GENTAUR Belgium BVBA BE0473327336 Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45
GENTAUR U.S.A Genprice Inc,Logistics 547 Yurok Circle, SanJose, CA 95123
Tel (408) 780-0908, Fax (408) 780-0908, [email protected]

Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, Gentaur another in time delivery

NAD-dependent protein deacetylase sirtuin-1 (EC 2 3 1 286) (NAD-dependent protein deacylase sirtuin-1) (EC 2 3 1 -) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (SIR2alpha) (Sir2) (mSIR2a) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)]

 SIR1_MOUSE              Reviewed;         737 AA.
Q923E4; Q9QXG8;
31-OCT-2003, integrated into UniProtKB/Swiss-Prot.
31-OCT-2003, sequence version 2.
10-FEB-2021, entry version 188.
RecName: Full=NAD-dependent protein deacetylase sirtuin-1;
EC=2.3.1.286 {ECO:0000269|PubMed:20167603, ECO:0000269|PubMed:28883095};
AltName: Full=NAD-dependent protein deacylase sirtuin-1;
EC=2.3.1.- {ECO:0000305|PubMed:30026585};
AltName: Full=Regulatory protein SIR2 homolog 1;
AltName: Full=SIR2-like protein 1;
AltName: Full=SIR2alpha;
Short=Sir2;
Short=mSIR2a;
Contains:
RecName: Full=SirtT1 75 kDa fragment;
Short=75SirT1;
Name=Sirt1; Synonyms=Sir2l1;
Mus musculus (Mouse).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae;
Murinae; Mus; Mus.
NCBI_TaxID=10090;
[1]
NUCLEOTIDE SEQUENCE [MRNA].
STRAIN=Swiss Webster / NIH;
PubMed=10693811; DOI=10.1038/35001622;
Imai S., Armstrong C.M., Kaeberlein M., Guarente L.;
"Transcriptional silencing and longevity protein Sir2 is an NAD-dependent
histone deacetylase.";
Nature 403:795-800(2000).
[2]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 545-737.
TISSUE=Mammary tumor;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA project:
the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[3]
FUNCTION, INTERACTION WITH TP53, ACTIVITY REGULATION, ACTIVE SITE, AND
MUTAGENESIS OF HIS-355.
PubMed=11672522; DOI=10.1016/s0092-8674(01)00524-4;
Luo J., Nikolaev A.Y., Imai S., Chen D., Su F., Shiloh A., Guarente L.,
Gu W.;
"Negative control of p53 by Sir2alpha promotes cell survival under
stress.";
Cell 107:137-148(2001).
[4]
FUNCTION IN DEACETYLATION OF TAF1B.
PubMed=11250901; DOI=10.1093/emboj/20.6.1353;
Muth V., Nadaud S., Grummt I., Voit R.;
"Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase
I transcription.";
EMBO J. 20:1353-1362(2001).
[5]
FUNCTION.
PubMed=12651913;
McBurney M.W., Yang X., Jardine K., Bieman M., Th'ng J., Lemieux M.;
"The absence of SIR2alpha protein has no effect on global gene silencing in
mouse embryonic stem cells.";
Mol. Cancer Res. 1:402-409(2003).
[6]
TISSUE SPECIFICITY, AND DISRUPTION PHENOTYPE.
PubMed=12482959; DOI=10.1128/mcb.23.1.38-54.2003;
McBurney M.W., Yang X., Jardine K., Hixon M., Boekelheide K., Webb J.R.,
Lansdorp P.M., Lemieux M.;
"The mammalian SIR2alpha protein has a role in embryogenesis and
gametogenesis.";
Mol. Cell. Biol. 23:38-54(2003).
[7]
FUNCTION, INTERACTION WITH MYOD1 AND PCAF, MUTAGENESIS OF HIS-355, AND
ACTIVE SITE.
PubMed=12887892; DOI=10.1016/s1097-2765(03)00226-0;
Fulco M., Schiltz R.L., Iezzi S., King M.T., Zhao P., Kashiwaya Y.,
Hoffman E., Veech R.L., Sartorelli V.;
"Sir2 regulates skeletal muscle differentiation as a potential sensor of
the redox state.";
Mol. Cell 12:51-62(2003).
[8]
FUNCTION.
PubMed=12960381; DOI=10.1073/pnas.1934713100;
Cheng H.-L., Mostoslavsky R., Saito S., Manis J.P., Gu Y., Patel P.,
Bronson R., Appella E., Alt F.W., Chua K.F.;
"Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-
deficient mice.";
Proc. Natl. Acad. Sci. U.S.A. 100:10794-10799(2003).
[9]
FUNCTION IN ADIPODIGENESIS, FUNCTION IN FAT MOBILIZATION, AND INTERACTION
WITH PPARG AND NCOR1.
PubMed=15175761; DOI=10.1038/nature02583;
Picard F., Kurtev M., Chung N., Topark-Ngarm A., Senawong T.,
Machado De Oliveira R., Leid M., McBurney M.W., Guarente L.;
"Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-
gamma.";
Nature 429:771-776(2004).
[10]
FUNCTION IN DEACETYLATION OF ACSS2, AND FUNCTION IN REGULATION OF ACCS2.
PubMed=16790548; DOI=10.1073/pnas.0604392103;
Hallows W.C., Lee S., Denu J.M.;
"Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases.";
Proc. Natl. Acad. Sci. U.S.A. 103:10230-10235(2006).
[11]
FUNCTION IN DEACETYLATION OF NR1H3 AND NR1H2, AND FUNCTION IN REGULATION OF
NR1H3.
PubMed=17936707; DOI=10.1016/j.molcel.2007.07.032;
Li X., Zhang S., Blander G., Tse J.G., Krieger M., Guarente L.;
"SIRT1 deacetylates and positively regulates the nuclear receptor LXR.";
Mol. Cell 28:91-106(2007).
[12]
FUNCTION IN APOPTOSIS.
PubMed=18371449; DOI=10.1016/j.stem.2008.01.002;
Han M.K., Song E.K., Guo Y., Ou X., Mantel C., Broxmeyer H.E.;
"SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem
cells by controlling p53 subcellular localization.";
Cell Stem Cell 2:241-251(2008).
[13]
INTERACTION WITH FOXO1, FUNCTION IN DEACETYLATION OF FOXO1, MUTAGENESIS OF
HIS-355, AND ACTIVE SITE.
PubMed=15220471; DOI=10.1073/pnas.0400593101;
Daitoku H., Hatta M., Matsuzaki H., Aratani S., Ohshima T., Miyagishi M.,
Nakajima T., Fukamizu A.;
"Silent information regulator 2 potentiates Foxo1-mediated transcription
through its deacetylase activity.";
Proc. Natl. Acad. Sci. U.S.A. 101:10042-10047(2004).
[14]
INTERACTION WITH HIC1.
PubMed=16269335; DOI=10.1016/j.cell.2005.08.011;
Chen W.Y., Wang D.H., Yen R.C., Luo J., Gu W., Baylin S.B.;
"Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent
DNA-damage responses.";
Cell 123:437-448(2005).
[15]
FUNCTION IN REGULATION OF INSULIN SECRETION.
PubMed=16098828; DOI=10.1016/j.cmet.2005.07.001;
Moynihan K.A., Grimm A.A., Plueger M.M., Bernal-Mizrachi E., Ford E.,
Cras-Meneur C., Permutt M.A., Imai S.;
"Increased dosage of mammalian Sir2 in pancreatic beta cells enhances
glucose-stimulated insulin secretion in mice.";
Cell Metab. 2:105-117(2005).
[16]
FUNCTION.
PubMed=15632193; DOI=10.1074/jbc.m408748200;
Bouras T., Fu M., Sauve A.A., Wang F., Quong A.A., Perkins N.D., Hay R.T.,
Gu W., Pestell R.G.;
"SIRT1 deacetylation and repression of p300 involves lysine residues
1020/1024 within the cell cycle regulatory domain 1.";
J. Biol. Chem. 280:10264-10276(2005).
[17]
FUNCTION IN REGULATION OF FOXO1.
PubMed=15788402; DOI=10.1074/jbc.m412357200;
Frescas D., Valenti L., Accili D.;
"Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-
dependent deacetylation promotes expression of glucogenetic genes.";
J. Biol. Chem. 280:20589-20595(2005).
[18]
FUNCTION IN DEACETYLATION OF PPARGC1A, FUNCTION IN REGULATION OF GLUCOSE
HOMEOSTASIS, AND INDUCTION.
PubMed=15744310; DOI=10.1038/nature03354;
Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M., Puigserver P.;
"Nutrient control of glucose homeostasis through a complex of PGC-1alpha
and SIRT1.";
Nature 434:113-118(2005).
[19]
INDUCTION.
PubMed=16224023; DOI=10.1126/science.1117728;
Nisoli E., Tonello C., Cardile A., Cozzi V., Bracale R., Tedesco L.,
Falcone S., Valerio A., Cantoni O., Clementi E., Moncada S., Carruba M.O.;
"Calorie restriction promotes mitochondrial biogenesis by inducing the
expression of eNOS.";
Science 310:314-317(2005).
[20]
FUNCTION, INTERACTION WITH E2F1, MUTAGENESIS OF HIS-355, AND ACTIVE SITE.
PubMed=16892051; DOI=10.1038/ncb1468;
Wang C., Chen L., Hou X., Li Z., Kabra N., Ma Y., Nemoto S., Finkel T.,
Gu W., Cress W.D., Chen J.;
"Interactions between E2F1 and SirT1 regulate apoptotic response to DNA
damage.";
Nat. Cell Biol. 8:1025-1031(2006).
[21]
FUNCTION IN REGULATION OF INSULIN SECRETION.
PubMed=16366736; DOI=10.1371/journal.pbio.0040031;
Bordone L., Motta M.C., Picard F., Robinson A., Jhala U.S., Apfeld J.,
McDonagh T., Lemieux M., McBurney M., Szilvasi A., Easlon E.J., Lin S.J.,
Guarente L.;
"Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta
cells.";
PLoS Biol. 4:E31-E31(2006).
[22]
FUNCTION IN DEACETYLATION OF RB1.
PubMed=17620057; DOI=10.1042/bj20070151;
Wong S., Weber J.D.;
"Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1.";
Biochem. J. 407:451-460(2007).
[23]
FUNCTION IN DEACETYLATION OF PPARGC1A, AND FUNCTION IN REGULATION OF MUSCLE
METABOLISM.
PubMed=17347648; DOI=10.1038/sj.emboj.7601633;
Gerhart-Hines Z., Rodgers J.T., Bare O., Lerin C., Kim S.H.,
Mostoslavsky R., Alt F.W., Wu Z., Puigserver P.;
"Metabolic control of muscle mitochondrial function and fatty acid
oxidation through SIRT1/PGC-1alpha.";
EMBO J. 26:1913-1923(2007).
[24]
FUNCTION IN DEACETYLATION OF SMAD7.
PubMed=17098745; DOI=10.1074/jbc.m605904200;
Kume S., Haneda M., Kanasaki K., Sugimoto T., Araki S., Isshiki K.,
Isono M., Uzu T., Guarente L., Kashiwagi A., Koya D.;
"SIRT1 inhibits transforming growth factor beta-induced apoptosis in
glomerular mesangial cells via Smad7 deacetylation.";
J. Biol. Chem. 282:151-158(2007).
[25]
SUBCELLULAR LOCATION, AND MUTAGENESIS OF 38-ARG-ARG-39; 138-LEU--LEU-145;
227-LYS--LYS-230 AND 425-VAL--ILE-431.
PubMed=17197703; DOI=10.1074/jbc.m609554200;
Tanno M., Sakamoto J., Miura T., Shimamoto K., Horio Y.;
"Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase
SIRT1.";
J. Biol. Chem. 282:6823-6832(2007).
[26]
FUNCTION, SUBCELLULAR LOCATION, AND INTERACTION WITH IRS1 AND IRS2.
PubMed=17901049; DOI=10.1074/jbc.m706644200;
Zhang J.;
"The direct involvement of SirT1 in insulin-induced insulin receptor
substrate-2 tyrosine phosphorylation.";
J. Biol. Chem. 282:34356-34364(2007).
[27]
FUNCTION, SUBCELLULAR LOCATION, AND DISRUPTION PHENOTYPE.
PubMed=18004385; DOI=10.1038/nature06268;
Vaquero A., Scher M., Erdjument-Bromage H., Tempst P., Serrano L.,
Reinberg D.;
"SIRT1 regulates the histone methyl-transferase SUV39H1 during
heterochromatin formation.";
Nature 450:440-444(2007).
[28]
FUNCTION, SUBCELLULAR LOCATION, INDUCTION, AND INTERACTION WITH CLOCK;
ARNTL AND PER2.
PubMed=18662546; DOI=10.1016/j.cell.2008.06.050;
Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F.,
Mostoslavsky R., Alt F.W., Schibler U.;
"SIRT1 regulates circadian clock gene expression through PER2
deacetylation.";
Cell 134:317-328(2008).
[29]
FUNCTION, INDUCTION, AND INTERACTION WITH CLOCK AND ARNTL.
PubMed=18662547; DOI=10.1016/j.cell.2008.07.002;
Nakahata Y., Kaluzova M., Grimaldi B., Sahar S., Hirayama J., Chen D.,
Guarente L.P., Sassone-Corsi P.;
"The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin
remodeling and circadian control.";
Cell 134:329-340(2008).
[30]
FUNCTION.
PubMed=18477450; DOI=10.1016/j.devcel.2008.02.004;
Fulco M., Cen Y., Zhao P., Hoffman E.P., McBurney M.W., Sauve A.A.,
Sartorelli V.;
"Glucose restriction inhibits skeletal myoblast differentiation by
activating SIRT1 through AMPK-mediated regulation of Nampt.";
Dev. Cell 14:661-673(2008).
[31]
DISRUPTION PHENOTYPE.
PubMed=18687325; DOI=10.1016/j.yexcr.2008.07.011;
Sequeira J., Boily G., Bazinet S., Saliba S., He X., Jardine K.,
Kennedy C., Staines W., Rousseaux C., Mueller R., McBurney M.W.;
"sirt1-null mice develop an autoimmune-like condition.";
Exp. Cell Res. 314:3069-3074(2008).
[32]
FUNCTION IN DEACETYLATION OF STK11, AND FUNCTION IN POSSIBLE REGULATION OF
STK11.
PubMed=18687677; DOI=10.1074/jbc.m805711200;
Lan F., Cacicedo J.M., Ruderman N., Ido Y.;
"SIRT1 modulation of the acetylation status, cytosolic localization, and
activity of LKB1. Possible role in AMP-activated protein kinase
activation.";
J. Biol. Chem. 283:27628-27635(2008).
[33]
DISRUPTION PHENOTYPE.
PubMed=18270565; DOI=10.1371/journal.pone.0001571;
Coussens M., Maresh J.G., Yanagimachi R., Maeda G., Allsopp R.;
"Sirt1 deficiency attenuates spermatogenesis and germ cell function.";
PLoS ONE 3:E1571-E1571(2008).
[34]
FUNCTION IN AUTOPHAGY.
PubMed=18296641; DOI=10.1073/pnas.0712145105;
Lee I.H., Cao L., Mostoslavsky R., Lombard D.B., Liu J., Bruns N.E.,
Tsokos M., Alt F.W., Finkel T.;
"A role for the NAD-dependent deacetylase Sirt1 in the regulation of
autophagy.";
Proc. Natl. Acad. Sci. U.S.A. 105:3374-3379(2008).
[35]
FUNCTION IN REGULATION OF PPARA, AND INTERACTION WITH PPARA.
PubMed=19356714; DOI=10.1016/j.cmet.2009.02.006;
Purushotham A., Schug T.T., Xu Q., Surapureddi S., Guo X., Li X.;
"Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and
results in hepatic steatosis and inflammation.";
Cell Metab. 9:327-338(2009).
[36]
INTERACTION WITH NMNAT1.
PubMed=19478080; DOI=10.1074/jbc.m109.016469;
Zhang T., Berrocal J.G., Frizzell K.M., Gamble M.J., DuMond M.E.,
Krishnakumar R., Yang T., Sauve A.A., Kraus W.L.;
"Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene
promoters.";
J. Biol. Chem. 284:20408-20417(2009).
[37]
PHOSPHORYLATION AT SER-649, AND MUTAGENESIS OF SER-154; SER-649; SER-651
AND SER-683.
PubMed=19680552; DOI=10.1371/journal.pone.0006611;
Kang H., Jung J.W., Kim M.K., Chung J.H.;
"CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase
activity and cellular response to DNA-damage.";
PLoS ONE 4:E6611-E6611(2009).
[38]
FUNCTION, AND INTERACTION WITH ARNTL.
PubMed=19299583; DOI=10.1126/science.1171641;
Ramsey K.M., Yoshino J., Brace C.S., Abrassart D., Kobayashi Y.,
Marcheva B., Hong H.K., Chong J.L., Buhr E.D., Lee C., Takahashi J.S.,
Imai S., Bass J.;
"Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.";
Science 324:651-654(2009).
[39]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-151 AND SER-154, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Kidney, Lung, Spleen, and Testis;
PubMed=21183079; DOI=10.1016/j.cell.2010.12.001;
Huttlin E.L., Jedrychowski M.P., Elias J.E., Goswami T., Rad R.,
Beausoleil S.A., Villen J., Haas W., Sowa M.E., Gygi S.P.;
"A tissue-specific atlas of mouse protein phosphorylation and expression.";
Cell 143:1174-1189(2010).
[40]
FUNCTION, AND DISRUPTION PHENOTYPE.
PubMed=20620997; DOI=10.1016/j.cmet.2010.05.010;
Ramadori G., Fujikawa T., Fukuda M., Anderson J., Morgan D.A.,
Mostoslavsky R., Stuart R.C., Perello M., Vianna C.R., Nillni E.A.,
Rahmouni K., Coppari R.;
"SIRT1 deacetylase in POMC neurons is required for homeostatic defenses
against diet-induced obesity.";
Cell Metab. 12:78-87(2010).
[41]
FUNCTION IN DEACETYLATION OF SREBF1, AND FUNCTION IN REGULATION OF SREBF1.
PubMed=20817729; DOI=10.1074/jbc.m110.122978;
Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., Wu S.Y.,
Chiang C.M., Veenstra T.D., Kemper J.K.;
"SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic
lipid metabolism.";
J. Biol. Chem. 285:33959-33970(2010).
[42]
FUNCTION IN TELOMERE MAINTENANCE.
PubMed=21187328; DOI=10.1083/jcb.201005160;
Palacios J.A., Herranz D., De Bonis M.L., Velasco S., Serrano M.,
Blasco M.A.;
"SIRT1 contributes to telomere maintenance and augments global homologous
recombination.";
J. Cell Biol. 191:1299-1313(2010).
[43]
PHOSPHORYLATION AT THR-522, MUTAGENESIS OF THR-522, FUNCTION, AND CATALYTIC
ACTIVITY.
PubMed=20167603; DOI=10.1074/jbc.m110.102574;
Guo X., Williams J.G., Schug T.T., Li X.;
"DYRK1A and DYRK3 promote cell survival through phosphorylation and
activation of SIRT1.";
J. Biol. Chem. 285:13223-13232(2010).
[44]
S-NITROSYLATION AT CYS-387 AND CYS-390, AND MUTAGENESIS OF CYS-363;
CYS-366; CYS-387 AND CYS-390.
PubMed=20972425; DOI=10.1038/ncb2114;
Kornberg M.D., Sen N., Hara M.R., Juluri K.R., Nguyen J.V., Snowman A.M.,
Law L., Hester L.D., Snyder S.H.;
"GAPDH mediates nitrosylation of nuclear proteins.";
Nat. Cell Biol. 12:1094-1100(2010).
[45]
INTERACTION WITH FOXO1.
PubMed=20668652; DOI=10.1371/journal.pone.0011786;
Goitre L., Balzac F., Degani S., Degan P., Marchi S., Pinton P.,
Retta S.F.;
"KRIT1 regulates the homeostasis of intracellular reactive oxygen
species.";
PLoS ONE 5:E11786-E11786(2010).
[46]
ALTERNATIVE SPLICING (ISOFORM 2).
PubMed=20975832; DOI=10.1371/journal.pone.0013502;
Lynch C.J., Shah Z.H., Allison S.J., Ahmed S.U., Ford J., Warnock L.J.,
Li H., Serrano M., Milner J.;
"SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with
p53.";
PLoS ONE 5:E13502-E13502(2010).
[47]
FUNCTION, AND INTERACTION WITH HNF1A.
PubMed=21176092; DOI=10.1111/j.1474-9726.2010.00667.x;
Grimm A.A., Brace C.S., Wang T., Stormo G.D., Imai S.;
"A nutrient-sensitive interaction between Sirt1 and HNF-1alpha regulates
Crp expression.";
Aging Cell 10:305-317(2011).
[48]
FUNCTION IN DEACETYLATION OF XBP1, AND SUBCELLULAR LOCATION.
PubMed=20955178; DOI=10.1042/bj20101293;
Wang F.M., Chen Y.J., Ouyang H.J.;
"Regulation of unfolded protein response modulator XBP1s by acetylation and
deacetylation.";
Biochem. J. 433:245-252(2011).
[49]
FUNCTION IN AUTOPHAGY, AND DISRUPTION PHENOTYPE.
PubMed=21189328; DOI=10.1158/0008-5472.can-10-3172;
Powell M.J., Casimiro M.C., Cordon-Cardo C., He X., Yeow W.S., Wang C.,
McCue P.A., McBurney M.W., Pestell R.G.;
"Disruption of a Sirt1-dependent autophagy checkpoint in the prostate
results in prostatic intraepithelial neoplasia lesion formation.";
Cancer Res. 71:964-975(2011).
[50]
FUNCTION IN PALMITATE-INDUCED APOPTOSIS, INDUCTION, AND DOWN-REGULATION BY
PALMITATE.
PubMed=21622680; DOI=10.1093/cvr/cvr145;
Zhu H., Yang Y., Wang Y., Li J., Schiller P.W., Peng T.;
"MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by
down-regulating Sirt1.";
Cardiovasc. Res. 92:75-84(2011).
[51]
INTERACTION WITH FOXO1.
PubMed=22510882; DOI=10.1038/emboj.2012.97;
Nakae J., Cao Y., Hakuno F., Takemori H., Kawano Y., Sekioka R., Abe T.,
Kiyonari H., Tanaka T., Sakai J., Takahashi S., Itoh H.;
"Novel repressor regulates insulin sensitivity through interaction with
Foxo1.";
EMBO J. 31:2275-2295(2012).
[52]
FUNCTION IN NEUROGENESIS, AND INTERACTION WITH BCL6.
PubMed=23160044; DOI=10.1038/nn.3264;
Tiberi L., van den Ameele J., Dimidschstein J., Piccirilli J., Gall D.,
Herpoel A., Bilheu A., Bonnefont J., Iacovino M., Kyba M., Bouschet T.,
Vanderhaeghen P.;
"BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression
of selective Notch targets.";
Nat. Neurosci. 15:1627-1635(2012).
[53]
FUNCTION.
PubMed=26910618; DOI=10.1111/acel.12456;
Bar Oz M., Kumar A., Elayyan J., Reich E., Binyamin M., Kandel L.,
Liebergall M., Steinmeyer J., Lefebvre V., Dvir-Ginzberg M.;
"Acetylation reduces SOX9 nuclear entry and ACAN gene transactivation in
human chondrocytes.";
Aging Cell 15:499-508(2016).
[54]
INTERACTION WITH SIRT7.
PubMed=28842251; DOI=10.1016/j.bbrc.2017.08.081;
Ianni A., Hoelper S., Krueger M., Braun T., Bober E.;
"Sirt7 stabilizes rDNA heterochromatin through recruitment of DNMT1 and
Sirt1.";
Biochem. Biophys. Res. Commun. 492:434-440(2017).
[55]
FUNCTION, AND CATALYTIC ACTIVITY.
PubMed=28883095; DOI=10.1242/jcs.206904;
Lai Y., Li J., Li X., Zou C.;
"Lipopolysaccharide modulates p300 and Sirt1 to promote PRMT1 stability via
an SCFFbxl17-recognized acetyldegron.";
J. Cell Sci. 130:3578-3587(2017).
[56]
FUNCTION, CATALYTIC ACTIVITY, ACETYLATION AT LYS-230; LYS-369; LYS-422;
LYS-505 AND LYS-600, AND MUTAGENESIS OF LYS-230; LYS-369; LYS-505 AND
LYS-600.
PubMed=28923965; DOI=10.1073/pnas.1706945114;
Fang J., Ianni A., Smolka C., Vakhrusheva O., Nolte H., Krueger M.,
Wietelmann A., Simonet N.G., Adrian-Segarra J.M., Vaquero A., Braun T.,
Bober E.;
"Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic
activation of Sirt1.";
Proc. Natl. Acad. Sci. U.S.A. 114:E8352-E8361(2017).
[57]
FUNCTION IN DEACETYLATION OF PCK1.
PubMed=30193097; DOI=10.1016/j.molcel.2018.07.031;
Latorre-Muro P., Baeza J., Armstrong E.A., Hurtado-Guerrero R., Corzana F.,
Wu L.E., Sinclair D.A., Lopez-Buesa P., Carrodeguas J.A., Denu J.M.;
"Dynamic acetylation of phosphoenolpyruvate carboxykinase toggles enzyme
activity between gluconeogenic and anaplerotic reactions.";
Mol. Cell 71:718-732(2018).
[58]
FUNCTION, AND CATALYTIC ACTIVITY.
PubMed=30026585; DOI=10.1038/s41467-018-05187-4;
Fukuda M., Yoshizawa T., Karim M.F., Sobuz S.U., Korogi W., Kobayasi D.,
Okanishi H., Tasaki M., Ono K., Sawa T., Sato Y., Chirifu M., Masuda T.,
Nakamura T., Tanoue H., Nakashima K., Kobashigawa Y., Morioka H., Bober E.,
Ohtsuki S., Yamagata Y., Ando Y., Oike Y., Araki N., Takeda S., Mizuta H.,
Yamagata K.;
"SIRT7 has a critical role in bone formation by regulating lysine acylation
of SP7/Osterix.";
Nat. Commun. 9:2833-2833(2018).
-!- FUNCTION: NAD-dependent protein deacetylase that links transcriptional
regulation directly to intracellular energetics and participates in the
coordination of several separated cellular functions such as cell
cycle, response to DNA damage, metabolism, apoptosis and autophagy
(PubMed:11250901, PubMed:11672522, PubMed:12651913, PubMed:12887892,
PubMed:12960381, PubMed:15175761, PubMed:15220471, PubMed:15632193,
PubMed:15744310, PubMed:15788402, PubMed:16098828, PubMed:16366736,
PubMed:16790548, PubMed:16892051, PubMed:17098745, PubMed:17347648,
PubMed:17620057, PubMed:17901049, PubMed:17936707, PubMed:18004385,
PubMed:18296641, PubMed:18371449, PubMed:18477450, PubMed:18662546,
PubMed:18662547, PubMed:18687677, PubMed:19299583, PubMed:19356714,
PubMed:20817729, PubMed:21176092, PubMed:21187328, PubMed:21189328,
PubMed:21622680, PubMed:23160044, PubMed:20167603, PubMed:28883095).
Can modulate chromatin function through deacetylation of histones and
can promote alterations in the methylation of histones and DNA, leading
to transcriptional repression (By similarity). Deacetylates a broad
range of transcription factors and coregulators, thereby regulating
target gene expression positively and negatively (By similarity).
Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is
altered by glucose deprivation and metabolic changes associated with
caloric restriction (By similarity). Is essential in skeletal muscle
cell differentiation and in response to low nutrients mediates the
inhibitory effect on skeletal myoblast differentiation which also
involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide
phosphoribosyltransferase (NAMPT) (PubMed:12887892, PubMed:18477450).
Component of the eNoSC (energy-dependent nucleolar silencing) complex,
a complex that mediates silencing of rDNA in response to intracellular
energy status and acts by recruiting histone-modifying enzymes (By
similarity). The eNoSC complex is able to sense the energy status of
cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio
activates SIRT1, leading to histone H3 deacetylation followed by
dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation
of silent chromatin in the rDNA locus (PubMed:18004385). Deacetylates
'Lys-266' of SUV39H1, leading to its activation (By similarity).
Inhibits skeletal muscle differentiation by deacetylating PCAF and
MYOD1 (PubMed:12887892). Deacetylates H2A and 'Lys-26' of H1-4 (By
similarity). Deacetylates 'Lys-16' of histone H4 (in vitro) (By
similarity). Involved in NR0B2/SHP corepression function through
chromatin remodeling: Recruited to LRH1 target gene promoters by
NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading
to transcriptional repression (By similarity). Proposed to contribute
to genomic integrity via positive regulation of telomere length;
however, reports on localization to pericentromeric heterochromatin are
conflicting (PubMed:21187328). Proposed to play a role in constitutive
heterochromatin (CH) formation and/or maintenance through regulation of
the available pool of nuclear SUV39H1 (By similarity). Upon
oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting
SUV39H1 polyubiquitination by MDM2 (By similarity). This increase in
SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to
accelerate renewal of the heterochromatin which correlates with greater
genomic integrity during stress response (By similarity). Deacetylates
'Lys-382' of p53/TP53 and impairs its ability to induce transcription-
dependent proapoptotic program and modulate cell senescence
(PubMed:11672522, PubMed:12960381). Deacetylates TAF1B and thereby
represses rDNA transcription by the RNA polymerase I (PubMed:11250901).
Deacetylates MYC, promotes the association of MYC with MAX and
decreases MYC stability leading to compromised transformational
capability (By similarity). Deacetylates FOXO3 in response to oxidative
stress thereby increasing its ability to induce cell cycle arrest and
resistance to oxidative stress but inhibiting FOXO3-mediated induction
of apoptosis transcriptional activity; also leading to FOXO3
ubiquitination and protesomal degradation (By similarity). Appears to
have a similar effect on MLLT7/FOXO4 in regulation of transcriptional
activity and apoptosis (By similarity). Deacetylates DNMT1; thereby
impairs DNMT1 methyltransferase-independent transcription repressor
activity, modulates DNMT1 cell cycle regulatory function and DNMT1-
mediated gene silencing (By similarity). Deacetylates RELA/NF-kappa-B
p65 thereby inhibiting its transactivating potential and augments
apoptosis in response to TNF-alpha (By similarity). Deacetylates HIF1A,
KAT5/TIP60, RB1 and HIC1 (PubMed:17620057). Deacetylates FOXO1, which
increases its DNA binding ability and enhances its transcriptional
activity leading to increased gluconeogenesis in liver
(PubMed:15220471, PubMed:15788402). Inhibits E2F1 transcriptional
activity and apoptotic function, possibly by deacetylation
(PubMed:16892051). Involved in HES1- and HEY2-mediated transcriptional
repression (By similarity). In cooperation with MYCN seems to be
involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN
stabilization by phosphorylation at 'Ser-62' (By similarity).
Deacetylates MEF2D (By similarity). Required for antagonist-mediated
transcription suppression of AR-dependent genes which may be linked to
local deacetylation of histone H3 (By similarity). Represses HNF1A-
mediated transcription (PubMed:21176092). Required for the repression
of ESRRG by CREBZF (By similarity). Deacetylates NR1H3 and NR1H2 and
deacetylation of NR1H3 at 'Lys-434' positively regulates transcription
of NR1H3:RXR target genes, promotes NR1H3 proteosomal degradation and
results in cholesterol efflux; a promoter clearing mechanism after
reach round of transcription is proposed (PubMed:17936707). Involved in
lipid metabolism (By similarity). Implicated in regulation of
adipogenesis and fat mobilization in white adipocytes by repression of
PPARG which probably involves association with NCOR1 and SMRT/NCOR2
(PubMed:15175761). Deacetylates p300/EP300 and PRMT1 (PubMed:15632193,
PubMed:28883095). Deacetylates ACSS2 leading to its activation, and
HMGCS1 deacetylation (PubMed:16790548). Involved in liver and muscle
metabolism (By similarity). Through deacetylation and activation of
PPARGC1A is required to activate fatty acid oxidation in skeletal
muscle under low-glucose conditions and is involved in glucose
homeostasis (PubMed:15744310, PubMed:17347648). Involved in regulation
of PPARA and fatty acid beta-oxidation in liver (PubMed:19356714).
Involved in positive regulation of insulin secretion in pancreatic beta
cells in response to glucose; the function seems to imply
transcriptional repression of UCP2 (PubMed:16098828, PubMed:16366736,
PubMed:17901049). Proposed to deacetylate IRS2 thereby facilitating its
insulin-induced tyrosine phosphorylation (PubMed:17901049).
Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability
and transactivation in lipogenic gene expression (By similarity).
Involved in DNA damage response by repressing genes which are involved
in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and
facilitating recruitment of additional factors to sites of damaged DNA,
such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair
and SIRT1-deacetylated XPA interacts with RPA2 (By similarity). Also
involved in DNA repair of DNA double-strand breaks by homologous
recombination and specifically single-strand annealing independently of
XRCC6/Ku70 and NBN. Transcriptional suppression of XPC probably
involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT)
signaling (By similarity). Transcriptional suppression of TP73 probably
involves E2F4 and PCAF (By similarity). Deacetylates WRN thereby
regulating its helicase and exonuclease activities and regulates WRN
nuclear translocation in response to DNA damage (By similarity).
Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP
endonuclease activity by promoting the association of APEX1 to XRCC1
(By similarity). Increases p53/TP53-mediated transcription-independent
apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and
probably redirecting it to mitochondria (By similarity). Deacetylates
XRCC6/Ku70 at 'Lys-537' and 'Lys-540' causing it to sequester BAX away
from mitochondria thereby inhibiting stress-induced apoptosis (By
similarity). Is involved in autophagy, presumably by deacetylating
ATG5, ATG7 and MAP1LC3B/ATG8 (PubMed:18296641, PubMed:21189328).
Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to
PIP3 and promotes their activation (By similarity). Proposed to play
role in regulation of STK11/LBK1-dependent AMPK signaling pathways
implicated in cellular senescence which seems to involve the regulation
of the acetylation status of STK11/LBK1 (PubMed:18687677). Can
deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic
localization and association with STRAD; however, the relevance of such
activity in normal cells is unclear (By similarity). In endothelial
cells is shown to inhibit STK11/LBK1 activity and to promote its
degradation (By similarity). Deacetylates SMAD7 at 'Lys-64' and 'Lys-
70' thereby promoting its degradation (PubMed:17098745). Deacetylates
CIITA and augments its MHC class II transactivation and contributes to
its stability (By similarity). Deacetylates MECOM/EVI1 (By similarity).
Deacetylates PML at 'Lys-487' and this deacetylation promotes PML
control of PER2 nuclear localization (By similarity). During the
neurogenic transition, represses selective NOTCH1-target genes through
histone deacetylation in a BCL6-dependent manner and leading to
neuronal differentiation (By similarity). Regulates the circadian
expression of several core clock genes, including ARNTL/BMAL1, RORC,
PER2 and CRY1 and plays a critical role in maintaining a controlled
rhythmicity in histone acetylation, thereby contributing to circadian
chromatin remodeling (PubMed:18662546, PubMed:18662547,
PubMed:19299583). Deacetylates ARNTL/BMAL1 and histones at the
circadian gene promoters in order to facilitate repression by
inhibitory components of the circadian oscillator (PubMed:18662546,
PubMed:18662547, PubMed:19299583). Deacetylates PER2, facilitating its
ubiquitination and degradation by the proteosome (PubMed:18662546).
Protects cardiomyocytes against palmitate-induced apoptosis
(PubMed:21622680). Deacetylates XBP1 isoform 2; deacetylation decreases
protein stability of XBP1 isoform 2 and inhibits its transcriptional
activity (By similarity). Deacetylates PCK1 and directs its activity
toward phosphoenolpyruvate production promoting gluconeogenesis
(PubMed:30193097). Involved in the CCAR2-mediated regulation of PCK1
and NR1D1 (By similarity). Deacetylates CTNB1 at 'Lys-49' (By
similarity). In POMC (pro-opiomelanocortin) neurons, required for
leptin-induced activation of PI3K signaling (PubMed:20620997). In
addition to protein deacetylase activity, also acts as protein-lysine
deacylase: acts as a protein depropionylase by mediating
depropionylation of Osterix (SP7) (PubMed:30026585). Deacetylates SOX9;
promoting SOX9 nuclear localization and transactivation activity
(PubMed:26910618). Involved in the regulation of centrosome
duplication. Deacetylates CENATAC in G1 phase, allowing for SASS6
accumulation on the centrosome and subsequent procentriole assembly (By
similarity). {ECO:0000250|UniProtKB:Q96EB6,
ECO:0000269|PubMed:11250901, ECO:0000269|PubMed:11672522,
ECO:0000269|PubMed:12651913, ECO:0000269|PubMed:12887892,
ECO:0000269|PubMed:12960381, ECO:0000269|PubMed:15175761,
ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15632193,
ECO:0000269|PubMed:15744310, ECO:0000269|PubMed:15788402,
ECO:0000269|PubMed:16098828, ECO:0000269|PubMed:16366736,
ECO:0000269|PubMed:16790548, ECO:0000269|PubMed:16892051,
ECO:0000269|PubMed:17098745, ECO:0000269|PubMed:17347648,
ECO:0000269|PubMed:17620057, ECO:0000269|PubMed:17901049,
ECO:0000269|PubMed:17936707, ECO:0000269|PubMed:18004385,
ECO:0000269|PubMed:18296641, ECO:0000269|PubMed:18371449,
ECO:0000269|PubMed:18477450, ECO:0000269|PubMed:18662546,
ECO:0000269|PubMed:18662547, ECO:0000269|PubMed:18687677,
ECO:0000269|PubMed:19299583, ECO:0000269|PubMed:19356714,
ECO:0000269|PubMed:20167603, ECO:0000269|PubMed:20620997,
ECO:0000269|PubMed:20817729, ECO:0000269|PubMed:21176092,
ECO:0000269|PubMed:21187328, ECO:0000269|PubMed:21189328,
ECO:0000269|PubMed:21622680, ECO:0000269|PubMed:23160044,
ECO:0000269|PubMed:26910618, ECO:0000269|PubMed:28883095,
ECO:0000269|PubMed:30026585, ECO:0000269|PubMed:30193097}.
-!- FUNCTION: [Isoform 2]: Deacetylates 'Lys-382' of p53/TP53, however with
lower activity than isoform 1. In combination, the two isoforms exert
an additive effect. Isoform 2 regulates p53/TP53 expression and
cellular stress response and is in turn repressed by p53/TP53
presenting a SIRT1 isoform-dependent auto-regulatory loop.
{ECO:0000250|UniProtKB:Q96EB6}.
-!- FUNCTION: [SirtT1 75 kDa fragment]: Catalytically inactive 75SirT1 may
be involved in regulation of apoptosis. May be involved in protecting
chondrocytes from apoptotic death by associating with cytochrome C and
interfering with apoptosome assembly. {ECO:0000250|UniProtKB:Q96EB6}.
-!- CATALYTIC ACTIVITY:
Reaction=H2O + N(6)-acetyl-L-lysyl-[protein] + NAD(+) = 2''-O-acetyl-
ADP-D-ribose + L-lysyl-[protein] + nicotinamide;
Xref=Rhea:RHEA:43636, Rhea:RHEA-COMP:9752, Rhea:RHEA-COMP:10731,
ChEBI:CHEBI:15377, ChEBI:CHEBI:17154, ChEBI:CHEBI:29969,
ChEBI:CHEBI:57540, ChEBI:CHEBI:61930, ChEBI:CHEBI:83767;
EC=2.3.1.286; Evidence={ECO:0000255|PROSITE-ProRule:PRU00236,
ECO:0000269|PubMed:20167603, ECO:0000269|PubMed:28883095,
ECO:0000269|PubMed:28923965};
-!- CATALYTIC ACTIVITY:
Reaction=H2O + N(6)-propanoyl-L-lysyl-[protein] + NAD(+) = 3''-O-
propanoyl-ADP-D-ribose + L-lysyl-[protein] + nicotinamide;
Xref=Rhea:RHEA:23500, Rhea:RHEA-COMP:9752, Rhea:RHEA-COMP:13758,
ChEBI:CHEBI:15377, ChEBI:CHEBI:17154, ChEBI:CHEBI:29969,
ChEBI:CHEBI:57540, ChEBI:CHEBI:138019, ChEBI:CHEBI:145015;
Evidence={ECO:0000305|PubMed:30026585};
PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:23501;
Evidence={ECO:0000305|PubMed:30026585};
-!- COFACTOR:
Name=Zn(2+); Xref=ChEBI:CHEBI:29105;
Evidence={ECO:0000250|UniProtKB:Q8IXJ6};
Note=Binds 1 zinc ion per subunit. {ECO:0000250|UniProtKB:Q8IXJ6};
-!- ACTIVITY REGULATION: Activated by resveratrol (3,5,4'-trihydroxy-trans-
stilbene), butein (3,4,2',4'-tetrahydroxychalcone), piceatannol
(3,5,3',4'-tetrahydroxy-trans-stilbene), Isoliquiritigenin (4,2',4'-
trihydroxychalcone), fisetin (3,7,3',4'-tetrahydroxyflavone) and
quercetin (3,5,7,3',4'-pentahydroxyflavone). MAPK8/JNK1 and
RPS19BP1/AROS act as positive regulators of deacetylation activity (By
similarity). Inhibited by nicotinamide. Negatively regulated by CCAR2
(By similarity). {ECO:0000250|UniProtKB:Q96EB6}.
-!- SUBUNIT: Interacts with XBP1 isoform 2 (By similarity). Found in a
complex with PCAF and MYOD1 Component of the eNoSC complex, composed of
SIRT1, SUV39H1 and RRP8. Interacts with HES1, HEY2 and PML. Interacts
with RPS19BP1/AROS. Interacts with CCAR2 (via N-terminus); the
interaction disrupts the interaction between SIRT1 and p53/TP53.
Interacts with SETD7; the interaction induces the dissociation of SIRT1
from p53/TP53 and increases p53/TP53 activity. Interacts with MYCN,
NR1I2, CREBZF, TSC2, TLE1, FOS, JUN, NR0B2, PPARG, NCOR, IRS1, IRS2 and
NMNAT1. Interacts with HNF1A; the interaction occurs under nutrient
restriction. Interacts with SUZ12; the interaction mediates the
association with the PRC4 histone methylation complex which is specific
as an association with PCR2 and PCR3 complex variants is not found.
Interacts with FOXO1; the interaction deacetylates FOXO1, enhances its
DNA-binding ability and increases its transcriptional activity.
Interacts with BCL6; leads to a epigenetic repression of specific
target genes. Interacts with CLOCK, ARNTL/BMAL1 and PER2. Interacts
with PPARA; the interaction seems to be modulated by NAD(+) levels.
Interacts with NR1H3 and this interaction is inhibited in the presence
of CCAR2. Interacts with CHEK2 and p53/TP53. Exhibits a preferential
interaction with sumoylated CCAR2 over its unmodified form (By
similarity). Interacts with PACS2 (By similarity). Interacts with SIRT7
(PubMed:28842251, PubMed:28923965). {ECO:0000250|UniProtKB:Q96EB6,
ECO:0000269|PubMed:11672522, ECO:0000269|PubMed:12887892,
ECO:0000269|PubMed:15175761, ECO:0000269|PubMed:15220471,
ECO:0000269|PubMed:16269335, ECO:0000269|PubMed:16892051,
ECO:0000269|PubMed:17901049, ECO:0000269|PubMed:18662546,
ECO:0000269|PubMed:18662547, ECO:0000269|PubMed:19299583,
ECO:0000269|PubMed:19356714, ECO:0000269|PubMed:19478080,
ECO:0000269|PubMed:20668652, ECO:0000269|PubMed:21176092,
ECO:0000269|PubMed:22510882, ECO:0000269|PubMed:23160044,
ECO:0000269|PubMed:28842251, ECO:0000269|PubMed:28923965}.
-!- INTERACTION:
Q923E4; O08785: Clock; NbExp=11; IntAct=EBI-1802585, EBI-79859;
Q923E4; Q61214: Dyrk1a; NbExp=4; IntAct=EBI-1802585, EBI-80344;
Q923E4; Q922Y0: Dyrk3; NbExp=7; IntAct=EBI-1802585, EBI-5242007;
Q923E4; Q9R1Y5: Hic1; NbExp=2; IntAct=EBI-1802585, EBI-5236187;
Q923E4; P22361: Hnf1a; NbExp=5; IntAct=EBI-1802585, EBI-5272860;
Q923E4; P81122: Irs2; NbExp=2; IntAct=EBI-1802585, EBI-1369862;
Q923E4; Q60974: Ncor1; NbExp=3; IntAct=EBI-1802585, EBI-349004;
Q923E4; Q64221: Nhlh2; NbExp=2; IntAct=EBI-1802585, EBI-5378529;
Q923E4; Q62227: Nr0b2; NbExp=2; IntAct=EBI-1802585, EBI-4310440;
Q923E4; P37238: Pparg; NbExp=2; IntAct=EBI-1802585, EBI-5260705;
Q923E4; O70343: Ppargc1a; NbExp=6; IntAct=EBI-1802585, EBI-1371053;
Q923E4; O35253: Smad7; NbExp=6; IntAct=EBI-1802585, EBI-5274835;
Q923E4; Q9WTN3: Srebf1; NbExp=2; IntAct=EBI-1802585, EBI-5273743;
Q923E4; Q01094: E2F1; Xeno; NbExp=3; IntAct=EBI-1802585, EBI-448924;
Q923E4; Q12778: FOXO1; Xeno; NbExp=2; IntAct=EBI-1802585, EBI-1108782;
Q923E4; P06400: RB1; Xeno; NbExp=4; IntAct=EBI-1802585, EBI-491274;
Q923E4; P28749: RBL1; Xeno; NbExp=2; IntAct=EBI-1802585, EBI-971402;
Q923E4; Q08999: RBL2; Xeno; NbExp=2; IntAct=EBI-1802585, EBI-971439;
Q923E4; P04637: TP53; Xeno; NbExp=4; IntAct=EBI-1802585, EBI-366083;
-!- SUBCELLULAR LOCATION: Nucleus, PML body {ECO:0000250|UniProtKB:Q96EB6}.
Cytoplasm {ECO:0000269|PubMed:17197703, ECO:0000269|PubMed:17901049}.
Nucleus {ECO:0000269|PubMed:17197703, ECO:0000269|PubMed:17901049,
ECO:0000269|PubMed:18004385, ECO:0000269|PubMed:18662546,
ECO:0000269|PubMed:20955178}. Note=Colocalizes in the nucleus with XBP1
isoform 2. Recruited to the nuclear bodies via its interaction with
PML. Colocalized with APEX1 in the nucleus. May be found in nucleolus,
nuclear euchromatin, heterochromatin and inner membrane (By
similarity). Shuttles between nucleus and cytoplasm (PubMed:17197703).
{ECO:0000250|UniProtKB:Q96EB6, ECO:0000269|PubMed:17197703}.
-!- SUBCELLULAR LOCATION: [SirtT1 75 kDa fragment]: Cytoplasm
{ECO:0000250|UniProtKB:Q96EB6}. Mitochondrion
{ECO:0000250|UniProtKB:Q96EB6}.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing; Named isoforms=2;
Name=1;
IsoId=Q923E4-1; Sequence=Displayed;
Name=2; Synonyms=delta-exon8;
IsoId=Q923E4-2; Sequence=VSP_042190;
-!- TISSUE SPECIFICITY: Widely expressed. Weakly expressed in liver and
skeletal muscle. {ECO:0000269|PubMed:12482959}.
-!- INDUCTION: By calorie restriction which induces endothelial nitric
oxide synthase (eNOS) expression. Induced in liver by pyruvate during
fasting. Expressed in a circadian manner in the liver with maximal and
minimal levels reached at around Zeitgeber time (ZT) 16 and ZT4,
respectively. Its deacetylase activity in the liver is also regulated
in a circadian manner, with a peak at ZT15. Down-regulated by
palmitate; palmitate down-regulation is mediated by the induction of
miR-195 that directly targets SIRT1. {ECO:0000269|PubMed:15744310,
ECO:0000269|PubMed:16224023, ECO:0000269|PubMed:18662546,
ECO:0000269|PubMed:18662547, ECO:0000269|PubMed:21622680}.
-!- PTM: Methylated on multiple lysine residues; methylation is enhanced
after DNA damage and is dispensable for deacetylase activity toward
p53/TP53. {ECO:0000250|UniProtKB:Q96EB6}.
-!- PTM: Phosphorylated. Phosphorylated by STK4/MST1, resulting in
inhibition of SIRT1-mediated p53/TP53 deacetylation. Phosphorylation by
MAPK8/JNK1 at Ser-46 and Thr-522 leads to increased nuclear
localization and enzymatic activity. Phosphorylation at Thr-522 by
DYRK1A and DYRK3 activates deacetylase activity and promotes cell
survival (PubMed:20167603). Phosphorylation by mammalian target of
rapamycin complex 1 (mTORC1) at Ser-46 inhibits deacetylation activity.
Phosphorylated by CaMK2, leading to increased p53/TP53 and NF-kappa-B
p65/RELA deacetylation activity (By similarity).
{ECO:0000250|UniProtKB:Q96EB6, ECO:0000269|PubMed:20167603}.
-!- PTM: Proteolytically cleaved by cathepsin B upon TNF-alpha treatment to
yield catalytic inactive but stable SirtT1 75 kDa fragment (75SirT1).
{ECO:0000250|UniProtKB:Q96EB6}.
-!- PTM: S-nitrosylated by GAPDH, leading to inhibit the NAD-dependent
protein deacetylase activity. {ECO:0000269|PubMed:20972425}.
-!- PTM: Acetylated at various Lys residues (PubMed:28923965). Deacetylated
via an autocatalytic mechanism (PubMed:28923965). Autodeacetylation at
Lys-230 promotes its protein deacetylase activity (PubMed:28923965).
{ECO:0000269|PubMed:28923965}.
-!- DISRUPTION PHENOTYPE: High degree of embryonic and postnatal lethality.
Decreased levels of histone H3 containing a trimethyl group at its
lysine 9 position (H3K9me3) in regions of heterochromatin. Attenuates
spermatogenesis but not oogenesis with reduced numbers of mature sperm
and spermatogenic precursors. Mice develop an autoimmune-like condition
with late onset diabetes insipidus. Prostatic intraepithelial neoplasia
associated with reduced autophagy. Conditional knockout in POMC neurons
leads to an increase of body weight compare to controls when animals
are challenged with high-fat diet (PubMed:20620997).
{ECO:0000269|PubMed:12482959, ECO:0000269|PubMed:18004385,
ECO:0000269|PubMed:18270565, ECO:0000269|PubMed:18687325,
ECO:0000269|PubMed:20620997, ECO:0000269|PubMed:21189328}.
-!- SIMILARITY: Belongs to the sirtuin family. Class I subfamily.
{ECO:0000305}.
---------------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
Distributed under the Creative Commons Attribution (CC BY 4.0) License
---------------------------------------------------------------------------
EMBL; AF214646; AAF24983.1; -; mRNA.
EMBL; BC006584; AAH06584.1; -; mRNA.
CCDS; CCDS23898.1; -. [Q923E4-1]
RefSeq; NP_062786.1; NM_019812.3. [Q923E4-1]
SMR; Q923E4; -.
BioGRID; 220297; 47.
ComplexPortal; CPX-468; eNoSc complex.
CORUM; Q923E4; -.
DIP; DIP-47052N; -.
IntAct; Q923E4; 48.
STRING; 10090.ENSMUSP00000101082; -.
iPTMnet; Q923E4; -.
PhosphoSitePlus; Q923E4; -.
EPD; Q923E4; -.
jPOST; Q923E4; -.
PaxDb; Q923E4; -.
PeptideAtlas; Q923E4; -.
PRIDE; Q923E4; -.
Antibodypedia; 1637; 1096 antibodies.
DNASU; 93759; -.
Ensembl; ENSMUST00000020257; ENSMUSP00000020257; ENSMUSG00000020063. [Q923E4-1]
Ensembl; ENSMUST00000120239; ENSMUSP00000112595; ENSMUSG00000020063. [Q923E4-1]
Ensembl; ENSMUST00000177694; ENSMUSP00000137565; ENSMUSG00000020063. [Q923E4-2]
GeneID; 93759; -.
KEGG; mmu:93759; -.
UCSC; uc007fke.2; mouse. [Q923E4-1]
CTD; 23411; -.
MGI; MGI:2135607; Sirt1.
eggNOG; KOG2684; Eukaryota.
GeneTree; ENSGT00940000159406; -.
HOGENOM; CLU_016587_0_0_1; -.
InParanoid; Q923E4; -.
PhylomeDB; Q923E4; -.
BRENDA; 3.5.1.98; 3474.
Reactome; R-MMU-3371453; Regulation of HSF1-mediated heat shock response.
Reactome; R-MMU-9617629; Regulation of FOXO transcriptional activity by acetylation.
BioGRID-ORCS; 93759; 2 hits in 20 CRISPR screens.
ChiTaRS; Sirt1; mouse.
PRO; PR:Q923E4; -.
Proteomes; UP000000589; Chromosome 10.
RNAct; Q923E4; protein.
Bgee; ENSMUSG00000020063; Expressed in cleaving embryo and 288 other tissues.
Genevisible; Q923E4; MM.
GO; GO:0030424; C:axon; ISO:MGI.
GO; GO:0000785; C:chromatin; IDA:UniProtKB.
GO; GO:0005677; C:chromatin silencing complex; ISO:MGI.
GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
GO; GO:0005829; C:cytosol; ISO:MGI.
GO; GO:0035098; C:ESC/E(Z) complex; IEA:Ensembl.
GO; GO:0030426; C:growth cone; ISO:MGI.
GO; GO:0005739; C:mitochondrion; IDA:MGI.
GO; GO:0000790; C:nuclear chromatin; ISO:MGI.
GO; GO:0005635; C:nuclear envelope; ISO:MGI.
GO; GO:0005719; C:nuclear euchromatin; ISS:UniProtKB.
GO; GO:0005720; C:nuclear heterochromatin; IDA:UniProtKB.
GO; GO:0005637; C:nuclear inner membrane; ISS:UniProtKB.
GO; GO:0005730; C:nucleolus; IEA:Ensembl.
GO; GO:0005654; C:nucleoplasm; ISS:UniProtKB.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0016605; C:PML body; ISO:MGI.
GO; GO:0032991; C:protein-containing complex; IDA:MGI.
GO; GO:0033553; C:rDNA heterochromatin; ISO:MGI.
GO; GO:0043425; F:bHLH transcription factor binding; ISS:UniProtKB.
GO; GO:0019213; F:deacetylase activity; IMP:UniProtKB.
GO; GO:0019899; F:enzyme binding; IPI:UniProtKB.
GO; GO:0042393; F:histone binding; ISO:MGI.
GO; GO:0004407; F:histone deacetylase activity; ISO:MGI.
GO; GO:0043398; F:HLH domain binding; ISO:MGI.
GO; GO:0042802; F:identical protein binding; ISO:MGI.
GO; GO:1990254; F:keratin filament binding; ISO:MGI.
GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
GO; GO:0051019; F:mitogen-activated protein kinase binding; ISO:MGI.
GO; GO:0070403; F:NAD+ binding; IBA:GO_Central.
GO; GO:0017136; F:NAD-dependent histone deacetylase activity; IDA:MGI.
GO; GO:0046969; F:NAD-dependent histone deacetylase activity (H3-K9 specific); IDA:UniProtKB.
GO; GO:0034979; F:NAD-dependent protein deacetylase activity; IDA:UniProtKB.
GO; GO:0035257; F:nuclear hormone receptor binding; ISO:MGI.
GO; GO:0002039; F:p53 binding; IPI:BHF-UCL.
GO; GO:1990841; F:promoter-specific chromatin binding; IDA:MGI.
GO; GO:0008022; F:protein C-terminus binding; ISO:MGI.
GO; GO:0033558; F:protein deacetylase activity; IDA:UniProtKB.
GO; GO:0019904; F:protein domain specific binding; IPI:BHF-UCL.
GO; GO:0043422; F:protein kinase B binding; ISO:MGI.
GO; GO:0106231; F:protein-propionyllysine depropionylase activity; IMP:UniProtKB.
GO; GO:0000978; F:RNA polymerase II cis-regulatory region sequence-specific DNA binding; IDA:UniProtKB.
GO; GO:0003713; F:transcription coactivator activity; IDA:BHF-UCL.
GO; GO:0003714; F:transcription corepressor activity; IMP:BHF-UCL.
GO; GO:0008134; F:transcription factor binding; ISO:MGI.
GO; GO:0001525; P:angiogenesis; IMP:UniProtKB.
GO; GO:0042595; P:behavioral response to starvation; IMP:MGI.
GO; GO:0001678; P:cellular glucose homeostasis; IMP:UniProtKB.
GO; GO:1904646; P:cellular response to amyloid-beta; ISO:MGI.
GO; GO:0006974; P:cellular response to DNA damage stimulus; ISO:MGI.
GO; GO:0070301; P:cellular response to hydrogen peroxide; ISO:MGI.
GO; GO:0071456; P:cellular response to hypoxia; ISS:UniProtKB.
GO; GO:0071479; P:cellular response to ionizing radiation; IMP:UniProtKB.
GO; GO:1990830; P:cellular response to leukemia inhibitory factor; IEP:MGI.
GO; GO:0009267; P:cellular response to starvation; IMP:BHF-UCL.
GO; GO:0071356; P:cellular response to tumor necrosis factor; ISS:UniProtKB.
GO; GO:0035356; P:cellular triglyceride homeostasis; IMP:UniProtKB.
GO; GO:0042632; P:cholesterol homeostasis; IMP:UniProtKB.
GO; GO:0006325; P:chromatin organization; ISO:MGI.
GO; GO:0032922; P:circadian regulation of gene expression; IMP:UniProtKB.
GO; GO:0007623; P:circadian rhythm; IEP:UniProtKB.
GO; GO:0000731; P:DNA synthesis involved in DNA repair; IMP:UniProtKB.
GO; GO:0097009; P:energy homeostasis; ISO:MGI.
GO; GO:0055089; P:fatty acid homeostasis; IMP:UniProtKB.
GO; GO:0031507; P:heterochromatin assembly; ISO:MGI.
GO; GO:0070829; P:heterochromatin maintenance; ISO:MGI.
GO; GO:0016575; P:histone deacetylation; IDA:UniProtKB.
GO; GO:0070932; P:histone H3 deacetylation; ISO:MGI.
GO; GO:0008630; P:intrinsic apoptotic signaling pathway in response to DNA damage; IDA:UniProtKB.
GO; GO:0042771; P:intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator; ISS:UniProtKB.
GO; GO:0033210; P:leptin-mediated signaling pathway; IMP:UniProtKB.
GO; GO:0010934; P:macrophage cytokine production; IMP:UniProtKB.
GO; GO:0030225; P:macrophage differentiation; IMP:UniProtKB.
GO; GO:0007517; P:muscle organ development; IEA:UniProtKB-KW.
GO; GO:0060766; P:negative regulation of androgen receptor signaling pathway; ISO:MGI.
GO; GO:0043066; P:negative regulation of apoptotic process; ISS:UniProtKB.
GO; GO:2000480; P:negative regulation of cAMP-dependent protein kinase activity; ISS:UniProtKB.
GO; GO:0010667; P:negative regulation of cardiac muscle cell apoptotic process; ISO:MGI.
GO; GO:0060548; P:negative regulation of cell death; ISO:MGI.
GO; GO:0030308; P:negative regulation of cell growth; ISO:MGI.
GO; GO:2000655; P:negative regulation of cellular response to testosterone stimulus; ISO:MGI.
GO; GO:2000773; P:negative regulation of cellular senescence; ISS:UniProtKB.
GO; GO:0043392; P:negative regulation of DNA binding; ISO:MGI.
GO; GO:0043518; P:negative regulation of DNA damage response, signal transduction by p53 class mediator; ISO:MGI.
GO; GO:0043433; P:negative regulation of DNA-binding transcription factor activity; IMP:ParkinsonsUK-UCL.
GO; GO:0045599; P:negative regulation of fat cell differentiation; IMP:BHF-UCL.
GO; GO:2000270; P:negative regulation of fibroblast apoptotic process; ISO:MGI.
GO; GO:0010629; P:negative regulation of gene expression; ISO:MGI.
GO; GO:0060125; P:negative regulation of growth hormone secretion; ISO:MGI.
GO; GO:0051097; P:negative regulation of helicase activity; ISO:MGI.
GO; GO:0071441; P:negative regulation of histone H3-K14 acetylation; ISO:MGI.
GO; GO:1900113; P:negative regulation of histone H3-K9 trimethylation; IDA:BHF-UCL.
GO; GO:2000619; P:negative regulation of histone H4-K16 acetylation; ISO:MGI.
GO; GO:0043124; P:negative regulation of I-kappaB kinase/NF-kappaB signaling; ISS:UniProtKB.
GO; GO:1902166; P:negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator; IMP:BHF-UCL.
GO; GO:0043524; P:negative regulation of neuron apoptotic process; ISO:MGI.
GO; GO:1901215; P:negative regulation of neuron death; IGI:MGI.
GO; GO:0032088; P:negative regulation of NF-kappaB transcription factor activity; ISS:UniProtKB.
GO; GO:1902176; P:negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway; ISO:MGI.
GO; GO:2000757; P:negative regulation of peptidyl-lysine acetylation; ISS:UniProtKB.
GO; GO:0042326; P:negative regulation of phosphorylation; IMP:UniProtKB.
GO; GO:0031393; P:negative regulation of prostaglandin biosynthetic process; IMP:UniProtKB.
GO; GO:1901984; P:negative regulation of protein acetylation; ISO:MGI.
GO; GO:0051898; P:negative regulation of protein kinase B signaling; IMP:UniProtKB.
GO; GO:1900181; P:negative regulation of protein localization to nucleus; ISO:MGI.
GO; GO:1903427; P:negative regulation of reactive oxygen species biosynthetic process; ISO:MGI.
GO; GO:0032007; P:negative regulation of TOR signaling; IMP:UniProtKB.
GO; GO:0000122; P:negative regulation of transcription by RNA polymerase II; IDA:BHF-UCL.
GO; GO:0045892; P:negative regulation of transcription, DNA-templated; IDA:MGI.
GO; GO:0030512; P:negative regulation of transforming growth factor beta receptor signaling pathway; IDA:UniProtKB.
GO; GO:0032720; P:negative regulation of tumor necrosis factor production; ISO:MGI.
GO; GO:0001542; P:ovulation from ovarian follicle; IMP:MGI.
GO; GO:0018394; P:peptidyl-lysine acetylation; ISO:MGI.
GO; GO:0034983; P:peptidyl-lysine deacetylation; ISO:MGI.
GO; GO:0002821; P:positive regulation of adaptive immune response; ISS:UniProtKB.
GO; GO:1904179; P:positive regulation of adipose tissue development; IMP:UniProtKB.
GO; GO:0045766; P:positive regulation of angiogenesis; ISO:MGI.
GO; GO:0043065; P:positive regulation of apoptotic process; IMP:UniProtKB.
GO; GO:0097755; P:positive regulation of blood vessel diameter; ISO:MGI.
GO; GO:0043536; P:positive regulation of blood vessel endothelial cell migration; ISO:MGI.
GO; GO:2000481; P:positive regulation of cAMP-dependent protein kinase activity; IDA:UniProtKB.
GO; GO:0061051; P:positive regulation of cell growth involved in cardiac muscle cell development; ISO:MGI.
GO; GO:0008284; P:positive regulation of cell population proliferation; ISS:UniProtKB.
GO; GO:2000774; P:positive regulation of cellular senescence; ISS:UniProtKB.
GO; GO:0010875; P:positive regulation of cholesterol efflux; IMP:UniProtKB.
GO; GO:0043280; P:positive regulation of cysteine-type endopeptidase activity involved in apoptotic process; ISO:MGI.
GO; GO:0045739; P:positive regulation of DNA repair; ISS:UniProtKB.
GO; GO:1902237; P:positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway; IMP:UniProtKB.
GO; GO:0001938; P:positive regulation of endothelial cell proliferation; ISO:MGI.
GO; GO:0045722; P:positive regulation of gluconeogenesis; ISO:MGI.
GO; GO:0010460; P:positive regulation of heart rate; ISO:MGI.
GO; GO:0051574; P:positive regulation of histone H3-K9 methylation; ISO:MGI.
GO; GO:0046628; P:positive regulation of insulin receptor signaling pathway; ISS:UniProtKB.
GO; GO:0035774; P:positive regulation of insulin secretion involved in cellular response to glucose stimulus; ISO:MGI.
GO; GO:0016239; P:positive regulation of macroautophagy; IDA:UniProtKB.
GO; GO:2000111; P:positive regulation of macrophage apoptotic process; IMP:UniProtKB.
GO; GO:0045348; P:positive regulation of MHC class II biosynthetic process; ISO:MGI.
GO; GO:0010976; P:positive regulation of neuron projection development; ISO:MGI.
GO; GO:0014068; P:positive regulation of phosphatidylinositol 3-kinase signaling; IMP:UniProtKB.
GO; GO:0090312; P:positive regulation of protein deacetylation; ISO:MGI.
GO; GO:0001934; P:positive regulation of protein phosphorylation; IMP:UniProtKB.
GO; GO:0014858; P:positive regulation of skeletal muscle cell proliferation; ISO:MGI.
GO; GO:0051152; P:positive regulation of smooth muscle cell differentiation; IMP:BHF-UCL.
GO; GO:2000614; P:positive regulation of thyroid-stimulating hormone secretion; ISO:MGI.
GO; GO:0045944; P:positive regulation of transcription by RNA polymerase II; IDA:UniProtKB.
GO; GO:0043161; P:proteasome-mediated ubiquitin-dependent protein catabolic process; ISS:UniProtKB.
GO; GO:0006476; P:protein deacetylation; IDA:BHF-UCL.
GO; GO:0106230; P:protein depropionylation; IDA:UniProtKB.
GO; GO:0031648; P:protein destabilization; IDA:UniProtKB.
GO; GO:0016567; P:protein ubiquitination; ISS:UniProtKB.
GO; GO:0000720; P:pyrimidine dimer repair by nucleotide-excision repair; IMP:UniProtKB.
GO; GO:0000183; P:rDNA heterochromatin assembly; ISO:MGI.
GO; GO:0042981; P:regulation of apoptotic process; ISS:UniProtKB.
GO; GO:0070857; P:regulation of bile acid biosynthetic process; IMP:UniProtKB.
GO; GO:0090335; P:regulation of brown fat cell differentiation; IMP:UniProtKB.
GO; GO:0042127; P:regulation of cell population proliferation; ISO:MGI.
GO; GO:0010824; P:regulation of centrosome duplication; ISS:UniProtKB.
GO; GO:0032071; P:regulation of endodeoxyribonuclease activity; ISS:UniProtKB.
GO; GO:0010906; P:regulation of glucose metabolic process; IMP:UniProtKB.
GO; GO:0010883; P:regulation of lipid storage; IMP:UniProtKB.
GO; GO:0007346; P:regulation of mitotic cell cycle; ISS:UniProtKB.
GO; GO:0035358; P:regulation of peroxisome proliferator activated receptor signaling pathway; IMP:BHF-UCL.
GO; GO:0071900; P:regulation of protein serine/threonine kinase activity; ISO:MGI.
GO; GO:0034391; P:regulation of smooth muscle cell apoptotic process; IDA:UniProtKB.
GO; GO:0045471; P:response to ethanol; ISO:MGI.
GO; GO:0042542; P:response to hydrogen peroxide; ISS:UniProtKB.
GO; GO:0032868; P:response to insulin; IDA:UniProtKB.
GO; GO:0044321; P:response to leptin; IMP:UniProtKB.
GO; GO:0006979; P:response to oxidative stress; ISO:MGI.
GO; GO:0000012; P:single strand break repair; ISS:UniProtKB.
GO; GO:0007283; P:spermatogenesis; IMP:MGI.
GO; GO:0090400; P:stress-induced premature senescence; ISO:MGI.
GO; GO:0007179; P:transforming growth factor beta receptor signaling pathway; ISO:MGI.
GO; GO:0006642; P:triglyceride mobilization; IMP:BHF-UCL.
GO; GO:0070914; P:UV-damage excision repair; ISO:MGI.
GO; GO:0050872; P:white fat cell differentiation; IMP:BHF-UCL.
Gene3D; 3.30.1600.10; -; 1.
InterPro; IPR029035; DHS-like_NAD/FAD-binding_dom.
InterPro; IPR003000; Sirtuin.
InterPro; IPR026591; Sirtuin_cat_small_dom_sf.
InterPro; IPR026590; Ssirtuin_cat_dom.
Pfam; PF02146; SIR2; 1.
SUPFAM; SSF52467; SSF52467; 1.
PROSITE; PS50305; SIRTUIN; 1.
1: Evidence at protein level;
Acetylation; Alternative splicing; Apoptosis; Biological rhythms;
Cytoplasm; Developmental protein; Differentiation; Metal-binding;
Mitochondrion; Myogenesis; NAD; Nucleus; Phosphoprotein;
Reference proteome; S-nitrosylation; Transcription;
Transcription regulation; Transferase; Zinc.
INIT_MET 1
/note="Removed"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
CHAIN 2..737
/note="NAD-dependent protein deacetylase sirtuin-1"
/id="PRO_0000110257"
CHAIN 2..525
/note="SirtT1 75 kDa fragment"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
/id="PRO_0000415290"
DOMAIN 236..490
/note="Deacetylase sirtuin-type"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
NP_BIND 253..272
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
NP_BIND 337..340
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
NP_BIND 432..434
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
NP_BIND 457..459
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
REGION 2..268
/note="Interaction with H1-4"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
REGION 2..131
/note="Interaction with CLOCK"
/evidence="ECO:0000269|PubMed:18662547"
REGION 135..533
/note="Interaction with CCAR2"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
REGION 248..251
/note="Required for interaction with the sumoylated form of
CCAR2"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
MOTIF 32..39
/note="Nuclear localization signal"
MOTIF 138..145
/note="Nuclear export signal"
MOTIF 223..230
/note="Nuclear localization signal"
MOTIF 425..431
/note="Nuclear export signal"
COMPBIAS 2..131
/note="Ala-rich"
COMPBIAS 155..158
/note="Poly-Asp"
ACT_SITE 355
/note="Proton acceptor"
/evidence="ECO:0000269|PubMed:11672522,
ECO:0000269|PubMed:12887892, ECO:0000269|PubMed:15220471,
ECO:0000269|PubMed:16892051"
METAL 363
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
METAL 366
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
METAL 387
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
METAL 390
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
BINDING 474
/note="NAD; via amide nitrogen"
/evidence="ECO:0000250"
MOD_RES 2
/note="N-acetylalanine"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
MOD_RES 14
/note="Phosphoserine"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
MOD_RES 25
/note="Phosphoserine"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
MOD_RES 46
/note="Phosphoserine; by MAPK8"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
MOD_RES 151
/note="Phosphoserine"
/evidence="ECO:0000244|PubMed:21183079"
MOD_RES 154
/note="Phosphoserine"
/evidence="ECO:0000244|PubMed:21183079"
MOD_RES 164
/note="Phosphoserine"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
MOD_RES 165
/note="Phosphoserine"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
MOD_RES 230
/note="N6-acetyllysine"
/evidence="ECO:0000269|PubMed:28923965"
MOD_RES 369
/note="N6-acetyllysine"
/evidence="ECO:0000269|PubMed:28923965"
MOD_RES 387
/note="S-nitrosocysteine"
/evidence="ECO:0000269|PubMed:20972425"
MOD_RES 390
/note="S-nitrosocysteine"
/evidence="ECO:0000269|PubMed:20972425"
MOD_RES 422
/note="N6-acetyllysine"
/evidence="ECO:0000305|PubMed:28923965"
MOD_RES 505
/note="N6-acetyllysine"
/evidence="ECO:0000305|PubMed:28923965"
MOD_RES 522
/note="Phosphothreonine; by DYRK1A, DYRK3 and MAPK8"
/evidence="ECO:0000269|PubMed:20167603"
MOD_RES 527
/note="Phosphoserine"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
MOD_RES 536
/note="Phosphothreonine"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
MOD_RES 600
/note="N6-acetyllysine"
/evidence="ECO:0000305|PubMed:28923965"
MOD_RES 649
/note="Phosphoserine; by CaMK2"
/evidence="ECO:0000269|PubMed:19680552"
MOD_RES 651
/note="Phosphoserine; by CaMK2"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
MOD_RES 737
/note="Phosphoserine"
/evidence="ECO:0000250|UniProtKB:Q96EB6"
VAR_SEQ 446..629
/note="Missing (in isoform 2)"
/evidence="ECO:0000305"
/id="VSP_042190"
MUTAGEN 37..38
/note="RR->AA: Abolishes nuclear localization; when
associated with A-227; A-228; A-229 and A-230."
MUTAGEN 138..145
/note="LLLTDGLL->AAATGAA: Abolishes nuclear export; when
associated with A-425; A-427; A-428; A-429; A-430 and A-
431."
/evidence="ECO:0000269|PubMed:17197703"
MUTAGEN 154
/note="S->A: Abolishes in vitro phosphorylation by CaMK2;
when associated with A-649; A-651 and A-683."
/evidence="ECO:0000269|PubMed:19680552"
MUTAGEN 227..230
/note="KKRK->AAAA: Abolishes nuclear localization; when
associated with A-37 and A-38."
/evidence="ECO:0000269|PubMed:17197703"
MUTAGEN 230
/note="K->R: Decreased acetylation, leading to increased
protein deacetylase activity."
/evidence="ECO:0000269|PubMed:28923965"
MUTAGEN 355
/note="H->Y: Loss of deacetylation activity. Loss of
inhibition of E2F1 and loss of coactivation of FOXO1-
mediated transcription."
/evidence="ECO:0000269|PubMed:11672522,
ECO:0000269|PubMed:12887892, ECO:0000269|PubMed:15220471,
ECO:0000269|PubMed:16892051"
MUTAGEN 363
/note="C->S: Does not affect S-nitrosylation."
/evidence="ECO:0000269|PubMed:20972425"
MUTAGEN 366
/note="C->S: Does not affect S-nitrosylation."
/evidence="ECO:0000269|PubMed:20972425"
MUTAGEN 369
/note="K->R: Does not affect protein deacetylase activity."
/evidence="ECO:0000269|PubMed:28923965"
MUTAGEN 387
/note="C->S: Impairs S-nitrosylation. Abolishes S-
nitrosylation; when associated with S-390."
/evidence="ECO:0000269|PubMed:20972425"
MUTAGEN 390
/note="C->S: Impairs S-nitrosylation. Abolishes S-
nitrosylation; when associated with S-387."
/evidence="ECO:0000269|PubMed:20972425"
MUTAGEN 425..431
/note="VDLLIVI->ADAAAAA: Abolishes nuclear export; when
associated with A-138; A-139; A-140; A-144 and A-145."
/evidence="ECO:0000269|PubMed:17197703"
MUTAGEN 505
/note="K->R: Does not affect protein deacetylase activity."
/evidence="ECO:0000269|PubMed:28923965"
MUTAGEN 522
/note="T->D: Increased deacetylase activity toward p53/TP53
and increases resistance to genotoxic stress (mimicks
residue phosphorylation)."
/evidence="ECO:0000269|PubMed:20167603"
MUTAGEN 522
/note="T->V: Reduces phosphorylation. Impairs deacetylase
activity toward p53/TP53 and decreases resistance to
genotoxic stress. Does not change nuclear localization."
/evidence="ECO:0000269|PubMed:20167603"
MUTAGEN 600
/note="K->R: Does not affect protein deacetylase activity."
/evidence="ECO:0000269|PubMed:28923965"
MUTAGEN 649
/note="S->A: Abolishes in vitro phosphorylation by CaMK2;
when associated with A-154; A-651 and A-683."
/evidence="ECO:0000269|PubMed:19680552"
MUTAGEN 651
/note="S->A: Abolishes in vitro phosphorylation by CaMK2;
when associated with A-154; A-649 and A-683."
/evidence="ECO:0000269|PubMed:19680552"
MUTAGEN 683
/note="S->A: Abolishes in vitro phosphorylation by CaMK2;
when associated with A-154; A-649 and A-651."
/evidence="ECO:0000269|PubMed:19680552"
SEQUENCE 737 AA; 80372 MW; 7F15625E29433119 CRC64;
MADEVALALQ AAGSPSAAAA MEAASQPADE PLRKRPRRDG PGLGRSPGEP SAAVAPAAAG
CEAASAAAPA ALWREAAGAA ASAEREAPAT AVAGDGDNGS GLRREPRAAD DFDDDEGEEE
DEAAAAAAAA AIGYRDNLLL TDGLLTNGFH SCESDDDDRT SHASSSDWTP RPRIGPYTFV
QQHLMIGTDP RTILKDLLPE TIPPPELDDM TLWQIVINIL SEPPKRKKRK DINTIEDAVK
LLQECKKIIV LTGAGVSVSC GIPDFRSRDG IYARLAVDFP DLPDPQAMFD IEYFRKDPRP
FFKFAKEIYP GQFQPSLCHK FIALSDKEGK LLRNYTQNID TLEQVAGIQR ILQCHGSFAT
ASCLICKYKV DCEAVRGDIF NQVVPRCPRC PADEPLAIMK PEIVFFGENL PEQFHRAMKY
DKDEVDLLIV IGSSLKVRPV ALIPSSIPHE VPQILINREP LPHLHFDVEL LGDCDVIINE
LCHRLGGEYA KLCCNPVKLS EITEKPPRPQ KELVHLSELP PTPLHISEDS SSPERTVPQD
SSVIATLVDQ ATNNNVNDLE VSESSCVEEK PQEVQTSRNV ENINVENPDF KAVGSSTADK
NERTSVAETV RKCWPNRLAK EQISKRLEGN QYLFVPPNRY IFHGAEVYSD SEDDVLSSSS
CGSNSDSGTC QSPSLEEPLE DESEIEEFYN GLEDDTERPE CAGGSGFGAD GGDQEVVNEA
IATRQELTDV NYPSDKS


Related products :

Catalog number Product name Quantity
EIAAB38504 Mouse,mSIR2a,Mus musculus,NAD-dependent deacetylase sirtuin-1,Sir2,SIR2alpha,Sir2l1,SIR2-like protein 1,Sirt1
18-003-43078 NAD-dependent deacetylase sirtuin-2 - EC 3.5.1.-; SIR2-like; SIR2-like protein 2 Polyclonal 0.1 mg Protein A
18-003-43078 NAD-dependent deacetylase sirtuin-2 - EC 3.5.1.-; SIR2-like; SIR2-like protein 2 Polyclonal 0.05 mg Aff Pur
18-003-43080 NAD-dependent deacetylase sirtuin-3. mitochondrial - EC 3.5.1.-; SIR2-like protein 3; hSIRT3 Polyclonal 0.05 mg Aff Pur
18-003-43079 NAD-dependent deacetylase sirtuin-1 - EC 3.5.1.-; hSIRT1; hSIR2; SIR2-like protein 1 Polyclonal 0.1 mg Protein A
18-003-43079 NAD-dependent deacetylase sirtuin-1 - EC 3.5.1.-; hSIRT1; hSIR2; SIR2-like protein 1 Polyclonal 0.05 mg Aff Pur
18-003-43080 NAD-dependent deacetylase sirtuin-3. mitochondrial - EC 3.5.1.-; SIR2-like protein 3; hSIRT3 Polyclonal 0.1 mg Protein A
EIAAB38513 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-6,Sir2l6,SIR2-like protein 6,Sirt6
EIAAB38516 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-7,Sir2l7,SIR2-like protein 7,Sirt7
EIAAB38510 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-5,Sir2l5,SIR2-like protein 5,Sirt5
EIAAB38515 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-7,SIR2L7,SIR2-like protein 7,SIRT7
EIAAB38514 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-6,SIR2L6,SIR2-like protein 6,SIRT6
E0430r ELISA NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
EIAAB38511 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-5,SIR2L5,SIR2-like protein 5,SIRT5
U0430r CLIA NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
E0430r ELISA kit NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
U2135m CLIA Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
E0430m ELISA Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
E2135m ELISA Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
E0430m ELISA kit Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
U0430m CLIA Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
E2135m ELISA kit Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
U2135m CLIA kit Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
EIAAB38505 Homo sapiens,hSIR2,hSIRT1,Human,NAD-dependent deacetylase sirtuin-1,SIR2L1,SIR2-like protein 1,SIRT1
U0430h CLIA Homo sapiens,Human,NAD-dependent deacetylase sirtuin-2,SIR2L,SIR2L2,SIR2-like protein 2,SIRT2 96T
Pathways :
WP1493: Carbon assimilation C4 pathway
WP1672: Mismatch repair
WP1676: Non-homologous end-joining
WP1678: Nucleotide excision repair
WP1625: Base excision repair
WP731: Sterol regulatory element binding protein related
WP1909: Signal regulatory protein (SIRP) family interactions
WP2272: Pathogenic Escherichia coli infection
WP1049: G Protein Signaling Pathways
WP1694: Pyrimidine metabolism
WP813: G Protein Signaling Pathways
WP1654: gamma-Hexachlorocyclohexane degradation
WP1661: Glyoxylate and dicarboxylate metabolism
WP2324: AGE/RAGE pathway
WP1371: G Protein Signaling Pathways
WP1714: Tyrosine metabolism
WP1502: Mitochondrial biogenesis
WP346: Protein Modifications
WP1613: 1,4-Dichlorobenzene degradation
WP1624: Bacterial secretion system
WP211: BMP signaling pathway
WP1689: Porphyrin and chlorophyll metabolism
WP1693: Purine metabolism
WP1650: Fluorobenzoate degradation
WP2218: sGC

Related Genes :
[Sirt1 Sir2l1] NAD-dependent protein deacetylase sirtuin-1 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (SIR2alpha) (Sir2) (mSIR2a) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)]
[SIRT1 SIR2L1] NAD-dependent protein deacetylase sirtuin-1 (hSIRT1) (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (hSIR2) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)]
[Sirt7 Sir2l7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[SIRT7 SIR2L7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[Sirt2 Sir2l2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2) (mSIR2L2)
[Sirt7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[SIRT7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[SIRT3 SIR2L3] NAD-dependent protein deacetylase sirtuin-3, mitochondrial (hSIRT3) (EC 2.3.1.286) (Regulatory protein SIR2 homolog 3) (SIR2-like protein 3)
[SIRT2 SIR2L SIR2L2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[Sirt3 Sir2l3] NAD-dependent protein deacetylase sirtuin-3 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 3) (SIR2-like protein 3) (mSIR2L3)
[Sirt2 Sir2l2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[HST2 YPL015C LPA2C] NAD-dependent protein deacetylase HST2 (EC 2.3.1.286) (Homologous to SIR2 protein 2) (Regulatory protein SIR2 homolog 2)
[HST3 YOR025W OR26.15] NAD-dependent histone deacetylase HST3 (EC 2.3.1.286) (Homologous to SIR2 protein 3) (Regulatory protein SIR2 homolog 3)
[SIRT2 QtsA-13614] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[SIRT2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[Sirt5 Sir2l5] NAD-dependent protein deacylase sirtuin-5, mitochondrial (EC 2.3.1.-) (Regulatory protein SIR2 homolog 5) (SIR2-like protein 5)
[sir2 cobB npdA MSMEG_5175 MSMEI_5041] NAD-dependent protein deacylase Sir2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[sir-2.1 R11A8.4] NAD-dependent protein deacetylase sir-2.1 (EC 2.3.1.286) (Protein sir-2.1) (Regulatory protein SIR2 homolog 1)
[SIR2 MAR1 YDL042C D2714] NAD-dependent histone deacetylase SIR2 (EC 2.3.1.286) (Regulatory protein SIR2) (Silent information regulator 2)
[cobB sir2 TM_0490] NAD-dependent protein deacetylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog) (Sir2Tm)
[Sirt1] NAD-dependent protein deacetylase sirtuin-1 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-)
[cobB A8C65_17980 A9R57_10780 ACU57_04380 AM464_23635 BJJ90_15625 BMT91_12645 BN17_09831 BON75_05285 BON98_05145 BvCms12BK_01118 BvCmsHHP001_00979 BvCmsHHP019_01023 BvCmsHHP056_02943 BvCmsKSP011_05316 BvCmsKSP024_01940 BvCmsKSP026_03162 BvCmsSINP011_02951 BW690_23120 BZL31_08405 C2U48_03300 C5F72_15645 CG692_05810 CI693_26075 CI694_24500 D2185_03810 D3821_20670 D3O91_24920 D3Y67_15945 D4718_04355 D9D20_13915 D9G69_05205 D9H68_09100 D9I18_08715 D9I97_05705 D9J11_10470 D9J52_06705 D9Z28_16645 DAH34_08040 DL326_11095 DT034_08485 DTL43_16110 DXT71_17790 DXT73_16565 E2119_09590 E2127_07825 E2128_06715 E2134_02425 E2135_09110 E4K61_12600 EA213_13010 EAI52_08920 EC1094V2_2712 ECTO6_02838 ED307_19155 EI021_06925 EI032_10515 EIZ93_12995 EL75_2625 EL79_2659 EL80_2637 EPT01_12255 ERS150873_02733 EXX71_16955 F1E19_06620 F9040_05140 F9X20_14590 FNW97_05865 FRV13_07595 FV293_24135 G5632_08605 G5688_05235 GII66_19990 GJD95_14640 GJD96_14830 GKG12_11215 GP689_02460 GQE22_15660 GQE33_15650 GQE34_18495 GQE42_09405 GQE64_00790 GQE87_03440 GRW42_04440 GRW80_14965 GRW81_06920 HmCms184_02367 HV065_03675 HV109_14455 HVY77_15610 HVY93_14150 NCTC10429_05327 NCTC10963_03027 NCTC11126_00878 NCTC13216_03723 NCTC8500_03291 NCTC9058_03967 NCTC9062_05323 NCTC9073_01936 NCTC9117_03803 NCTC9706_00381 PGD_02175 RK56_003010 SAMEA3472044_03465 SAMEA3472047_01525 SAMEA3472080_03059 SAMEA3484427_03765 SAMEA3484429_03683 SAMEA3752557_01586 SAMEA3752559_02085 SAMEA3753097_03388 SAMEA3753300_01432 SK85_01186 WP7S17E04_26220 WR15_24010] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[cobB SO_1938] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[cobB1_2 cobB ACTI_81040] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[cobB OR37_03990] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[cobB E4195_03610 HB13667_09820] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[ppnP yaiE yaiE_1 yaiE_2 A6581_06820 A6592_08565 A6V01_02400 A8C65_08910 A9819_01890 A9P13_20020 A9R57_08485 A9X72_19070 AC067_13660 AC789_1c03900 ACN002_0406 ACN68_10320 ACN81_25005 ACU57_12035 ACU90_20960 AM270_02350 AM446_21575 AM464_18935 AM465_24670 AMK83_08820 AML35_16935 APT94_15240 APU18_24510 APZ14_19390 ARC77_21605 AU473_24575 AUQ13_18550 AUS26_08265 AW059_14025 AW106_10290 AWB10_19430 AWE53_023695 AWF59_002255 AWG78_005920 AWG90_003705 AZZ83_000156 B6V57_02070 B7C53_19905 B9N33_08655 B9T59_05995 BANRA_00817 BANRA_00925 BANRA_02015 BANRA_03594 BB545_15535 BE963_16095 BEN53_04105 BER14_23410 BFD68_18150 BHF03_17705 BHS81_02405 BHS87_02130 BIQ87_02175 BIU72_03345 BIZ41_26355 BJJ90_20310 BK248_04610 BK292_14635 BK373_01320 BK375_26975 BK383_14985 BMA87_04900 BMT91_05310 BN17_01951 BOH76_16090 BON63_11530 BON65_18745 BON66_09075 BON69_11595 BON72_15085 BON75_11450 BON76_23825 BON83_20655 BON86_03800 BON87_15370 BON91_23895 BON92_15465 BON94_14845 BON95_06500 BON96_22295 BON98_18895 BTQ04_02855 BTQ06_17790 BUE81_15520 BvCms12BK_04795 BvCms2454_01767 BvCms28BK_00703 BvCms35BK_00554 BvCmsC61A_02990 BvCmsHHP001_01952 BvCmsHHP019_02594 BvCmsHHP019_02735 BvCmsHHP056_01410 BvCmsKKP036_04281 BvCmsKKP061_04019 BvCmsKSNP073_05624 BvCmsKSNP081_00030 BvCmsKSNP120_04274 BvCmsKSP011_04945 BvCmsKSP024_04930 BvCmsKSP045_04772 BvCmsKSP058_04860 BvCmsKSP067_05191 BvCmsKSP076_04759 BvCmsNSP006_01281 BvCmsNSP007_00849 BvCmsNSP047_03416 BvCmsNSP072_00997 BvCmsOUP014_01108 BvCmsSINP011_02573 BvCmsSINP022_02885 BvCmsSIP019_03625 BvCmsSIP024_01003 BvCmsSIP044_01545 BVL39_00880 BW690_06575 BWI89_12535 BWP17_02145 BXT93_00165 BZL31_10725 BZL69_16805 C2M16_02670 C2U48_08110 C4K41_08090 C4M78_16865 C5715_13595 C5F72_20070 C5F73_09375 C5N07_12740 C5P01_16305 C5P44_19530 C6669_02755 C7235_18880 C7B02_04545 C7B06_13385 C7B07_15195 C7B08_06180 C7B18_00985 C9114_16640 C9160_00550 C9201_03800 C9306_02820 C9E25_04580 C9E67_23765 C9Z03_06575 C9Z23_12315 C9Z28_08265 C9Z37_04640 C9Z68_20485 C9Z70_09610 C9Z78_08360 C9Z89_10690 CA593_01185 CCZ14_02440 CCZ17_04120 CDC27_00860 CDL37_09465 CG692_05055 CI641_017850 CI693_15730 CI694_14320 CJU63_02125 CJU64_02110 CO706_24355 COD30_16055 COD46_04855 CQP61_20925 CR538_19495 CR539_06140 CRD98_01665 CRE06_07890 CRM83_13790 CRT43_02180 CRX46_25985 CT146_15735 CUB99_06570 CV83915_01183 CVH05_20630 CWS33_22875 D0X26_07420 D1912_23295 D2184_11515 D2185_12065 D2188_07740 D3821_12900 D3822_22465 D3C88_28950 D3M98_10990 D3O91_15305 D3Y67_14350 D4011_06560 D4023_06905 D4074_04630 D4628_13540 D4636_05645 D4660_05035 D4718_02350 D4L91_04625 D4M06_05545 D4M76_11590 D4U49_03050 D4U85_07085 D4V08_07680 D5H35_11765 D5I97_03520 D6004_10480 D6C36_05740 D6D43_08420 D6T60_09300 D6T98_08110 D6W00_11135 D6X36_16585 D6X63_13510 D6X76_06760 D7K33_06120 D7K63_09055 D7K66_05505 D7W70_07505 D7Y10_05925 D7Z75_05315 D8Y65_05290 D9610_20040 D9C99_17255 D9D20_11505 D9D31_21970 D9D33_06060 D9D43_14830 D9D94_14580 D9E13_00125 D9E34_09525 D9E49_06955 D9E73_13115 D9F32_03890 D9F87_10325 D9G11_17940 D9G42_13940 D9G48_15840 D9G69_10950 D9G95_10030 D9H10_13930 D9H53_17415 D9H68_03320 D9H70_06445 D9H94_24405 D9I18_05395 D9I20_07245 D9I37_10805 D9I87_03310 D9I88_07660 D9I97_02265 D9J03_17400 D9J11_02150 D9J44_05830 D9J46_05500 D9J52_12125 D9J58_08695 D9J61_02635 D9K02_04260 D9K48_11575 D9K54_20845 D9L89_06360 D9L99_04375 D9S45_05535 D9X77_04435 D9X97_05410 D9Z28_01965 DAH18_14975 DAH26_10405 DAH30_15925 DAH34_21345 DAH37_05240 DBQ99_19625 DD762_07680 DEN86_05080 DEN89_14495 DEO04_04545 DEO20_14385 DIV22_26285 DJ503_01820 DK132_06010 DL257_08620 DL292_11525 DL326_11415 DL455_04445 DL479_02175 DL530_07575 DL545_19130 DL705_16435 DL800_03885 DL979_15710 DLT82_12465 DLU50_08285 DLU82_01595 DLX40_16565 DLY41_06340 DLY44_14080 DM102_12740 DM129_06110 DM155_09525 DM267_00880 DM296_09365 DM382_20220 DM820_05775 DM962_06005 DM973_16495 DMC44_03035 DMI04_05340 DMI53_06710 DMO02_05340 DMY83_21365 DMZ30_04890 DMZ50_06340 DN627_04525 DN660_05650 DN700_06730 DN703_04290 DN808_18120 DNB37_05440 DNC98_06510 DND16_02325 DND79_04070 DNI21_04080 DNJ62_06830 DNK12_05040 DNQ45_00335 DNR35_00475 DNR41_17405 DNW42_09070 DNX19_03125 DOE35_04920 DOS18_04715 DOT81_06465 DOU81_04760 DOY22_07805 DOY56_05925 DOY61_02085 DOY67_05265 DP258_05110 DP265_04025 DP277_07535 DQE91_06675 DQF36_00830 DQF57_07675 DQF72_03865 DQG35_06310 DQO13_05500 DQP61_12090 DRP48_07670 DRW19_06400 DS143_21555 DS721_06100 DS732_06920 DS966_18475 DT034_10500 DTL43_07415 DTL90_10740 DTM10_06080 DTM45_10960 DTZ20_03380 DU321_19460 DU333_14985 DVB38_10440 DW236_15815 DWB25_19225 DXT69_08115 DXT71_02970 DXT73_01860 DXX80_018650 E0I42_07410 E0L04_02150 E0L12_02445 E2114_20640 E2115_06350 E2119_01725 E2126_014065 E2127_09375 E2128_04435 E2129_13975 E2134_12225 E2135_01410 E2855_00540 E2863_00426 E4K51_12070 E4K53_09880 E4K55_09545 E4K61_11255 E5P24_15620 E5P28_11315 E5S38_06765 E5S42_13060 E5S56_05125 E5S58_11035 E5S61_09810 E5S62_19990 EA159_14475 EA164_19085 EA167_08615 EA174_09235 EA184_12770 EA191_05310 EA198_18085 EA200_17785 EA203_10735 EA213_08335 EA214_19270 EA225_09190 EA231_12680 EA232_03760 EA233_12800 EA239_15730 EA242_16550 EA245_15610 EA250_12110 EA429_16040 EA433_19520 EA434_07105 EA435_05820 EA834_11650 EAI42_35435 EAI46_25725 EAI46_25840 EAI52_02950 EAM59_14455 EAN70_14905 EAN77_07940 EAX79_06830 EB476_03650 EB509_06855 EB510_01625 EB515_09345 EB525_RS00545 EBA46_13990 EBJ06_07125 EBM08_07705 EBP16_12520 EC1094V2_3464 EC3234A_4c00610 EC382_12595 EC95NR1_04612 ECs0441 ECTO124_03817 ECTO6_03708 ED225_07600 ED307_07160 ED600_06320 ED611_06650 ED648_16775 ED903_13725 ED944_09580 EEA45_02855 EEP23_01045 EF082_13590 EF173_10565 EG075_09120 EG599_13105 EG796_02110 EG808_04255 EGC26_06115 EGT48_21390 EGU87_05200 EH186_21735 EH412_12630 EHD63_07610 EHD79_03470 EHH55_15815 EHJ36_08465 EHJ66_07060 EHV81_03360 EHV90_10850 EHW09_13270 EHX09_04730 EI021_16245 EI028_11795 EI032_07550 EI041_08145 EIA21_11810 EIZ93_00830 EJ366_17220 EJC75_24145 EKI52_09170 EL75_3359 EL79_3454 EL80_3408 ELT17_22260 ELT22_04045 ELT23_00125 ELT31_00280 ELT33_03015 ELT48_00735 ELT49_21480 ELT58_21305 ELU82_03335 ELU85_08960 ELU96_05805 ELV00_13055 ELV08_00785 ELV13_00555 ELV15_22680 ELV22_01630 ELV24_16525 ELV28_08410 ELX56_03900 ELX61_20790 ELX68_02065 ELX69_19550 ELX70_07125 ELX76_05850 ELX79_24270 ELX83_01445 ELY05_09885 ELY23_04665 ELY24_07180 ELY32_22740 ELY41_15435 ELY48_07355 ELY50_04295 EO241_13835 EPS76_10515 EPS91_09770 EPT01_06355 EQ820_00745 EQ823_11615 EQ825_18070 EQ830_03660 EQO00_19840 ERS085365_01840 ERS085366_04179 ERS085374_02377 ERS085379_01215 ERS085383_01024 ERS085386_01096 ERS085404_01742 ERS085406_02227 ERS085416_01968 ERS139211_01252 ERS150873_01858 EST51_18990 EVY14_00050 EWK56_10245 EXM29_24150 ExPECSC038_04895 ExPECSC065_04439 EXX06_12400 EXX13_09665 EXX23_09965 EXX24_01870 EXX53_07630 EXX55_11875 EXX71_12170 EXX87_11565 EYD11_17450 EYV18_10135 EYX82_01145 EYY27_15550 EYY34_27625 EYY78_10095 F0L67_19465 F1E19_02455 F7D02_16780 F7D05_04595 F7D06_00920 F7F11_06850 F7F23_13355 F7F26_08530 F7F56_11190 F7G03_09695 F9040_18980 F9050_11410 F9059_11725 F9B07_11235 F9X20_10705 F9Z74_08605 FAF34_030290 FE846_08235 FKO60_24460 FNJ67_20330 FNJ69_23475 FNW97_01845 FORC82_3666 FPI65_02250 FQ021_04720 FQ022_05995 FQ915_14565 FQU83_20855 FQZ46_13785 FRV13_03860 FTV90_10360 FTV92_11870 FTV93_12360 FV293_06120 FV295_17245 FV438_20585 FWK02_29295 FZC17_02065 FZN26_02330 FZN30_08825 G3565_02860 G5616_16275 G5668_11855 G5670_13140 G5675_09500 G5680_11755 G5686_06920 G5688_07395 G5696_10795 G6Z99_23355 GFU40_10345 GFU45_05185 GFU47_21615 GII66_02490 GII67_08760 GIJ01_19765 GIY13_13165 GIY19_15475 GJ11_02375 GJ638_13910 GJD95_18350 GJD97_21645 GKE15_12960 GKE22_07290 GKE24_12270 GKE26_09485 GKE29_12130 GKE31_10420 GKE39_07870 GKE46_05810 GKE58_10855 GKE60_09410 GKE64_05810 GKE69_07380 GKE77_09145 GKE79_09230 GKE87_01825 GKE92_20460 GKE93_01170 GKE98_12210 GKF34_16490 GKF39_01885 GKF52_17565 GKF74_01460 GKF86_04910 GKF89_04055 GKG12_02940 GNZ00_09900 GNZ02_03615 GNZ03_09955 GNZ05_01665 GP650_16700 GP654_09510 GP661_19290 GP662_13045 GP664_11395 GP666_10645 GP678_21450 GP689_14645 GP698_13660 GP700_10180 GP711_02810 GP712_12955 GP720_05730 GP727_13245 GP912_14540 GP935_14810 GP945_18805 GP946_18990 GP954_12950 GP979_17585 GQA63_00790 GQE22_09325 GQE30_08115 GQE33_07115 GQE34_00765 GQE36_18000 GQE42_04900 GQE47_13225 GQE51_10750 GQE58_13505 GQE64_07505 GQE68_24505 GQE87_15550 GQE88_10390 GQE93_05310 GQF59_00790 GQM04_16295 GQM06_17115 GQM09_10135 GQM10_05275 GQM13_16755 GQM17_10365 GQM18_17190 GQM28_05335 GQN16_05995 GQN24_05490 GQN33_00860 GQS26_04035 GRW05_15575 GRW12_15215 GRW30_07965 GRW42_03295 GRW57_16360 GRW80_21245 GRW81_04110 GUB08_22335 GUB85_11880 GUB91_14510 GUB95_14180 GUC01_07480 GUC12_15000 GUI33_03675 HHJ41_01370 HmCms169_03669 HmCms184_01874 HmCmsJML074_04353 HmCmsJML079_00649 HmCmsJML146_03132 HmCmsJML204_02343 HMPREF3040_03387 HPE49_20435 HPE52_15660 HR075_18950 HV022_17950 HV023_08705 HV065_00215 HV098_18955 HV109_18115 HV156_07825 HV159_09785 HV160_09785 HV168_09465 HV260_09930 HV303_20415 HVV39_18775 HVW22_00965 HVW93_05045 HVW95_10270 HVX17_19490 HVX75_18690 HVY01_17550 HVY77_19945 HVY93_17995 HVZ12_18920 HVZ21_18085 HVZ47_04860 HVZ53_18680 HW43_05570 HX136_19525 HXS78_17140 HZT35_11660 MJ49_04490 MS8345_00396 NCTC10082_01078 NCTC10089_03910 NCTC10418_05682 NCTC10429_03762 NCTC10764_05371 NCTC10767_04209 NCTC10865_04787 NCTC10963_03206 NCTC11022_05137 NCTC11126_00022 NCTC11181_01145 NCTC11341_03896 NCTC12950_04180 NCTC13127_05156 NCTC13216_02895 NCTC13846_03688 NCTC7922_06246 NCTC7927_04270 NCTC8009_07014 NCTC8179_01642 NCTC8450_01367 NCTC8500_04283 NCTC8621_03984 NCTC8622_02997 NCTC8959_05017 NCTC8960_01314 NCTC8985_02798 NCTC9001_00537 NCTC9007_00270 NCTC9036_03840 NCTC9044_03501 NCTC9045_04434 NCTC9050_01764 NCTC9055_00703 NCTC9058_03120 NCTC9062_04466 NCTC9075_05103 NCTC9077_04792 NCTC9081_02496 NCTC9111_03977 NCTC9117_04804 NCTC9119_03997 NCTC9434_02812 NCTC9701_04128 NCTC9702_04480 NCTC9703_03222 NCTC9706_01114 NCTC9777_00174 NCTC9969_04032 PGD_02920 PU06_02955 RG28_02910 RK56_026705 RX35_02064 SAMEA3472043_02682 SAMEA3472044_00466 SAMEA3472047_02102 SAMEA3472055_02163 SAMEA3472056_03633 SAMEA3472070_02281 SAMEA3472080_01810 SAMEA3472090_01813 SAMEA3472108_01855 SAMEA3472110_00729 SAMEA3472112_02965 SAMEA3472114_01257 SAMEA3472147_04902 SAMEA3484427_03543 SAMEA3484429_01888 SAMEA3484434_01710 SAMEA3485101_03989 SAMEA3752372_02749 SAMEA3752553_00287 SAMEA3752557_00215 SAMEA3752559_02897 SAMEA3752620_00785 SAMEA3753064_01236 SAMEA3753097_00513 SAMEA3753164_00218 SAMEA3753290_01725 SAMEA3753300_00458 SK85_00418 SY51_02060 TUM18780_32860 U14A_00395 UC41_24265 UN86_08900 UN91_18725 WP2S18E08_35360 WP4S18E07_34480 WP7S17E01_36800 WP7S17E04_33320 WP7S18E09_37190 WQ89_01420 WR15_04360 YDC107_3656] Pyrimidine/purine nucleoside phosphorylase (EC 2.4.2.1) (EC 2.4.2.2) (Adenosine phosphorylase) (Cytidine phosphorylase) (Guanosine phosphorylase) (EC 2.4.2.15) (Inosine phosphorylase) (Thymidine phosphorylase) (EC 2.4.2.4) (Uridine phosphorylase) (EC 2.4.2.3) (Xanthosine phosphorylase)
[cobB E2E36_08300] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[cobB DNK77_07685] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[ORF1ab orf1ab] 2'-O-methyltransferase (EC 2.7.7.48) (EC 3.4.19.12) (EC 3.4.22.69) (EC 3.6.4.12) (EC 3.6.4.13) (3C-like proteinase) (Growth factor-like peptide) (Guanine-N7 methyltransferase) (Helicase) (Host translation inhibitor nsp1) (Leader protein) (NendoU) (Non-structural protein 10) (Non-structural protein 2) (Non-structural protein 3) (Non-structural protein 4) (Non-structural protein 6) (Non-structural protein 7) (Non-structural protein 8) (Non-structural protein 9) (ORF1ab polyprotein) (Papain-like proteinase) (RNA-directed RNA polymerase) (Replicase polyprotein 1ab) (Uridylate-specific endoribonuclease) (p65 homolog)

Bibliography :
No related Items