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R., Flanigan M.J.,
Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V., Hannenhalli S.,
Turner R., Yooseph S., Lu F., Nusskern D.R., Shue B.C., Zheng X.H.,
Zhong F., Delcher A.L., Huson D.H., Kravitz S.A., Mouchard L., Reinert K.,
Remington K.A., Clark A.G., Waterman M.S., Eichler E.E., Adams M.D.,
Hunkapiller M.W., Myers E.W., Venter J.C.;
Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
[8]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
TISSUE=Pancreas;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA project:
the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[9]
INTERACTION WITH TGFBR1.
PubMed=9311995; DOI=10.1093/emboj/16.17.5353;
Nakao A., Imamura T., Souchelnytskyi S., Kawabata M., Ishisaki A., Oeda E.,
Tamaki K., Hanai J., Heldin C.H., Miyazono K., ten Dijke P.;
"TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4.";
EMBO J. 16:5353-5362(1997).
[10]
INTERACTION WITH ZFYVE9.
PubMed=9865696; DOI=10.1016/s0092-8674(00)81701-8;
Tsukazaki T., Chiang T.A., Davison A.F., Attisano L., Wrana J.L.;
"SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor.";
Cell 95:779-791(1998).
[11]
SUBUNIT.
PubMed=9670020; DOI=10.1093/emboj/17.14.4056;
Kawabata M., Inoue H., Hanyu A., Imamura T., Miyazono K.;
"Smad proteins exist as monomers in vivo and undergo homo- and hetero-
oligomerization upon activation by serine/threonine kinase receptors.";
EMBO J. 17:4056-4065(1998).
[12]
PHOSPHORYLATION, AND INTERACTION WITH EP300.
PubMed=9843571; DOI=10.1091/mbc.9.12.3309;
Shen X., Hu P.P., Liberati N.T., Datto M.B., Frederick J.P., Wang X.F.;
"TGF-beta-induced phosphorylation of Smad3 regulates its interaction with
coactivator p300/CREB-binding protein.";
Mol. Biol. Cell 9:3309-3319(1998).
[13]
INTERACTION WITH MECOM.
PubMed=9665135; DOI=10.1038/27945;
Kurokawa M., Mitani K., Irie K., Matsuyama T., Takahashi T., Chiba S.,
Yazaki Y., Matsumoto K., Hirai H.;
"The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3.";
Nature 394:92-96(1998).
[14]
IDENTIFICATION AS A COMPONENT OF THE SMAD3/SMAD4/JUN/FOS COMPLEX,
INTERACTION WITH JUN AND FOS, DNA-BINDING, AND FUNCTION.
PubMed=9732876; DOI=10.1038/29814;
Zhang Y., Feng X.H., Derynck R.;
"Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced
transcription.";
Nature 394:909-913(1998).
[15]
INTERACTION WITH ACVR1B, AND FUNCTION.
PubMed=9892009; DOI=10.1210/mend.13.1.0218;
Lebrun J.J., Takabe K., Chen Y., Vale W.;
"Roles of pathway-specific and inhibitory Smads in activin receptor
signaling.";
Mol. Endocrinol. 13:15-23(1999).
[16]
INTERACTION WITH JUN IN THE SMAD3/SMAD4/JUN/FOS COMPLEX, DNA-BINDING,
FUNCTION, AND MUTAGENESIS OF LYS-40; LYS-41; LYS-43; LYS-44 AND ARG-74.
PubMed=10995748; DOI=10.1074/jbc.m004731200;
Qing J., Zhang Y., Derynck R.;
"Structural and functional characterization of the transforming growth
factor-beta -induced Smad3/c-Jun transcriptional cooperativity.";
J. Biol. Chem. 275:38802-38812(2000).
[17]
INTERACTION WITH DAB2.
PubMed=11387212; DOI=10.1093/emboj/20.11.2789;
Hocevar B.A., Smine A., Xu X.X., Howe P.H.;
"The adaptor molecule Disabled-2 links the transforming growth factor beta
receptors to the Smad pathway.";
EMBO J. 20:2789-2801(2001).
[18]
INTERACTION WITH SNW1.
PubMed=11278756; DOI=10.1074/jbc.m010815200;
Leong G.M., Subramaniam N., Figueroa J., Flanagan J.L., Hayman M.J.,
Eisman J.A., Kouzmenko A.P.;
"Ski-interacting protein interacts with Smad proteins to augment
transforming growth factor-beta-dependent transcription.";
J. Biol. Chem. 276:18243-18248(2001).
[19]
INTERACTION WITH TGIF2.
PubMed=11427533; DOI=10.1074/jbc.m103377200;
Melhuish T.A., Gallo C.M., Wotton D.;
"TGIF2 interacts with histone deacetylase 1 and represses transcription.";
J. Biol. Chem. 276:32109-32114(2001).
[20]
SUBUNIT, PHOSPHORYLATION, AND MUTAGENESIS OF 422-SER--SER-425.
PubMed=11224571; DOI=10.1038/84995;
Chacko B.M., Qin B., Correia J.J., Lam S.S., de Caestecker M.P., Lin K.;
"The L3 loop and C-terminal phosphorylation jointly define Smad protein
trimerization.";
Nat. Struct. Biol. 8:248-253(2001).
[21]
INTERACTION WITH MEN1.
PubMed=11274402; DOI=10.1073/pnas.061358098;
Kaji H., Canaff L., Lebrun J.J., Goltzman D., Hendy G.N.;
"Inactivation of menin, a Smad3-interacting protein, blocks transforming
growth factor type beta signaling.";
Proc. Natl. Acad. Sci. U.S.A. 98:3837-3842(2001).
[22]
INTERACTION WITH ZNF8.
PubMed=12370310; DOI=10.1128/mcb.22.21.7633-7644.2002;
Jiao K., Zhou Y., Hogan B.L.M.;
"Identification of mZnf8, a mouse Kruppel-like transcriptional repressor,
as a novel nuclear interaction partner of Smad1.";
Mol. Cell. Biol. 22:7633-7644(2002).
[23]
INTERACTION WITH DACH1.
PubMed=14525983; DOI=10.1074/jbc.m310021200;
Wu K., Yang Y., Wang C., Davoli M.A., D'Amico M., Li A., Cveklova K.,
Kozmik Z., Lisanti M.P., Russell R.G., Cvekl A., Pestell R.G.;
"DACH1 inhibits transforming growth factor-beta signaling through binding
Smad4.";
J. Biol. Chem. 278:51673-51684(2003).
[24]
PHOSPHORYLATION AT THR-8; THR-179; SER-204; SER-208 AND SER-213, FUNCTION,
AND MUTAGENESIS OF THR-8; THR-179; SER-204; SER-208 AND SER-213.
PubMed=15241418; DOI=10.1038/nature02650;
Matsuura I., Denissova N.G., Wang G., He D., Long J., Liu F.;
"Cyclin-dependent kinases regulate the antiproliferative function of
Smads.";
Nature 430:226-231(2004).
[25]
TRANSCRIPTIONAL ACTIVATION DOMAIN, FUNCTION, PHOSPHORYLATION, SUBUNIT, AND
INTERACTION WITH EP300.
PubMed=15588252; DOI=10.1042/bj20041820;
Wang G., Long J., Matsuura I., He D., Liu F.;
"The Smad3 linker region contains a transcriptional activation domain.";
Biochem. J. 386:29-34(2005).
[26]
PHOSPHORYLATION AT THR-179; SER-204 AND SER-208, SUBCELLULAR LOCATION,
FUNCTION, AND MUTAGENESIS OF THR-179; SER-204 AND SER-208.
PubMed=16156666; DOI=10.1021/bi050560g;
Matsuura I., Wang G., He D., Liu F.;
"Identification and characterization of ERK MAP kinase phosphorylation
sites in Smad3.";
Biochemistry 44:12546-12553(2005).
[27]
SUBCELLULAR LOCATION, AND INTERACTION WITH LEMD3.
PubMed=15601644; DOI=10.1093/hmg/ddi040;
Lin F., Morrison J.M., Wu W., Worman H.J.;
"MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and
Smad3 and antagonizes transforming growth factor-beta signaling.";
Hum. Mol. Genet. 14:437-445(2005).
[28]
INTERACTION WITH TGFB1I1.
PubMed=15561701; DOI=10.1074/jbc.m411575200;
Wang H., Song K., Sponseller T.L., Danielpour D.;
"Novel function of androgen receptor-associated protein 55/Hic-5 as a
negative regulator of Smad3 signaling.";
J. Biol. Chem. 280:5154-5162(2005).
[29]
INTERACTION WITH LEMD3.
PubMed=15647271; DOI=10.1074/jbc.m411234200;
Pan D., Estevez-Salmeron L.D., Stroschein S.L., Zhu X., He J., Zhou S.,
Luo K.;
"The integral inner nuclear membrane protein MAN1 physically interacts with
the R-Smad proteins to repress signaling by the transforming growth
factor-{beta} superfamily of cytokines.";
J. Biol. Chem. 280:15992-16001(2005).
[30]
SUBUNIT, AND SUBCELLULAR LOCATION.
PubMed=15799969; DOI=10.1074/jbc.m500362200;
Chen H.B., Rud J.G., Lin K., Xu L.;
"Nuclear targeting of transforming growth factor-beta-activated Smad
complexes.";
J. Biol. Chem. 280:21329-21336(2005).
[31]
INTERACTION WITH SKOR2.
PubMed=16200078; DOI=10.1038/labinvest.3700344;
Arndt S., Poser I., Schubert T., Moser M., Bosserhoff A.-K.;
"Cloning and functional characterization of a new Ski homolog, Fussel-18,
specifically expressed in neuronal tissues.";
Lab. Invest. 85:1330-1341(2005).
[32]
INTERACTION WITH MECOM.
PubMed=15897867; DOI=10.1038/sj.onc.1208754;
Nitta E., Izutsu K., Yamaguchi Y., Imai Y., Ogawa S., Chiba S.,
Kurokawa M., Hirai H.;
"Oligomerization of Evi-1 regulated by the PR domain contributes to
recruitment of corepressor CtBP.";
Oncogene 24:6165-6173(2005).
[33]
INTERACTION WITH PPM1A, DEPHOSPHORYLATION, FUNCTION, AND SUBCELLULAR
LOCATION.
PubMed=16751101; DOI=10.1016/j.cell.2006.03.044;
Lin X., Duan X., Liang Y.Y., Su Y., Wrighton K.H., Long J., Hu M.,
Davis C.M., Wang J., Brunicardi F.C., Shi Y., Chen Y.G., Meng A.,
Feng X.H.;
"PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling.";
Cell 125:915-928(2006).
[34]
IDENTIFICATION IN A COMPLEX WITH SMAD2 AND TRIM33, AND INTERACTION WITH
SMAD2 AND TRIM33.
PubMed=16751102; DOI=10.1016/j.cell.2006.03.045;
He W., Dorn D.C., Erdjument-Bromage H., Tempst P., Moore M.A., Massague J.;
"Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the
TGFbeta pathway.";
Cell 125:929-941(2006).
[35]
INTERACTION WITH ZMIZ1.
PubMed=16777850; DOI=10.1074/jbc.m508365200;
Li X., Thyssen G., Beliakoff J., Sun Z.;
"The novel PIAS-like protein hZimp10 enhances Smad transcriptional
activity.";
J. Biol. Chem. 281:23748-23756(2006).
[36]
IDENTIFICATION IN A COMPLEX WITH RAN AND XPO4, INTERACTION WITH XPO4, AND
MUTAGENESIS OF 422-SER--SER-425.
PubMed=16449645; DOI=10.1128/mcb.26.4.1318-1332.2006;
Kurisaki A., Kurisaki K., Kowanetz M., Sugino H., Yoneda Y., Heldin C.-H.,
Moustakas A.;
"The mechanism of nuclear export of Smad3 involves exportin 4 and Ran.";
Mol. Cell. Biol. 26:1318-1332(2006).
[37]
INTERACTION WITH RBPMS.
PubMed=17099224; DOI=10.1093/nar/gkl914;
Sun Y., Ding L., Zhang H., Han J., Yang X., Yan J., Zhu Y., Li J., Song H.,
Ye Q.;
"Potentiation of Smad-mediated transcriptional activation by the RNA-
binding protein RBPMS.";
Nucleic Acids Res. 34:6314-6326(2006).
[38]
FUNCTION, SUBCELLULAR LOCATION, PHOSPHORYLATION BY PDPK1, AND INTERACTION
WITH PDPK1.
PubMed=17327236; DOI=10.1074/jbc.m609279200;
Seong H.A., Jung H., Kim K.T., Ha H.;
"3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth
factor-beta-induced signaling in a kinase-dependent manner through physical
interaction with Smad proteins.";
J. Biol. Chem. 282:12272-12289(2007).
[39]
INTERACTION WITH SKOR1.
PubMed=17292623; DOI=10.1016/j.mcn.2007.01.002;
Arndt S., Poser I., Moser M., Bosserhoff A.-K.;
"Fussel-15, a novel Ski/Sno homolog protein, antagonizes BMP signaling.";
Mol. Cell. Neurosci. 34:603-611(2007).
[40]
ACETYLATION AT LYS-378, FUNCTION, AND MUTAGENESIS OF LYS-333; LYS-341;
LYS-378; LYS-409 AND 422-SER--SER-425.
PubMed=16862174; DOI=10.1038/sj.onc.1209826;
Inoue Y., Itoh Y., Abe K., Okamoto T., Daitoku H., Fukamizu A., Onozaki K.,
Hayashi H.;
"Smad3 is acetylated by p300/CBP to regulate its transactivation
activity.";
Oncogene 26:500-508(2007).
[41]
INTERACTION WITH WWTR1.
PubMed=18568018; DOI=10.1038/ncb1748;
Varelas X., Sakuma R., Samavarchi-Tehrani P., Peerani R., Rao B.M.,
Dembowy J., Yaffe M.B., Zandstra P.W., Wrana J.L.;
"TAZ controls Smad nucleocytoplasmic shuttling and regulates human
embryonic stem-cell self-renewal.";
Nat. Cell Biol. 10:837-848(2008).
[42]
INTERACTION WITH SARS VIRUS NUCLEOPROTEIN (MICROBIAL INFECTION).
PubMed=18055455; DOI=10.1074/jbc.m708033200;
Zhao X., Nicholls J.M., Chen Y.G.;
"Severe acute respiratory syndrome-associated coronavirus nucleocapsid
protein interacts with Smad3 and modulates transforming growth factor-beta
signaling.";
J. Biol. Chem. 283:3272-3280(2008).
[43]
INTERACTION WITH CSNK1G2, UBIQUITINATION, PHOSPHORYLATION AT SER-418 BY
CSNK1G2/CK1, AND MUTAGENESIS OF SER-418.
PubMed=18794808; DOI=10.1038/onc.2008.337;
Guo X., Waddell D.S., Wang W., Wang Z., Liberati N.T., Yong S., Liu X.,
Wang X.-F.;
"Ligand-dependent ubiquitination of Smad3 is regulated by casein kinase 1
gamma 2, an inhibitor of TGF-beta signaling.";
Oncogene 27:7235-7247(2008).
[44]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-416, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18669648; DOI=10.1073/pnas.0805139105;
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
Elledge S.J., Gygi S.P.;
"A quantitative atlas of mitotic phosphorylation.";
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
[45]
ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY
[LARGE SCALE ANALYSIS].
PubMed=19413330; DOI=10.1021/ac9004309;
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.;
"Lys-N and trypsin cover complementary parts of the phosphoproteome in a
refined SCX-based approach.";
Anal. Chem. 81:4493-4501(2009).
[46]
INTERACTION WITH RANBP3, SUBCELLULAR LOCATION, AND FUNCTION.
PubMed=19289081; DOI=10.1016/j.devcel.2009.01.022;
Dai F., Lin X., Chang C., Feng X.H.;
"Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of
TGF-beta signaling.";
Dev. Cell 16:345-357(2009).
[47]
INTERACTION WITH PRDM16; SKI AND HDAC1.
PubMed=19049980; DOI=10.1074/jbc.m808989200;
Takahata M., Inoue Y., Tsuda H., Imoto I., Koinuma D., Hayashi M.,
Ichikura T., Yamori T., Nagasaki K., Yoshida M., Matsuoka M., Morishita K.,
Yuki K., Hanyu A., Miyazawa K., Inazawa J., Miyazono K., Imamura T.;
"SKI and MEL1 cooperate to inhibit transforming growth factor-beta signal
in gastric cancer cells.";
J. Biol. Chem. 284:3334-3344(2009).
[48]
PHOSPHORYLATION AT THR-179; SER-204 AND SER-208, SUBCELLULAR LOCATION,
FUNCTION, AND MUTAGENESIS OF THR-179; SER-204 AND SER-208.
PubMed=19218245; DOI=10.1074/jbc.m809281200;
Wang G., Matsuura I., He D., Liu F.;
"Transforming growth factor-{beta}-inducible phosphorylation of Smad3.";
J. Biol. Chem. 284:9663-9673(2009).
[49]
INTERACTION WITH PMEPA1.
PubMed=20129061; DOI=10.1016/j.molcel.2009.10.028;
Watanabe Y., Itoh S., Goto T., Ohnishi E., Inamitsu M., Itoh F., Satoh K.,
Wiercinska E., Yang W., Shi L., Tanaka A., Nakano N., Mommaas A.M.,
Shibuya H., Ten Dijke P., Kato M.;
"TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad
proteins from active participation in TGF-beta signaling.";
Mol. Cell 37:123-134(2010).
[50]
INTERACTION WITH IL1F7.
PubMed=20935647; DOI=10.1038/ni.1944;
Nold M.F., Nold-Petry C.A., Zepp J.A., Palmer B.E., Bufler P.,
Dinarello C.A.;
"IL-37 is a fundamental inhibitor of innate immunity.";
Nat. Immunol. 11:1014-1022(2010).
[51]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21269460; DOI=10.1186/1752-0509-5-17;
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T.,
Bennett K.L., Superti-Furga G., Colinge J.;
"Initial characterization of the human central proteome.";
BMC Syst. Biol. 5:17-17(2011).
[52]
UBIQUITINATION, DEUBIQUITINATION BY USP15, DNA-BINDING, INTERACTION WITH
USP15, UBIQUITINATION AT LYS-33 AND LYS-81, AND MUTAGENESIS OF LYS-33;
LYS-53 AND LYS-81.
PubMed=21947082; DOI=10.1038/ncb2346;
Inui M., Manfrin A., Mamidi A., Martello G., Morsut L., Soligo S., Enzo E.,
Moro S., Polo S., Dupont S., Cordenonsi M., Piccolo S.;
"USP15 is a deubiquitylating enzyme for receptor-activated SMADs.";
Nat. Cell Biol. 13:1368-1375(2011).
[53]
INTERACTION WITH PPP5C, AND SUBCELLULAR LOCATION.
PubMed=22781750; DOI=10.1016/j.cellsig.2012.07.003;
Bruce D.L., Macartney T., Yong W., Shou W., Sapkota G.P.;
"Protein phosphatase 5 modulates SMAD3 function in the transforming growth
factor-beta pathway.";
Cell. Signal. 24:1999-2006(2012).
[54]
ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY
[LARGE SCALE ANALYSIS].
PubMed=22814378; DOI=10.1073/pnas.1210303109;
Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E., Timmerman E.,
Prieto J., Arnesen T., Sherman F., Gevaert K., Aldabe R.;
"N-terminal acetylome analyses and functional insights of the N-terminal
acetyltransferase NatB.";
Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
[55]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-416, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[56]
INTERACTION WITH STUB1; HSPA1A; HSPA1B; HSP90AA1 AND HSP90AB1,
UBIQUITINATION, AND PROTEASOMAL DEGRADATION.
PubMed=24613385; DOI=10.1016/j.bbrc.2014.02.124;
Shang Y., Xu X., Duan X., Guo J., Wang Y., Ren F., He D., Chang Z.;
"Hsp70 and Hsp90 oppositely regulate TGF-beta signaling through
CHIP/Stub1.";
Biochem. Biophys. Res. Commun. 446:387-392(2014).
[57]
INTERACTION WITH ZNF451, AND IDENTIFICATION IN A COMPLEX WITH ZNF451; SMAD2
AND SMAD4.
PubMed=24324267; DOI=10.1074/jbc.m113.526905;
Feng Y., Wu H., Xu Y., Zhang Z., Liu T., Lin X., Feng X.H.;
"Zinc finger protein 451 is a novel Smad corepressor in transforming growth
factor-beta signaling.";
J. Biol. Chem. 289:2072-2083(2014).
[58]
INTERACTION WITH LDLRAD4.
PubMed=24627487; DOI=10.1074/jbc.m114.558981;
Nakano N., Maeyama K., Sakata N., Itoh F., Akatsu R., Nakata M., Katsu Y.,
Ikeno S., Togawa Y., Vo Nguyen T.T., Watanabe Y., Kato M., Itoh S.;
"C18 ORF1, a novel negative regulator of transforming growth factor-beta
signaling.";
J. Biol. Chem. 289:12680-12692(2014).
[59]
INTERACTION WITH ZFHX3.
PubMed=25105025; DOI=10.1155/2014/970346;
Sakata N., Kaneko S., Ikeno S., Miura Y., Nakabayashi H., Dong X.Y.,
Dong J.T., Tamaoki T., Nakano N., Itoh S.;
"TGF-beta signaling cooperates with AT motif-binding factor-1 for
repression of the alpha -fetoprotein promoter.";
J. Signal Transduct. 2014:970346-970346(2014).
[60]
ADP-RIBOSYLATION.
PubMed=25133494; DOI=10.1371/journal.pone.0103651;
Dahl M., Maturi V., Lonn P., Papoutsoglou P., Zieba A., Vanlandewijck M.,
van der Heide L.P., Watanabe Y., Soderberg O., Hottiger M.O., Heldin C.H.,
Moustakas A.;
"Fine-tuning of Smad protein function by poly(ADP-ribose) polymerases and
poly(ADP-ribose) glycohydrolase during transforming growth factor beta
Signaling.";
PLoS ONE 9:E103651-E103651(2014).
[61]
X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 1-144.
PubMed=9741623; DOI=10.1016/s0092-8674(00)81600-1;
Shi Y., Wang Y.-F., Jayaraman L., Yang H., Massague J., Pavletich N.P.;
"Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA
binding in TGF-beta signaling.";
Cell 94:585-594(1998).
[62]
X-RAY CRYSTALLOGRAPHY (2.74 ANGSTROMS) OF 220-425 IN COMPLEX WITH ZFYVE9.
PubMed=12154125; DOI=10.1101/gad.1002002;
Qin B.Y., Lam S.S., Correia J.J., Lin K.;
"Smad3 allostery links TGF-beta receptor kinase activation to
transcriptional control.";
Genes Dev. 16:1950-1963(2002).
[63]
X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 1-144 IN COMPLEX WITH DNA, AND
ZINC.
PubMed=12686552; DOI=10.1074/jbc.c300134200;
Chai J., Wu J.W., Yan N., Massague J., Pavletich N.P., Shi Y.;
"Features of a Smad3 MH1-DNA complex. Roles of water and zinc in DNA
binding.";
J. Biol. Chem. 278:20327-20331(2003).
[64]
X-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS) OF 228-424 IN COMPLEX WITH SMAD4, AND
SUBUNIT.
PubMed=15350224; DOI=10.1016/j.molcel.2004.07.016;
Chacko B.M., Qin B.Y., Tiwari A., Shi G., Lam S., Hayward L.J.,
De Caestecker M., Lin K.;
"Structural basis of heteromeric smad protein assembly in TGF-beta
signaling.";
Mol. Cell 15:813-823(2004).
[65]
VARIANT [LARGE SCALE ANALYSIS] LEU-393, AND INVOLVEMENT IN COLORECTAL
CANCER.
PubMed=16959974; DOI=10.1126/science.1133427;
Sjoeblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D.,
Mandelker D., Leary R.J., Ptak J., Silliman N., Szabo S., Buckhaults P.,
Farrell C., Meeh P., Markowitz S.D., Willis J., Dawson D., Willson J.K.V.,
Gazdar A.F., Hartigan J., Wu L., Liu C., Parmigiani G., Park B.H.,
Bachman K.E., Papadopoulos N., Vogelstein B., Kinzler K.W.,
Velculescu V.E.;
"The consensus coding sequences of human breast and colorectal cancers.";
Science 314:268-274(2006).
[66]
VARIANTS LDS3 VAL-112; LYS-239 AND LYS-279.
PubMed=21778426; DOI=10.1161/circresaha.111.248161;
Regalado E.S., Guo D.C., Villamizar C., Avidan N., Gilchrist D.,
McGillivray B., Clarke L., Bernier F., Santos-Cortez R.L., Leal S.M.,
Bertoli-Avella A.M., Shendure J., Rieder M.J., Nickerson D.A.,
Milewicz D.M.;
"Exome sequencing identifies SMAD3 mutations as a cause of familial
thoracic aortic aneurysm and dissection with intracranial and other
arterial aneurysms.";
Circ. Res. 109:680-686(2011).
[67]
VARIANTS LDS3 ILE-261 AND TRP-287.
PubMed=21217753; DOI=10.1038/ng.744;
van de Laar I.M., Oldenburg R.A., Pals G., Roos-Hesselink J.W.,
de Graaf B.M., Verhagen J.M., Hoedemaekers Y.M., Willemsen R.,
Severijnen L.A., Venselaar H., Vriend G., Pattynama P.M., Collee M.,
Majoor-Krakauer D., Poldermans D., Frohn-Mulder I.M., Micha D.,
Timmermans J., Hilhorst-Hofstee Y., Bierma-Zeinstra S.M., Willems P.J.,
Kros J.M., Oei E.H., Oostra B.A., Wessels M.W., Bertoli-Avella A.M.;
"Mutations in SMAD3 cause a syndromic form of aortic aneurysms and
dissections with early-onset osteoarthritis.";
Nat. Genet. 43:121-126(2011).
-!- FUNCTION: Receptor-regulated SMAD (R-SMAD) that is an intracellular
signal transducer and transcriptional modulator activated by TGF-beta
(transforming growth factor) and activin type 1 receptor kinases. Binds
the TRE element in the promoter region of many genes that are regulated
by TGF-beta and, on formation of the SMAD3/SMAD4 complex, activates
transcription. Also can form a SMAD3/SMAD4/JUN/FOS complex at the AP-
1/SMAD site to regulate TGF-beta-mediated transcription. Has an
inhibitory effect on wound healing probably by modulating both growth
and migration of primary keratinocytes and by altering the TGF-mediated
chemotaxis of monocytes. This effect on wound healing appears to be
hormone-sensitive. Regulator of chondrogenesis and osteogenesis and
inhibits early healing of bone fractures. Positively regulates PDPK1
kinase activity by stimulating its dissociation from the 14-3-3 protein
YWHAQ which acts as a negative regulator. {ECO:0000269|PubMed:10995748,
ECO:0000269|PubMed:15241418, ECO:0000269|PubMed:15588252,
ECO:0000269|PubMed:16156666, ECO:0000269|PubMed:16751101,
ECO:0000269|PubMed:16862174, ECO:0000269|PubMed:17327236,
ECO:0000269|PubMed:19218245, ECO:0000269|PubMed:19289081,
ECO:0000269|PubMed:9732876, ECO:0000269|PubMed:9892009}.
-!- SUBUNIT: Monomer; in the absence of TGF-beta. Homooligomer; in the
presence of TGF-beta. Heterotrimer; forms a heterotrimer in the
presence of TGF-beta consisting of two molecules of C-terminally
phosphorylated SMAD2 or SMAD3 and one of SMAD4 to form the
transcriptionally active SMAD2/SMAD3-SMAD4 complex. Interacts with
TGFBR1. Part of a complex consisting of AIP1, ACVR2A, ACVR1B and SMAD3.
Interacts with AIP1, TGFB1I1, TTRAP, FOXL2, PML, PRDM16, HGS, WWP1 and
SNW1. Interacts (via MH2 domain) with CITED2 (via C-terminus).
Interacts with NEDD4L; the interaction requires TGF-beta stimulation.
Interacts (via MH2 domain) with ZFYVE9. Interacts with HDAC1, TGIF and
TGIF2, RUNX3, CREBBP, SKOR1, SKOR2, SNON, ATF2, SMURF2 and TGFB1I1.
Interacts with DACH1; the interaction inhibits the TGF-beta signaling.
Forms a complex with SMAD2 and TRIM33 upon addition of TGF-beta. Found
in a complex with SMAD3, RAN and XPO4. Interacts in the complex
directly with XPO4. Interacts (via MH2 domain) with LEMD3; the
interaction represses SMAD3 transcriptional activity through preventing
the formation of the heteromeric complex with SMAD4 and translocation
to the nucleus. Interacts with RBPMS. Interacts (via MH2 domain) with
MECOM. Interacts with WWTR1 (via its coiled-coil domain). Interacts
(via the linker region) with EP300 (C-terminal); the interaction
promotes SMAD3 acetylation and is enhanced by TGF-beta phosphorylation
in the C-terminal of SMAD3. This interaction can be blocked by
competitive binding of adenovirus oncoprotein E1A to the same C-
terminal site on EP300, which then results in partially inhibited
SMAD3/SMAD4 transcriptional activity. Interacts with SKI; the
interaction represses SMAD3 transcriptional activity. Component of the
multimeric complex SMAD3/SMAD4/JUN/FOS which forms at the AP1 promoter
site; required for synergistic transcriptional activity in response to
TGF-beta. Interacts (via an N-terminal domain) with JUN (via its basic
DNA binding and leucine zipper domains); this interaction is essential
for DNA binding and cooperative transcriptional activity in response to
TGF-beta. Interacts with PPM1A; the interaction dephosphorylates SMAD3
in the C-terminal SXS motif leading to disruption of the SMAD2/3-SMAD4
complex, nuclear export and termination of TGF-beta signaling.
Interacts (dephosphorylated form via the MH1 and MH2 domains) with
RANBP3 (via its C-terminal R domain); the interaction results in the
export of dephosphorylated SMAD3 out of the nucleus and termination of
the TGF-beta signaling. Interacts with MEN1. Interacts with IL1F7.
Interaction with CSNK1G2. Interacts with PDPK1 (via PH domain).
Interacts with DAB2; the interactions are enhanced upon TGF-beta
stimulation. Interacts with USP15. Interacts with PPP5C; the
interaction decreases SMAD3 phosphorylation and protein levels.
Interacts with LDLRAD4 (via the SMAD interaction motif). Interacts with
PMEPA1. Interacts with ZC3H3 (By similarity). Interacts with ZNF451
(PubMed:24324267). Identified in a complex that contains at least
ZNF451, SMAD2, SMAD3 and SMAD4 (PubMed:24324267). Interacts with ZFHX3.
Interacts weakly with ZNF8 (PubMed:12370310). Interacts (when
phosphorylated) with RNF111; RNF111 acts as an enhancer of the
transcriptional responses by mediating ubiquitination and degradation
of SMAD3 inhibitors (By similarity). Interacts with STUB1, HSPA1A,
HSPA1B, HSP90AA1 and HSP90AB1 (PubMed:24613385). Interacts (via MH2
domain) with ZMIZ1 (via SP-RING-type domain); in the TGF-beta signaling
pathway increases the activity of the SMAD3/SMAD4 transcriptional
complex (PubMed:16777850). {ECO:0000250|UniProtKB:Q8BUN5,
ECO:0000269|PubMed:10995748, ECO:0000269|PubMed:11224571,
ECO:0000269|PubMed:11274402, ECO:0000269|PubMed:11278756,
ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:11427533,
ECO:0000269|PubMed:12154125, ECO:0000269|PubMed:12370310,
ECO:0000269|PubMed:12686552, ECO:0000269|PubMed:14525983,
ECO:0000269|PubMed:15350224, ECO:0000269|PubMed:15561701,
ECO:0000269|PubMed:15588252, ECO:0000269|PubMed:15601644,
ECO:0000269|PubMed:15647271, ECO:0000269|PubMed:15799969,
ECO:0000269|PubMed:15897867, ECO:0000269|PubMed:16200078,
ECO:0000269|PubMed:16449645, ECO:0000269|PubMed:16751101,
ECO:0000269|PubMed:16751102, ECO:0000269|PubMed:16777850,
ECO:0000269|PubMed:17099224, ECO:0000269|PubMed:17292623,
ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:18568018,
ECO:0000269|PubMed:18794808, ECO:0000269|PubMed:19049980,
ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:20129061,
ECO:0000269|PubMed:20935647, ECO:0000269|PubMed:21947082,
ECO:0000269|PubMed:22781750, ECO:0000269|PubMed:24324267,
ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:24627487,
ECO:0000269|PubMed:25105025, ECO:0000269|PubMed:9311995,
ECO:0000269|PubMed:9665135, ECO:0000269|PubMed:9670020,
ECO:0000269|PubMed:9732876, ECO:0000269|PubMed:9843571,
ECO:0000269|PubMed:9865696, ECO:0000269|PubMed:9892009}.
-!- SUBUNIT: (Microbial infection) Interacts with SARS virus nucleoprotein.
{ECO:0000269|PubMed:18055455}.
-!- INTERACTION:
P84022; Q9H2G9: BLZF1; NbExp=9; IntAct=EBI-347161, EBI-2548012;
P84022; E9PSE9: CCDC198; NbExp=3; IntAct=EBI-347161, EBI-11748295;
P84022; Q9H2X0: CHRD; NbExp=2; IntAct=EBI-347161, EBI-947551;
P84022; Q8N684: CPSF7; NbExp=3; IntAct=EBI-347161, EBI-746909;
P84022; Q8N684-3: CPSF7; NbExp=3; IntAct=EBI-347161, EBI-11523759;
P84022; O43186: CRX; NbExp=3; IntAct=EBI-347161, EBI-748171;
P84022; P98082: DAB2; NbExp=3; IntAct=EBI-347161, EBI-1171238;
P84022; P17844: DDX5; NbExp=2; IntAct=EBI-347161, EBI-351962;
P84022; Q9BZ29: DOCK9; NbExp=3; IntAct=EBI-347161, EBI-2695893;
P84022; Q99814: EPAS1; NbExp=2; IntAct=EBI-347161, EBI-447470;
P84022; Q86YD7: FAM90A1; NbExp=3; IntAct=EBI-347161, EBI-6658203;
P84022; O75593: FOXH1; NbExp=4; IntAct=EBI-347161, EBI-1759806;
P84022; O43524: FOXO3; NbExp=5; IntAct=EBI-347161, EBI-1644164;
P84022; P10070: GLI2; NbExp=4; IntAct=EBI-347161, EBI-10821567;
P84022; Q16665: HIF1A; NbExp=6; IntAct=EBI-347161, EBI-447269;
P84022; O15397: IPO8; NbExp=2; IntAct=EBI-347161, EBI-358808;
P84022; P50222: MEOX2; NbExp=6; IntAct=EBI-347161, EBI-748397;
P84022; Q9NYA4: MTMR4; NbExp=2; IntAct=EBI-347161, EBI-1052346;
P84022; Q99836: MYD88; NbExp=3; IntAct=EBI-347161, EBI-447677;
P84022; P46934-3: NEDD4; NbExp=3; IntAct=EBI-347161, EBI-11980721;
P84022; Q16822: PCK2; NbExp=2; IntAct=EBI-347161, EBI-2825219;
P84022; Q8IXK0: PHC2; NbExp=3; IntAct=EBI-347161, EBI-713786;
P84022; Q8IXK0-5: PHC2; NbExp=3; IntAct=EBI-347161, EBI-11527347;
P84022; Q9BZL4: PPP1R12C; NbExp=2; IntAct=EBI-347161, EBI-721802;
P84022; P20618: PSMB1; NbExp=3; IntAct=EBI-347161, EBI-372273;
P84022; Q96EP0: RNF31; NbExp=2; IntAct=EBI-347161, EBI-948111;
P84022; P0C264: SBK3; NbExp=3; IntAct=EBI-347161, EBI-17181801;
P84022; Q9BYW2: SETD2; NbExp=2; IntAct=EBI-347161, EBI-945869;
P84022; P12755: SKI; NbExp=8; IntAct=EBI-347161, EBI-347281;
P84022; Q15796: SMAD2; NbExp=2; IntAct=EBI-347161, EBI-1040141;
P84022; P84022: SMAD3; NbExp=3; IntAct=EBI-347161, EBI-347161;
P84022; Q13485: SMAD4; NbExp=33; IntAct=EBI-347161, EBI-347263;
P84022; Q9HAU4: SMURF2; NbExp=8; IntAct=EBI-347161, EBI-396727;
P84022; Q13573: SNW1; NbExp=5; IntAct=EBI-347161, EBI-632715;
P84022; Q13501: SQSTM1; NbExp=3; IntAct=EBI-347161, EBI-307104;
P84022; Q8WW24: TEKT4; NbExp=3; IntAct=EBI-347161, EBI-750487;
P84022; Q08117: TLE5; NbExp=4; IntAct=EBI-347161, EBI-717810;
P84022; Q08117-2: TLE5; NbExp=3; IntAct=EBI-347161, EBI-11741437;
P84022; Q9Y3Q8: TSC22D4; NbExp=2; IntAct=EBI-347161, EBI-739485;
P84022; Q93009: USP7; NbExp=2; IntAct=EBI-347161, EBI-302474;
P84022; Q9H0M0: WWP1; NbExp=9; IntAct=EBI-347161, EBI-742157;
P84022; O00308: WWP2; NbExp=7; IntAct=EBI-347161, EBI-743923;
P84022; Q5D1E8: ZC3H12A; NbExp=2; IntAct=EBI-347161, EBI-747793;
P84022; O95405: ZFYVE9; NbExp=5; IntAct=EBI-347161, EBI-296817;
P84022; Q6NX45: ZNF774; NbExp=3; IntAct=EBI-347161, EBI-10251462;
P84022; Q64729: Tgfbr1; Xeno; NbExp=6; IntAct=EBI-347161, EBI-2899393;
P84022; PRO_0000278742 [O92972]; Xeno; NbExp=6; IntAct=EBI-347161, EBI-9213553;
-!- SUBCELLULAR LOCATION: Cytoplasm {ECO:0000269|PubMed:15799969,
ECO:0000269|PubMed:16156666, ECO:0000269|PubMed:16751101,
ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:19218245,
ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:22781750}. Nucleus
{ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15799969,
ECO:0000269|PubMed:16156666, ECO:0000269|PubMed:16751101,
ECO:0000269|PubMed:19218245, ECO:0000269|PubMed:19289081,
ECO:0000269|PubMed:22781750}. Note=Cytoplasmic and nuclear in the
absence of TGF-beta. On TGF-beta stimulation, migrates to the nucleus
when complexed with SMAD4 (PubMed:15799969). Through the action of the
phosphatase PPM1A, released from the SMAD2/SMAD4 complex, and exported
out of the nucleus by interaction with RANBP1 (PubMed:16751101,
PubMed:19289081). Co-localizes with LEMD3 at the nucleus inner membrane
(PubMed:15601644). MAPK-mediated phosphorylation appears to have no
effect on nuclear import (PubMed:19218245). PDPK1 prevents its nuclear
translocation in response to TGF-beta (PubMed:17327236).
{ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15799969,
ECO:0000269|PubMed:16751101, ECO:0000269|PubMed:17327236,
ECO:0000269|PubMed:19218245, ECO:0000269|PubMed:19289081}.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing; Named isoforms=4;
Name=1;
IsoId=P84022-1; Sequence=Displayed;
Name=2;
IsoId=P84022-2; Sequence=VSP_042900;
Name=3;
IsoId=P84022-3; Sequence=VSP_043793;
Name=4;
IsoId=P84022-4; Sequence=VSP_045348;
-!- DOMAIN: The MH1 domain is required for DNA binding. Also binds zinc
ions which are necessary for the DNA binding.
-!- DOMAIN: The MH2 domain is required for both homomeric and heteromeric
interactions and for transcriptional regulation. Sufficient for nuclear
import.
-!- DOMAIN: The linker region is required for the TGFbeta-mediated
transcriptional activity and acts synergistically with the MH2 domain.
-!- PTM: Phosphorylated on serine and threonine residues. Enhanced
phosphorylation in the linker region on Thr-179, Ser-204 and Ser-208 on
EGF and TGF-beta treatment. Ser-208 is the main site of MAPK-mediated
phosphorylation. CDK-mediated phosphorylation occurs in a cell-cycle
dependent manner and inhibits both the transcriptional activity and
antiproliferative functions of SMAD3. This phosphorylation is inhibited
by flavopiridol. Maximum phosphorylation at the G(1)/S junction. Also
phosphorylated on serine residues in the C-terminal SXS motif by TGFBR1
and ACVR1. TGFBR1-mediated phosphorylation at these C-terminal sites is
required for interaction with SMAD4, nuclear location and
transactivational activity, and appears to be a prerequisite for the
TGF-beta mediated phosphorylation in the linker region.
Dephosphorylated in the C-terminal SXS motif by PPM1A. This
dephosphorylation disrupts the interaction with SMAD4, promotes nuclear
export and terminates TGF-beta-mediated signaling. Phosphorylation at
Ser-418 by CSNK1G2/CK1 promotes ligand-dependent ubiquitination and
subsequent proteasome degradation, thus inhibiting SMAD3-mediated TGF-
beta responses. Phosphorylated by PDPK1. {ECO:0000269|PubMed:11224571,
ECO:0000269|PubMed:15241418, ECO:0000269|PubMed:15588252,
ECO:0000269|PubMed:16156666, ECO:0000269|PubMed:17327236,
ECO:0000269|PubMed:18794808, ECO:0000269|PubMed:19218245,
ECO:0000269|PubMed:21947082, ECO:0000269|PubMed:8774881,
ECO:0000269|PubMed:9843571}.
-!- PTM: Acetylation in the nucleus by EP300 in the MH2 domain regulates
positively its transcriptional activity and is enhanced by TGF-beta.
{ECO:0000269|PubMed:16862174}.
-!- PTM: Poly-ADP-ribosylated by PARP1 and PARP2. ADP-ribosylation
negatively regulates SMAD3 transcriptional responses during the course
of TGF-beta signaling. {ECO:0000269|PubMed:25133494}.
-!- PTM: Ubiquitinated. Monoubiquitinated, leading to prevent DNA-binding
(PubMed:21947082). Deubiquitination by USP15 alleviates inhibition and
promotes activation of TGF-beta target genes (PubMed:21947082).
Ubiquitinated by RNF111, leading to its degradation: only SMAD3
proteins that are 'in use' are targeted by RNF111, RNF111 playing a key
role in activating SMAD3 and regulating its turnover (By similarity).
Undergoes STUB1-mediated ubiquitination and degradation
(PubMed:24613385). {ECO:0000250|UniProtKB:Q8BUN5,
ECO:0000269|PubMed:21947082, ECO:0000269|PubMed:24613385}.
-!- DISEASE: Colorectal cancer (CRC) [MIM:114500]: A complex disease
characterized by malignant lesions arising from the inner wall of the
large intestine (the colon) and the rectum. Genetic alterations are
often associated with progression from premalignant lesion (adenoma) to
invasive adenocarcinoma. Risk factors for cancer of the colon and
rectum include colon polyps, long-standing ulcerative colitis, and
genetic family history. {ECO:0000269|PubMed:16959974}. Note=The disease
may be caused by mutations affecting the gene represented in this
entry.
-!- DISEASE: Loeys-Dietz syndrome 3 (LDS3) [MIM:613795]: An aortic aneurysm
syndrome with widespread systemic involvement. The disorder is
characterized by the triad of arterial tortuosity and aneurysms,
hypertelorism, and bifid uvula or cleft palate. Patients with LDS3 also
manifest early-onset osteoarthritis. They lack craniosynostosis and
mental retardation. {ECO:0000269|PubMed:21217753,
ECO:0000269|PubMed:21778426}. Note=The disease is caused by mutations
affecting the gene represented in this entry. SMAD3 mutations have been
reported to be also associated with thoracic aortic aneurysms and
dissection (TAAD) (PubMed:21778426). This phenotype is distinguised
from LDS3 by having aneurysms restricted to thoracic aorta. As
individuals carrying these mutations also exhibit aneurysms of other
arteries, including abdominal aorta, iliac, and/or intracranial
arteries (PubMed:21778426), they have been classified as LDS3 by the
OMIM resource. {ECO:0000269|PubMed:21778426}.
-!- SIMILARITY: Belongs to the dwarfin/SMAD family. {ECO:0000305}.
---------------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
Distributed under the Creative Commons Attribution (CC BY 4.0) License
---------------------------------------------------------------------------
EMBL; U68019; AAB80960.1; -; mRNA.
EMBL; U76622; AAB18967.1; -; mRNA.
EMBL; AB004930; BAA22032.1; -; Genomic_DNA.
EMBL; AF025300; AAL68976.1; -; Genomic_DNA.
EMBL; AF025293; AAL68976.1; JOINED; Genomic_DNA.
EMBL; AF025294; AAL68976.1; JOINED; Genomic_DNA.
EMBL; AF025295; AAL68976.1; JOINED; Genomic_DNA.
EMBL; AF025296; AAL68976.1; JOINED; Genomic_DNA.
EMBL; AF025297; AAL68976.1; JOINED; Genomic_DNA.
EMBL; AF025298; AAL68976.1; JOINED; Genomic_DNA.
EMBL; AF025299; AAL68976.1; JOINED; Genomic_DNA.
EMBL; AK290881; BAF83570.1; -; mRNA.
EMBL; AK298139; BAH12731.1; -; mRNA.
EMBL; AK300614; BAH13315.1; -; mRNA.
EMBL; AK316017; BAH14388.1; -; mRNA.
EMBL; AC012568; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; AC087482; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; CH471082; EAW77788.1; -; Genomic_DNA.
EMBL; BC050743; AAH50743.1; -; mRNA.
CCDS; CCDS10222.1; -. [P84022-1]
CCDS; CCDS45288.1; -. [P84022-2]
CCDS; CCDS53950.1; -. [P84022-3]
CCDS; CCDS53951.1; -. [P84022-4]
PIR; S71798; S71798.
RefSeq; NP_001138574.1; NM_001145102.1. [P84022-3]
RefSeq; NP_001138575.1; NM_001145103.1. [P84022-2]
RefSeq; NP_001138576.1; NM_001145104.1. [P84022-4]
RefSeq; NP_005893.1; NM_005902.3. [P84022-1]
PDB; 1MHD; X-ray; 2.80 A; A/B=1-132.
PDB; 1MJS; X-ray; 1.91 A; A=229-425.
PDB; 1MK2; X-ray; 2.74 A; A=220-425.
PDB; 1OZJ; X-ray; 2.40 A; A/B=1-144.
PDB; 1U7F; X-ray; 2.60 A; A/C=228-425.
PDB; 2LAJ; NMR; -; B=202-211.
PDB; 2LB2; NMR; -; B=178-189.
PDB; 5OD6; X-ray; 2.00 A; A/B=11-135.
PDB; 5ODG; X-ray; 2.12 A; A/B=11-135.
PDB; 5XOC; X-ray; 2.40 A; A=220-416.
PDBsum; 1MHD; -.
PDBsum; 1MJS; -.
PDBsum; 1MK2; -.
PDBsum; 1OZJ; -.
PDBsum; 1U7F; -.
PDBsum; 2LAJ; -.
PDBsum; 2LB2; -.
PDBsum; 5OD6; -.
PDBsum; 5ODG; -.
PDBsum; 5XOC; -.
SMR; P84022; -.
BioGrid; 110263; 361.
ComplexPortal; CPX-1; SMAD2-SMAD3-SMAD4 complex.
ComplexPortal; CPX-12; SMAD3 homotrimer.
ComplexPortal; CPX-3252; SMAD3-SMAD4 complex.
CORUM; P84022; -.
DIP; DIP-29720N; -.
IntAct; P84022; 195.
MINT; P84022; -.
STRING; 9606.ENSP00000332973; -.
BindingDB; P84022; -.
ChEMBL; CHEMBL1293258; -.
MoonDB; P84022; Predicted.
iPTMnet; P84022; -.
PhosphoSitePlus; P84022; -.
SwissPalm; P84022; -.
BioMuta; SMAD3; -.
DMDM; 51338669; -.
EPD; P84022; -.
jPOST; P84022; -.
MassIVE; P84022; -.
MaxQB; P84022; -.
PaxDb; P84022; -.
PeptideAtlas; P84022; -.
PRIDE; P84022; -.
ProteomicsDB; 26192; -.
ProteomicsDB; 57743; -. [P84022-1]
ProteomicsDB; 57744; -. [P84022-2]
ProteomicsDB; 57745; -. [P84022-3]
Antibodypedia; 26224; 2199 antibodies.
DNASU; 4088; -.
Ensembl; ENST00000327367; ENSP00000332973; ENSG00000166949. [P84022-1]
Ensembl; ENST00000439724; ENSP00000401133; ENSG00000166949. [P84022-2]
Ensembl; ENST00000537194; ENSP00000445348; ENSG00000166949. [P84022-4]
Ensembl; ENST00000540846; ENSP00000437757; ENSG00000166949. [P84022-3]
GeneID; 4088; -.
KEGG; hsa:4088; -.
UCSC; uc002aqj.4; human. [P84022-1]
CTD; 4088; -.
DisGeNET; 4088; -.
GeneCards; SMAD3; -.
GeneReviews; SMAD3; -.
HGNC; HGNC:6769; SMAD3.
HPA; ENSG00000166949; Low tissue specificity.
MalaCards; SMAD3; -.
MIM; 114500; phenotype.
MIM; 603109; gene.
MIM; 613795; phenotype.
neXtProt; NX_P84022; -.
OpenTargets; ENSG00000166949; -.
Orphanet; 284984; Aneurysm-osteoarthritis syndrome.
Orphanet; 91387; Familial thoracic aortic aneurysm and aortic dissection.
PharmGKB; PA30526; -.
eggNOG; KOG3701; Eukaryota.
eggNOG; ENOG410XQKU; LUCA.
GeneTree; ENSGT00940000153499; -.
HOGENOM; CLU_026736_0_0_1; -.
InParanoid; P84022; -.
KO; K23605; -.
OMA; RHTEIPS; -.
PhylomeDB; P84022; -.
TreeFam; TF314923; -.
Reactome; R-HSA-1181150; Signaling by NODAL.
Reactome; R-HSA-1502540; Signaling by Activin.
Reactome; R-HSA-2173788; Downregulation of TGF-beta receptor signaling.
Reactome; R-HSA-2173789; TGF-beta receptor signaling activates SMADs.
Reactome; R-HSA-2173795; Downregulation of SMAD2/3:SMAD4 transcriptional activity.
Reactome; R-HSA-2173796; SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription.
Reactome; R-HSA-3304356; SMAD2/3 Phosphorylation Motif Mutants in Cancer.
Reactome; R-HSA-3311021; SMAD4 MH2 Domain Mutants in Cancer.
Reactome; R-HSA-3315487; SMAD2/3 MH2 Domain Mutants in Cancer.
Reactome; R-HSA-3656532; TGFBR1 KD Mutants in Cancer.
Reactome; R-HSA-5689880; Ub-specific processing proteases.
Reactome; R-HSA-8941855; RUNX3 regulates CDKN1A transcription.
Reactome; R-HSA-8952158; RUNX3 regulates BCL2L11 (BIM) transcription.
Reactome; R-HSA-9008059; Interleukin-37 signaling.
Reactome; R-HSA-9013695; NOTCH4 Intracellular Domain Regulates Transcription.
Reactome; R-HSA-9615017; FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes.
Reactome; R-HSA-9617828; FOXO-mediated transcription of cell cycle genes.
SignaLink; P84022; -.
SIGNOR; P84022; -.
ChiTaRS; SMAD3; human.
EvolutionaryTrace; P84022; -.
GeneWiki; Mothers_against_decapentaplegic_homolog_3; -.
GenomeRNAi; 4088; -.
Pharos; P84022; Tbio.
PRO; PR:P84022; -.
Proteomes; UP000005640; Chromosome 15.
RNAct; P84022; protein.
Bgee; ENSG00000166949; Expressed in amniotic fluid and 228 other tissues.
ExpressionAtlas; P84022; baseline and differential.
Genevisible; P84022; HS.
GO; GO:0005623; C:cell; IEA:GOC.
GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
GO; GO:0005829; C:cytosol; IDA:HPA.
GO; GO:0071144; C:heteromeric SMAD protein complex; IDA:BHF-UCL.
GO; GO:0000790; C:nuclear chromatin; IDA:BHF-UCL.
GO; GO:0005637; C:nuclear inner membrane; IDA:UniProtKB.
GO; GO:0005654; C:nucleoplasm; IDA:HPA.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0005886; C:plasma membrane; IEA:Ensembl.
GO; GO:0043235; C:receptor complex; IMP:BHF-UCL.
GO; GO:0071141; C:SMAD protein complex; IDA:UniProtKB.
GO; GO:0005667; C:transcription factor complex; IDA:UniProtKB.
GO; GO:0008013; F:beta-catenin binding; IEA:Ensembl.
GO; GO:0043425; F:bHLH transcription factor binding; IPI:BHF-UCL.
GO; GO:0031490; F:chromatin DNA binding; IEA:Ensembl.
GO; GO:0035326; F:cis-regulatory region binding; IC:BHF-UCL.
GO; GO:0000987; F:cis-regulatory region sequence-specific DNA binding; IDA:UniProtKB.
GO; GO:0070410; F:co-SMAD binding; IPI:BHF-UCL.
GO; GO:0005518; F:collagen binding; IEA:Ensembl.
GO; GO:0017151; F:DEAD/H-box RNA helicase binding; IPI:BHF-UCL.
GO; GO:0001228; F:DNA-binding transcription activator activity, RNA polymerase II-specific; IMP:BHF-UCL.
GO; GO:0003700; F:DNA-binding transcription factor activity; IDA:UniProtKB.
GO; GO:0000981; F:DNA-binding transcription factor activity, RNA polymerase II-specific; IDA:NTNU_SB.
GO; GO:0035259; F:glucocorticoid receptor binding; IPI:CAFA.
GO; GO:0042802; F:identical protein binding; IPI:IntAct.
GO; GO:0031962; F:mineralocorticoid receptor binding; IPI:CAFA.
GO; GO:0019902; F:phosphatase binding; IPI:UniProtKB.
GO; GO:0070878; F:primary miRNA binding; IPI:BHF-UCL.
GO; GO:0042803; F:protein homodimerization activity; IPI:BHF-UCL.
GO; GO:0019901; F:protein kinase binding; IPI:UniProtKB.
GO; GO:0070412; F:R-SMAD binding; IPI:UniProtKB.
GO; GO:0001102; F:RNA polymerase II activating transcription factor binding; IPI:BHF-UCL.
GO; GO:0000978; F:RNA polymerase II cis-regulatory region sequence-specific DNA binding; IDA:NTNU_SB.
GO; GO:0043565; F:sequence-specific DNA binding; IDA:BHF-UCL.
GO; GO:0001223; F:transcription coactivator binding; IPI:UniProtKB.
GO; GO:0003712; F:transcription coregulator activity; IDA:UniProtKB.
GO; GO:0008134; F:transcription factor binding; IPI:BHF-UCL.
GO; GO:0044212; F:transcription regulatory region DNA binding; IDA:BHF-UCL.
GO; GO:0005160; F:transforming growth factor beta receptor binding; IPI:BHF-UCL.
GO; GO:0030618; F:transforming growth factor beta receptor, pathway-specific cytoplasmic mediator activity; IDA:BHF-UCL.
GO; GO:0043130; F:ubiquitin binding; IDA:UniProtKB.
GO; GO:0031625; F:ubiquitin protein ligase binding; IPI:BHF-UCL.
GO; GO:0008270; F:zinc ion binding; IDA:UniProtKB.
GO; GO:0006919; P:activation of cysteine-type endopeptidase activity involved in apoptotic process; IMP:BHF-UCL.
GO; GO:0097296; P:activation of cysteine-type endopeptidase activity involved in apoptotic signaling pathway; IEA:Ensembl.
GO; GO:0032924; P:activin receptor signaling pathway; IMP:BHF-UCL.
GO; GO:0030325; P:adrenal gland development; IEA:Ensembl.
GO; GO:0007050; P:cell cycle arrest; IMP:BHF-UCL.
GO; GO:0045216; P:cell-cell junction organization; IMP:BHF-UCL.
GO; GO:0071345; P:cellular response to cytokine stimulus; TAS:Reactome.
GO; GO:0071560; P:cellular response to transforming growth factor beta stimulus; IDA:CAFA.
GO; GO:0048589; P:developmental growth; IEA:Ensembl.
GO; GO:0048701; P:embryonic cranial skeleton morphogenesis; IEA:Ensembl.
GO; GO:0048617; P:embryonic foregut morphogenesis; IEA:Ensembl.
GO; GO:0009880; P:embryonic pattern specification; IEA:Ensembl.
GO; GO:0007492; P:endoderm development; IEA:Ensembl.
GO; GO:0097191; P:extrinsic apoptotic signaling pathway; IMP:BHF-UCL.
GO; GO:0001947; P:heart looping; IEA:Ensembl.
GO; GO:0006955; P:immune response; IMP:BHF-UCL.
GO; GO:0002520; P:immune system development; IEA:Ensembl.
GO; GO:0001701; P:in utero embryonic development; IEA:Ensembl.
GO; GO:0070306; P:lens fiber cell differentiation; IEA:Ensembl.
GO; GO:0001889; P:liver development; IEA:Ensembl.
GO; GO:0001707; P:mesoderm formation; IEA:Ensembl.
GO; GO:0043066; P:negative regulation of apoptotic process; IEA:Ensembl.
GO; GO:1903243; P:negative regulation of cardiac muscle hypertrophy in response to stress; IEA:Ensembl.
GO; GO:0030308; P:negative regulation of cell growth; IDA:BHF-UCL.
GO; GO:0051481; P:negative regulation of cytosolic calcium ion concentration; IDA:BHF-UCL.
GO; GO:0045599; P:negative regulation of fat cell differentiation; IDA:BHF-UCL.
GO; GO:0050728; P:negative regulation of inflammatory response; IEA:Ensembl.
GO; GO:0061767; P:negative regulation of lung blood pressure; IEA:Ensembl.
GO; GO:0045930; P:negative regulation of mitotic cell cycle; IMP:BHF-UCL.
GO; GO:0045668; P:negative regulation of osteoblast differentiation; IEA:Ensembl.
GO; GO:0033689; P:negative regulation of osteoblast proliferation; IEA:Ensembl.
GO; GO:0042177; P:negative regulation of protein catabolic process; IEA:Ensembl.
GO; GO:0000122; P:negative regulation of transcription by RNA polymerase II; IDA:BHF-UCL.
GO; GO:0030512; P:negative regulation of transforming growth factor beta receptor signaling pathway; TAS:Reactome.
GO; GO:0061045; P:negative regulation of wound healing; IEA:Ensembl.
GO; GO:0038092; P:nodal signaling pathway; IMP:BHF-UCL.
GO; GO:0002076; P:osteoblast development; IEA:Ensembl.
GO; GO:0048340; P:paraxial mesoderm morphogenesis; IEA:Ensembl.
GO; GO:0060039; P:pericardium development; IEA:Ensembl.
GO; GO:0010694; P:positive regulation of alkaline phosphatase activity; IEA:Ensembl.
GO; GO:0030501; P:positive regulation of bone mineralization; IEA:Ensembl.
GO; GO:0090263; P:positive regulation of canonical Wnt signaling pathway; IEA:Ensembl.
GO; GO:0030335; P:positive regulation of cell migration; IEA:Ensembl.
GO; GO:0032332; P:positive regulation of chondrocyte differentiation; IEA:Ensembl.
GO; GO:0051091; P:positive regulation of DNA-binding transcription factor activity; NAS:BHF-UCL.
GO; GO:0010718; P:positive regulation of epithelial to mesenchymal transition; IDA:BHF-UCL.
GO; GO:1901203; P:positive regulation of extracellular matrix assembly; IDA:BHF-UCL.
GO; GO:0051894; P:positive regulation of focal adhesion assembly; IEA:Ensembl.
GO; GO:0010628; P:positive regulation of gene expression; IDA:BHF-UCL.
GO; GO:0032731; P:positive regulation of interleukin-1 beta production; IEA:Ensembl.
GO; GO:0045429; P:positive regulation of nitric oxide biosynthetic process; IDA:BHF-UCL.
GO; GO:0050927; P:positive regulation of positive chemotaxis; IEA:Ensembl.
GO; GO:1902895; P:positive regulation of pri-miRNA transcription by RNA polymerase II; IMP:BHF-UCL.
GO; GO:0042307; P:positive regulation of protein import into nucleus; NAS:BHF-UCL.
GO; GO:0051496; P:positive regulation of stress fiber assembly; IEA:Ensembl.
GO; GO:0045944; P:positive regulation of transcription by RNA polymerase II; IDA:UniProtKB.
GO; GO:0045893; P:positive regulation of transcription, DNA-templated; IDA:BHF-UCL.
GO; GO:0032916; P:positive regulation of transforming growth factor beta3 production; IEA:Ensembl.
GO; GO:0031053; P:primary miRNA processing; TAS:BHF-UCL.
GO; GO:0016579; P:protein deubiquitination; TAS:Reactome.
GO; GO:0050821; P:protein stabilization; IEA:Ensembl.
GO; GO:0051098; P:regulation of binding; IEA:Ensembl.
GO; GO:0050678; P:regulation of epithelial cell proliferation; IEA:Ensembl.
GO; GO:0050776; P:regulation of immune response; IEA:Ensembl.
GO; GO:0016202; P:regulation of striated muscle tissue development; IEA:Ensembl.
GO; GO:0006357; P:regulation of transcription by RNA polymerase II; IDA:NTNU_SB.
GO; GO:0017015; P:regulation of transforming growth factor beta receptor signaling pathway; IMP:BHF-UCL.
GO; GO:0032909; P:regulation of transforming growth factor beta2 production; IMP:BHF-UCL.
GO; GO:0001666; P:response to hypoxia; IMP:BHF-UCL.
GO; GO:0023019; P:signal transduction involved in regulation of gene expression; IEA:Ensembl.
GO; GO:0007183; P:SMAD protein complex assembly; IDA:BHF-UCL.
GO; GO:0060395; P:SMAD protein signal transduction; NAS:BHF-UCL.
GO; GO:0001756; P:somitogenesis; IEA:Ensembl.
GO; GO:0042110; P:T cell activation; IEA:Ensembl.
GO; GO:0030878; P:thyroid gland development; IEA:Ensembl.
GO; GO:0060290; P:transdifferentiation; IEA:Ensembl.
GO; GO:0007179; P:transforming growth factor beta receptor signaling pathway; IDA:UniProtKB.
GO; GO:0001657; P:ureteric bud development; IEA:Ensembl.
GO; GO:0042060; P:wound healing; TAS:BHF-UCL.
DisProt; DP01648; -.
Gene3D; 2.60.200.10; -; 1.
Gene3D; 3.90.520.10; -; 1.
InterPro; IPR013790; Dwarfin.
InterPro; IPR003619; MAD_homology1_Dwarfin-type.
InterPro; IPR013019; MAD_homology_MH1.
InterPro; IPR017855; SMAD-like_dom_sf.
InterPro; IPR001132; SMAD_dom_Dwarfin-type.
InterPro; IPR008984; SMAD_FHA_dom_sf.
InterPro; IPR036578; SMAD_MH1_sf.
PANTHER; PTHR13703; PTHR13703; 1.
Pfam; PF03165; MH1; 1.
Pfam; PF03166; MH2; 1.
SMART; SM00523; DWA; 1.
SMART; SM00524; DWB; 1.
SUPFAM; SSF49879; SSF49879; 1.
SUPFAM; SSF56366; SSF56366; 1.
PROSITE; PS51075; MH1; 1.
PROSITE; PS51076; MH2; 1.
1: Evidence at protein level;
3D-structure; Acetylation; ADP-ribosylation; Alternative splicing;
Aortic aneurysm; Cytoplasm; Disease mutation; DNA-binding;
Host-virus interaction; Isopeptide bond; Metal-binding; Nucleus;
Phosphoprotein; Polymorphism; Reference proteome; Transcription;
Transcription regulation; Ubl conjugation; Zinc.
INIT_MET 1
/note="Removed"
/evidence="ECO:0000244|PubMed:19413330,
ECO:0000244|PubMed:22814378"
CHAIN 2..425
/note="Mothers against decapentaplegic homolog 3"
/id="PRO_0000090856"
DOMAIN 10..136
/note="MH1"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00438"
DOMAIN 232..425
/note="MH2"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00439"
REGION 137..231
/note="Linker"
REGION 271..324
/note="Sufficient for interaction with XPO4"
/evidence="ECO:0000269|PubMed:16449645"
METAL 64
/note="Zinc"
METAL 109
/note="Zinc"
METAL 121
/note="Zinc"
METAL 126
/note="Zinc"
SITE 40
/note="Required for trimerization"
SITE 41
/note="Required for interaction with DNA and JUN and for
functional cooperation with JUN"
MOD_RES 2
/note="N-acetylserine"
/evidence="ECO:0000244|PubMed:19413330,
ECO:0000244|PubMed:22814378"
MOD_RES 8
/note="Phosphothreonine; by CDK2 and CDK4"
/evidence="ECO:0000269|PubMed:15241418"
MOD_RES 179
/note="Phosphothreonine; by CDK2, CDK4 and MAPK"
/evidence="ECO:0000269|PubMed:15241418,
ECO:0000269|PubMed:16156666, ECO:0000269|PubMed:19218245"
MOD_RES 204
/note="Phosphoserine; by GSK3 and MAPK"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00439,
ECO:0000269|PubMed:15241418, ECO:0000269|PubMed:16156666,
ECO:0000269|PubMed:19218245"
MOD_RES 208
/note="Phosphoserine; by MAPK"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00439,
ECO:0000269|PubMed:15241418, ECO:0000269|PubMed:16156666,
ECO:0000269|PubMed:19218245"
MOD_RES 213
/note="Phosphoserine; by CDK2 and CDK4"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00439,
ECO:0000269|PubMed:15241418"
MOD_RES 378
/note="N6-acetyllysine"
/evidence="ECO:0000269|PubMed:16862174"
MOD_RES 416
/note="Phosphoserine"
/evidence="ECO:0000244|PubMed:18669648,
ECO:0000244|PubMed:23186163"
MOD_RES 418
/note="Phosphoserine; by CK1"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00439,
ECO:0000269|PubMed:18794808"
MOD_RES 422
/note="Phosphoserine; by TGFBR1"
/evidence="ECO:0000250|UniProtKB:Q8BUN5,
ECO:0000255|PROSITE-ProRule:PRU00439"
MOD_RES 423
/note="Phosphoserine; by TGFBR1"
/evidence="ECO:0000250|UniProtKB:Q8BUN5,
ECO:0000255|PROSITE-ProRule:PRU00439"
MOD_RES 425
/note="Phosphoserine; by TGFBR1"
/evidence="ECO:0000250|UniProtKB:Q8BUN5,
ECO:0000255|PROSITE-ProRule:PRU00439"
CROSSLNK 33
/note="Glycyl lysine isopeptide (Lys-Gly) (interchain with
G-Cter in ubiquitin)"
/evidence="ECO:0000305|PubMed:21947082"
CROSSLNK 81
/note="Glycyl lysine isopeptide (Lys-Gly) (interchain with
G-Cter in ubiquitin)"
/evidence="ECO:0000305|PubMed:21947082"
VAR_SEQ 1..195
/note="Missing (in isoform 4)"
/evidence="ECO:0000303|PubMed:14702039"
/id="VSP_045348"
VAR_SEQ 1..105
/note="Missing (in isoform 3)"
/evidence="ECO:0000303|PubMed:14702039"
/id="VSP_043793"
VAR_SEQ 1..68
/note="MSSILPFTPPIVKRLLGWKKGEQNGQEEKWCEKAVKSLVKKLKKTGQLDELE
KAITTQNVNTKCITIP -> MSCLHPRQTWKGAALVHRKAWWMG (in isoform
2)"
/evidence="ECO:0000303|PubMed:14702039"
/id="VSP_042900"
VARIANT 112
/note="A -> V (in LDS3; dbSNP:rs387906854)"
/evidence="ECO:0000269|PubMed:21778426"
/id="VAR_067051"
VARIANT 170
/note="I -> V (in dbSNP:rs35874463)"
/id="VAR_052021"
VARIANT 239
/note="E -> K (in LDS3; dbSNP:rs387906853)"
/evidence="ECO:0000269|PubMed:21778426"
/id="VAR_067047"
VARIANT 261
/note="T -> I (in LDS3; dbSNP:rs387906851)"
/evidence="ECO:0000269|PubMed:21217753"
/id="VAR_065578"
VARIANT 279
/note="R -> K (in LDS3; dbSNP:rs387906852)"
/evidence="ECO:0000269|PubMed:21778426"
/id="VAR_067048"
VARIANT 287
/note="R -> W (in LDS3; dbSNP:rs387906850)"
/evidence="ECO:0000269|PubMed:21217753"
/id="VAR_065579"
VARIANT 393
/note="P -> L (in a colorectal cancer sample; somatic
mutation)"
/evidence="ECO:0000269|PubMed:16959974"
/id="VAR_036474"
MUTAGEN 8
/note="T->V: Reduced phosphorylation, increased
transcriptional and antiproliferative activities. Further
increase in transcriptional and antiproliferative
activities; when associated with V-179 and A-213."
/evidence="ECO:0000269|PubMed:15241418"
MUTAGEN 33
/note="K->R: Slightly decreased monoubiquitination."
/evidence="ECO:0000269|PubMed:21947082"
MUTAGEN 40
/note="K->A: Little effect on interaction with DNA or JUN.
Abolishes interaction with DNA and JUN; when associated
with A-41; A-43 and A-44."
/evidence="ECO:0000269|PubMed:10995748"
MUTAGEN 41
/note="K->A: Greatly reduced interaction with DNA and JUN.
Abolishes interaction with DNA and JUN; when associated
with A-40; A-44 and A-43."
/evidence="ECO:0000269|PubMed:10995748"
MUTAGEN 43
/note="K->A: Little effect on interaction with DNA or JUN.
Abolishes interaction with DNA and JUN; when associated
with A-40; A-41 and A-44."
/evidence="ECO:0000269|PubMed:10995748"
MUTAGEN 44
/note="K->A: Little effect on interaction with DNA or JUN.
Abolishes interaction with JUN; when associated with A-40;
A-41 and A-43."
/evidence="ECO:0000269|PubMed:10995748"
MUTAGEN 53
/note="K->R: Slightly decreased monoubiquitination."
/evidence="ECO:0000269|PubMed:21947082"
MUTAGEN 74
/note="R->D: Reduced interaction with JUN. Loss of
transcriptional activity and cooperation with JUN."
/evidence="ECO:0000269|PubMed:10995748"
MUTAGEN 81
/note="K->R: Decreased monoubiquitination."
/evidence="ECO:0000269|PubMed:21947082"
MUTAGEN 179
/note="T->V: Reduced phosphorylation, increased
transcriptional and increased antiproliferative activities.
Further increase in transcriptional and antiproliferative
activities; when associated with V-8 and A-213."
/evidence="ECO:0000269|PubMed:15241418,
ECO:0000269|PubMed:16156666, ECO:0000269|PubMed:19218245"
MUTAGEN 204
/note="S->A: Increased transcriptional activity. Further
increased transcriptional activity; when associated with S-
208."
/evidence="ECO:0000269|PubMed:15241418,
ECO:0000269|PubMed:16156666, ECO:0000269|PubMed:19218245"
MUTAGEN 208
/note="S->A: Increased transcriptional activity. Further
increased transcriptional activity; when associated with S-
208."
/evidence="ECO:0000269|PubMed:15241418,
ECO:0000269|PubMed:16156666, ECO:0000269|PubMed:19218245"
MUTAGEN 213
/note="S->A: Reduced phosphorylation. Increased
transcriptional and antiproliferative activities. Further
increase in transcriptional and antiproliferative
activities; when associated with V-8 and V-179."
/evidence="ECO:0000269|PubMed:15241418"
MUTAGEN 333
/note="K->R: No effect on acetylation. Completely abolishes
acetylation and 97% reduction in transcriptional activity;
when associated with R-341; R-378 and R-409."
/evidence="ECO:0000269|PubMed:16862174"
MUTAGEN 341
/note="K->R: No effect on acetylation. Completely abolishes
acetylation and 97% reduction in transcriptional activity;
when associated with R-333; R-378 and R-409."
/evidence="ECO:0000269|PubMed:16862174"
MUTAGEN 378
/note="K->Q: Increased transcriptional activity. No further
increase in transcriptional activity with EP300."
/evidence="ECO:0000269|PubMed:16862174"
MUTAGEN 378
/note="K->R: Greatly reduced acetylation and 85% reduction
in transcriptional activity. Completely abolishes
acetylation and 97% reduction in transcriptional activity;
when associated with R-333; R-341 and R-409."
/evidence="ECO:0000269|PubMed:16862174"
MUTAGEN 409
/note="K->R: No effect on acetylation. Completely abolishes
acetylation and 97% reduction in transcriptional activity;
when associated with R-333; R-341 and R-378."
/evidence="ECO:0000269|PubMed:16862174"
MUTAGEN 418
/note="S->A: Increased constitutive activity."
/evidence="ECO:0000269|PubMed:18794808"
MUTAGEN 418
/note="S->D: Decreased activity."
/evidence="ECO:0000269|PubMed:18794808"
MUTAGEN 422..425
/note="SSVS->AAVA: Does not abolish protein nuclear export.
Abolishes almost completely acetylation."
/evidence="ECO:0000269|PubMed:11224571,
ECO:0000269|PubMed:16449645, ECO:0000269|PubMed:16862174"
MUTAGEN 422..425
/note="SSVS->EEVE: Forms heterotrimers."
/evidence="ECO:0000269|PubMed:11224571,
ECO:0000269|PubMed:16449645, ECO:0000269|PubMed:16862174"
MUTAGEN 422..425
/note="SSVS->RRVR: Diminishes cargo protein export."
/evidence="ECO:0000269|PubMed:11224571,
ECO:0000269|PubMed:16449645, ECO:0000269|PubMed:16862174"
CONFLICT 178
/note="E -> EVGTWAAQAGL (in Ref. 3; BAA22032)"
/evidence="ECO:0000305"
CONFLICT 360
/note="F -> L (in Ref. 5; BAH13315)"
/evidence="ECO:0000305"
HELIX 11..17
/evidence="ECO:0000244|PDB:5OD6"
HELIX 25..44
/evidence="ECO:0000244|PDB:5OD6"
HELIX 48..57
/evidence="ECO:0000244|PDB:5OD6"
STRAND 60..62
/evidence="ECO:0000244|PDB:5OD6"
STRAND 66..68
/evidence="ECO:0000244|PDB:5OD6"
STRAND 75..77
/evidence="ECO:0000244|PDB:5OD6"
STRAND 80..82
/evidence="ECO:0000244|PDB:5OD6"
HELIX 84..92
/evidence="ECO:0000244|PDB:5OD6"
HELIX 100..102
/evidence="ECO:0000244|PDB:5OD6"
STRAND 103..105
/evidence="ECO:0000244|PDB:5OD6"
HELIX 113..115
/evidence="ECO:0000244|PDB:5OD6"
STRAND 118..121
/evidence="ECO:0000244|PDB:5OD6"
HELIX 124..126
/evidence="ECO:0000244|PDB:5OD6"
STRAND 127..129
/evidence="ECO:0000244|PDB:5OD6"
STRAND 221..225
/evidence="ECO:0000244|PDB:1MK2"
STRAND 231..239
/evidence="ECO:0000244|PDB:1MJS"
STRAND 242..250
/evidence="ECO:0000244|PDB:1MJS"
STRAND 252..258
/evidence="ECO:0000244|PDB:1MJS"
STRAND 268..270
/evidence="ECO:0000244|PDB:1MJS"
HELIX 271..273
/evidence="ECO:0000244|PDB:1U7F"
HELIX 281..290
/evidence="ECO:0000244|PDB:1MJS"
STRAND 294..299
/evidence="ECO:0000244|PDB:1MJS"
STRAND 302..307
/evidence="ECO:0000244|PDB:1MJS"
STRAND 309..311
/evidence="ECO:0000244|PDB:1MJS"
STRAND 313..316
/evidence="ECO:0000244|PDB:1MJS"
HELIX 318..321
/evidence="ECO:0000244|PDB:1MJS"
HELIX 323..325
/evidence="ECO:0000244|PDB:1MK2"
STRAND 332..334
/evidence="ECO:0000244|PDB:1MJS"
STRAND 339..343
/evidence="ECO:0000244|PDB:1MJS"
HELIX 345..358
/evidence="ECO:0000244|PDB:1MJS"
HELIX 360..364
/evidence="ECO:0000244|PDB:1MJS"
HELIX 365..370
/evidence="ECO:0000244|PDB:1MJS"
STRAND 371..377
/evidence="ECO:0000244|PDB:1MJS"
STRAND 384..386
/evidence="ECO:0000244|PDB:1MK2"
HELIX 389..391
/evidence="ECO:0000244|PDB:5XOC"
STRAND 392..400
/evidence="ECO:0000244|PDB:1MJS"
HELIX 401..413
/evidence="ECO:0000244|PDB:1MJS"
SEQUENCE 425 AA; 48081 MW; 46DF5E8B371321AC CRC64;
MSSILPFTPP IVKRLLGWKK GEQNGQEEKW CEKAVKSLVK KLKKTGQLDE LEKAITTQNV
NTKCITIPRS LDGRLQVSHR KGLPHVIYCR LWRWPDLHSH HELRAMELCE FAFNMKKDEV
CVNPYHYQRV ETPVLPPVLV PRHTEIPAEF PPLDDYSHSI PENTNFPAGI EPQSNIPETP
PPGYLSEDGE TSDHQMNHSM DAGSPNLSPN PMSPAHNNLD LQPVTYCEPA FWCSISYYEL
NQRVGETFHA SQPSMTVDGF TDPSNSERFC LGLLSNVNRN AAVELTRRHI GRGVRLYYIG
GEVFAECLSD SAIFVQSPNC NQRYGWHPAT VCKIPPGCNL KIFNNQEFAA LLAQSVNQGF
EAVYQLTRMC TIRMSFVKGW GAEYRRQTVT STPCWIELHL NGPLQWLDKV LTQMGSPSIR
CSSVS


Related products :

Catalog number Product name Quantity
E2185h ELISA hMAD-3,Homo sapiens,hSMAD3,Human,JV15-2,MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,SMAD 3,SMAD family member 3,Smad3,SMAD3 96T
U2185h CLIA kit hMAD-3,Homo sapiens,hSMAD3,Human,JV15-2,MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,SMAD 3,SMAD family member 3,Smad3,SMAD3 96T
U2185h CLIA hMAD-3,Homo sapiens,hSMAD3,Human,JV15-2,MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,SMAD 3,SMAD family member 3,Smad3,SMAD3 96T
E2185h ELISA kit hMAD-3,Homo sapiens,hSMAD3,Human,JV15-2,MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,SMAD 3,SMAD family member 3,Smad3,SMAD3 96T
E2185h hMAD-3,Homo sapiens,hSMAD3,Human,JV15-2,MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,SMAD 3,SMAD family member 3,Smad3,SMAD3
18-003-42992 Mothers against decapentaplegic homolog 3 - SMAD 3; Mothers against DPP homolog 3; Mad3; hMAD-3; JV15-2; hSMAD3 Polyclonal 0.1 mg Protein A
U2185m CLIA MAD homolog 3,Mad3,Madh3,mMad3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Mouse,Mus musculus,SMAD 3,SMAD family member 3,Smad3,Smad3 96T
E2185m ELISA MAD homolog 3,Mad3,Madh3,mMad3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Mouse,Mus musculus,SMAD 3,SMAD family member 3,Smad3,Smad3 96T
E2185m ELISA kit MAD homolog 3,Mad3,Madh3,mMad3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Mouse,Mus musculus,SMAD 3,SMAD family member 3,Smad3,Smad3 96T
U2185m CLIA kit MAD homolog 3,Mad3,Madh3,mMad3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Mouse,Mus musculus,SMAD 3,SMAD family member 3,Smad3,Smad3 96T
E2185m MAD homolog 3,Mad3,Madh3,mMad3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Mouse,Mus musculus,SMAD 3,SMAD family member 3,Smad3,Smad3
U2185r CLIA kit MAD homolog 3,Mad3,Madh3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Rat,Rattus norvegicus,SMAD 3,SMAD family member 3,Smad3,Smad3 96T
E2185r ELISA kit MAD homolog 3,Mad3,Madh3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Rat,Rattus norvegicus,SMAD 3,SMAD family member 3,Smad3,Smad3 96T
U2185r CLIA MAD homolog 3,Mad3,Madh3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Rat,Rattus norvegicus,SMAD 3,SMAD family member 3,Smad3,Smad3 96T
E2185r ELISA MAD homolog 3,Mad3,Madh3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Rat,Rattus norvegicus,SMAD 3,SMAD family member 3,Smad3,Smad3 96T
E2185r MAD homolog 3,Mad3,Madh3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Rat,Rattus norvegicus,SMAD 3,SMAD family member 3,Smad3,Smad3
E2185p ELISA kit MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Pig,SMAD 3,SMAD family member 3,Smad3,SMAD3,Sus scrofa 96T
E2185p ELISA MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Pig,SMAD 3,SMAD family member 3,Smad3,SMAD3,Sus scrofa 96T
U2185p CLIA kit MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Pig,SMAD 3,SMAD family member 3,Smad3,SMAD3,Sus scrofa 96T
U2185p CLIA MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Pig,SMAD 3,SMAD family member 3,Smad3,SMAD3,Sus scrofa 96T
E2185p MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,Pig,SMAD 3,SMAD family member 3,Smad3,SMAD3,Sus scrofa
U2185c CLIA Chicken,Gallus gallus,MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,SMAD 3,SMAD family member 3,Smad3,SMAD3 96T
E2185c ELISA kit Chicken,Gallus gallus,MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,SMAD 3,SMAD family member 3,Smad3,SMAD3 96T
E2185c ELISA Chicken,Gallus gallus,MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,SMAD 3,SMAD family member 3,Smad3,SMAD3 96T
U2185c CLIA kit Chicken,Gallus gallus,MAD homolog 3,Mad3,MADH3,Mothers against decapentaplegic homolog 3,Mothers against DPP homolog 3,SMAD 3,SMAD family member 3,Smad3,SMAD3 96T
Pathways :
WP2341: vitamin B1 (thiamin) biosynthesis and salvage pathway
WP2340: Thiamine (vitamin B1) biosynthesis and salvage
WP32: Translation Factors
WP1596: Iron Homeostasis
WP414: Cell Cycle and Cell Division
WP930: TGF Beta Signaling Pathway
WP1003: Ovarian Infertility Genes
WP2039: CDKN1A-EGF-CREB
WP759: Alpha6-Beta4 Integrin Signaling Pathway
WP1174: Senescence and Autophagy
WP783: Androgen Receptor Signaling Pathway
WP1267: Senescence and Autophagy
WP485: Alpha6-Beta4 Integrin Signaling Pathway
WP946: Delta-Notch Signaling Pathway
WP1052: Id Signaling Pathway
WP980: Wnt Signaling Pathway NetPath
WP1083: Cell cycle
WP258: TGF-beta Receptor Signaling Pathway
WP815: Id Signaling Pathway
WP155: Adipogenesis
WP505: TGF Beta Signaling Pathway
WP179: Cell cycle
WP560: TGF Beta Signaling Pathway
WP1103: Alpha6-Beta4 Integrin Signaling Pathway
WP273: Ovarian Infertility Genes

Related Genes :
[SMAD3 MADH3] Mothers against decapentaplegic homolog 3 (MAD homolog 3) (Mad3) (Mothers against DPP homolog 3) (hMAD-3) (JV15-2) (SMAD family member 3) (SMAD 3) (Smad3) (hSMAD3)
[Smad3 Madh3] Mothers against decapentaplegic homolog 3 (MAD homolog 3) (Mad3) (Mothers against DPP homolog 3) (SMAD family member 3) (SMAD 3) (Smad3)
[Smad3 Madh3] Mothers against decapentaplegic homolog 3 (MAD homolog 3) (Mad3) (Mothers against DPP homolog 3) (mMad3) (SMAD family member 3) (SMAD 3) (Smad3)
[SMAD3 MADH3] Mothers against decapentaplegic homolog 3 (MAD homolog 3) (Mad3) (Mothers against DPP homolog 3) (SMAD family member 3) (SMAD 3) (Smad3)
[SMAD2 MADH2 MADR2] Mothers against decapentaplegic homolog 2 (MAD homolog 2) (Mothers against DPP homolog 2) (JV18-1) (Mad-related protein 2) (hMAD-2) (SMAD family member 2) (SMAD 2) (Smad2) (hSMAD2)
[SMAD7 MADH7 MADH8] Mothers against decapentaplegic homolog 7 (MAD homolog 7) (Mothers against DPP homolog 7) (Mothers against decapentaplegic homolog 8) (MAD homolog 8) (Mothers against DPP homolog 8) (SMAD family member 7) (SMAD 7) (Smad7) (hSMAD7)
[SMAD4 DPC4 MADH4] Mothers against decapentaplegic homolog 4 (MAD homolog 4) (Mothers against DPP homolog 4) (Deletion target in pancreatic carcinoma 4) (SMAD family member 4) (SMAD 4) (Smad4) (hSMAD4)
[Smad7 Madh7 Madh8] Mothers against decapentaplegic homolog 7 (MAD homolog 7) (Mothers against DPP homolog 7) (Mothers against decapentaplegic homolog 8) (MAD homolog 8) (Mothers against DPP homolog 8) (SMAD family member 7) (SMAD 7) (Smad7)
[Smad1 Madh1 Madr1] Mothers against decapentaplegic homolog 1 (MAD homolog 1) (Mothers against DPP homolog 1) (Dwarfin-A) (Dwf-A) (Mothers-against-DPP-related 1) (Mad-related protein 1) (mMad1) (SMAD family member 1) (SMAD 1) (Smad1)
[SMAD1 BSP1 MADH1 MADR1] Mothers against decapentaplegic homolog 1 (MAD homolog 1) (Mothers against DPP homolog 1) (JV4-1) (Mad-related protein 1) (SMAD family member 1) (SMAD 1) (Smad1) (hSMAD1) (Transforming growth factor-beta-signaling protein 1) (BSP-1)
[SMAD6 MADH6] Mothers against decapentaplegic homolog 6 (MAD homolog 6) (Mothers against DPP homolog 6) (SMAD family member 6) (SMAD 6) (Smad6) (hSMAD6)
[Smad4 Dpc4 Madh4] Mothers against decapentaplegic homolog 4 (MAD homolog 4) (Mothers against DPP homolog 4) (Deletion target in pancreatic carcinoma 4 homolog) (SMAD family member 4) (SMAD 4) (Smad4)
[SMAD4 MADH4] Mothers against decapentaplegic homolog 4 (MAD homolog 4) (Mothers against DPP homolog 4) (SMAD family member 4) (SMAD 4) (Smad4)
[Smad4 Madh4] Mothers against decapentaplegic homolog 4 (MAD homolog 4) (Mothers against DPP homolog 4) (SMAD family member 4) (SMAD 4) (Smad4)
[Smad7 Madh7] Mothers against decapentaplegic homolog 7 (MAD homolog 7) (Mothers against DPP homolog 7) (SMAD family member 7) (SMAD 7) (Smad7)
[Smad1 Mad1 Madh1] Mothers against decapentaplegic homolog 1 (MAD homolog 1) (Mothers against DPP homolog 1) (SMAD family member 1) (SMAD 1) (Smad1)
[SMAD1] Mothers against decapentaplegic homolog 1 (MAD homolog 1) (Mothers against DPP homolog 1) (SMAD family member 1) (SMAD 1) (Smad1)
[Smox Dmel\CG2262 DSMAD2 DSmad2 dSMAD2 dSmad2 dsmad2 l(1)G0348 Sad sad Smad SMAD2 Smad2 smad2 SMOX SmoX smox ted tmp CG2262 Dmel_CG2262] Mothers against decapentaplegic homolog (MAD homolog) (Mothers against DPP homolog) (SMAD family member)
[SMAD4] Mothers against decapentaplegic homolog 4 (MAD homolog 4) (Mothers against DPP homolog 4) (SMAD family member 4) (SMAD 4) (Smad4)
[BUB1B BUBR1 MAD3L SSK1] Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1)
[ZFYVE9 MADHIP SARA SMADIP] Zinc finger FYVE domain-containing protein 9 (Mothers against decapentaplegic homolog-interacting protein) (Madh-interacting protein) (Novel serine protease) (NSP) (Receptor activation anchor) (hSARA) (Smad anchor for receptor activation)
[Mad CG12399] Protein mothers against dpp
[NFKBIA IKBA MAD3 NFKBI] NF-kappa-B inhibitor alpha (I-kappa-B-alpha) (IkB-alpha) (IkappaBalpha) (Major histocompatibility complex enhancer-binding protein MAD3)
[1a] Replicase polyprotein 1a (pp1a) (ORF1a polyprotein) [Cleaved into: Non-structural protein 1 (nsp1) (Leader protein); Non-structural protein 2 (nsp2) (p65 homolog); Non-structural protein 3 (nsp3) (EC 3.4.19.12) (EC 3.4.22.69) (PL2-PRO) (Papain-like proteinase) (PL-PRO); Non-structural protein 4 (nsp4); 3C-like proteinase (3CL-PRO) (3CLp) (EC 3.4.22.-) (nsp5); Non-structural protein 6 (nsp6); Non-structural protein 7 (nsp7); Non-structural protein 8 (nsp8); Non-structural protein 9 (nsp9); Non-structural protein 10 (nsp10) (Growth factor-like peptide) (GFL); Non-structural protein 11 (nsp11)]
[1a] Replicase polyprotein 1a (pp1a) (ORF1a polyprotein) [Cleaved into: Non-structural protein 1 (nsp1) (Leader protein); Non-structural protein 2 (nsp2) (p65 homolog); Non-structural protein 3 (nsp3) (EC 3.4.19.12) (EC 3.4.22.69) (PL2-PRO) (Papain-like proteinase) (PL-PRO); Non-structural protein 4 (nsp4); 3C-like proteinase (3CL-PRO) (3CLp) (EC 3.4.22.-) (nsp5); Non-structural protein 6 (nsp6); Non-structural protein 7 (nsp7); Non-structural protein 8 (nsp8); Non-structural protein 9 (nsp9); Non-structural protein 10 (nsp10) (Growth factor-like peptide) (GFL); Non-structural protein 11 (nsp11)]
[Dsec\GM11208 Dsec_GM11208] Mothers against decapentaplegic homolog (MAD homolog) (Mothers against DPP homolog) (SMAD family member)
[Dper\GL20193 Dper_GL20193] Mothers against decapentaplegic homolog (MAD homolog) (Mothers against DPP homolog) (SMAD family member)
[Bcar3] Breast cancer anti-estrogen resistance protein 3 homolog (BCAR3 adapter protein, NSP family member) (Novel SH2-containing protein 2) (SH2 domain-containing protein 3B) (p130Cas-binding protein AND-34)
[Bcar3 And34] Breast cancer anti-estrogen resistance protein 3 homolog (p130Cas-binding protein AND-34)
[CRY2 PHH1 SEL20 At1g04400 F19P19.14] Cryptochrome-2 (Atcry2) (Blue light photoreceptor) (Protein PHR homolog 1) (AtPHH1) (Protein SUPPRESSOR OF elf3 20)

Bibliography :