GENTAUR Belgium BVBA BE0473327336 Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45
GENTAUR U.S.A Genprice Inc,Logistics 547 Yurok Circle, SanJose, CA 95123
Tel (408) 780-0908, Fax (408) 780-0908, [email protected]

Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, Gentaur another in time delivery

NAD-dependent protein deacetylase sirtuin-1 (hSIRT1) (EC 2 3 1 286) (NAD-dependent protein deacylase sirtuin-1) (EC 2 3 1 -) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (hSIR2) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)]

 SIR1_HUMAN              Reviewed;         747 AA.
Q96EB6; Q2XNF6; Q5JVQ0; Q9GZR9; Q9Y6F0;
31-OCT-2003, integrated into UniProtKB/Swiss-Prot.
31-OCT-2003, sequence version 2.
17-JUN-2020, entry version 197.
RecName: Full=NAD-dependent protein deacetylase sirtuin-1;
Short=hSIRT1;
EC=2.3.1.286;
AltName: Full=NAD-dependent protein deacylase sirtuin-1;
EC=2.3.1.- {ECO:0000250|UniProtKB:Q923E4};
AltName: Full=Regulatory protein SIR2 homolog 1;
AltName: Full=SIR2-like protein 1;
Short=hSIR2;
Contains:
RecName: Full=SirtT1 75 kDa fragment;
Short=75SirT1;
Name=SIRT1; Synonyms=SIR2L1;
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [MRNA], AND TISSUE SPECIFICITY.
TISSUE=Testis;
PubMed=10381378; DOI=10.1006/bbrc.1999.0897;
Frye R.A.;
"Characterization of five human cDNAs with homology to the yeast SIR2 gene:
Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-
ribosyltransferase activity.";
Biochem. Biophys. Res. Commun. 260:273-279(1999).
[2]
NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, INTERACTION WITH HES1 AND HEY2,
MUTAGENESIS OF HIS-363, AND ACTIVE SITE.
PubMed=12535671; DOI=10.1016/s0006-291x(02)03020-6;
Takata T., Ishikawa F.;
"Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1
and HEY2 and is involved in HES1- and HEY2-mediated transcriptional
repression.";
Biochem. Biophys. Res. Commun. 301:250-257(2003).
[3]
NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT GLU-3.
NIEHS SNPs program;
Submitted (NOV-2005) to the EMBL/GenBank/DDBJ databases.
[4]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=15164054; DOI=10.1038/nature02462;
Deloukas P., Earthrowl M.E., Grafham D.V., Rubenfield M., French L.,
Steward C.A., Sims S.K., Jones M.C., Searle S., Scott C., Howe K.,
Hunt S.E., Andrews T.D., Gilbert J.G.R., Swarbreck D., Ashurst J.L.,
Taylor A., Battles J., Bird C.P., Ainscough R., Almeida J.P.,
Ashwell R.I.S., Ambrose K.D., Babbage A.K., Bagguley C.L., Bailey J.,
Banerjee R., Bates K., Beasley H., Bray-Allen S., Brown A.J., Brown J.Y.,
Burford D.C., Burrill W., Burton J., Cahill P., Camire D., Carter N.P.,
Chapman J.C., Clark S.Y., Clarke G., Clee C.M., Clegg S., Corby N.,
Coulson A., Dhami P., Dutta I., Dunn M., Faulkner L., Frankish A.,
Frankland J.A., Garner P., Garnett J., Gribble S., Griffiths C.,
Grocock R., Gustafson E., Hammond S., Harley J.L., Hart E., Heath P.D.,
Ho T.P., Hopkins B., Horne J., Howden P.J., Huckle E., Hynds C.,
Johnson C., Johnson D., Kana A., Kay M., Kimberley A.M., Kershaw J.K.,
Kokkinaki M., Laird G.K., Lawlor S., Lee H.M., Leongamornlert D.A.,
Laird G., Lloyd C., Lloyd D.M., Loveland J., Lovell J., McLaren S.,
McLay K.E., McMurray A., Mashreghi-Mohammadi M., Matthews L., Milne S.,
Nickerson T., Nguyen M., Overton-Larty E., Palmer S.A., Pearce A.V.,
Peck A.I., Pelan S., Phillimore B., Porter K., Rice C.M., Rogosin A.,
Ross M.T., Sarafidou T., Sehra H.K., Shownkeen R., Skuce C.D., Smith M.,
Standring L., Sycamore N., Tester J., Thorpe A., Torcasso W., Tracey A.,
Tromans A., Tsolas J., Wall M., Walsh J., Wang H., Weinstock K., West A.P.,
Willey D.L., Whitehead S.L., Wilming L., Wray P.W., Young L., Chen Y.,
Lovering R.C., Moschonas N.K., Siebert R., Fechtel K., Bentley D.,
Durbin R.M., Hubbard T., Doucette-Stamm L., Beck S., Smith D.R., Rogers J.;
"The DNA sequence and comparative analysis of human chromosome 10.";
Nature 429:375-381(2004).
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 124-747.
TISSUE=Prostate;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA project:
the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[6]
FUNCTION IN DEACETYLATION OF TP53, SUBCELLULAR LOCATION, MUTAGENESIS OF
HIS-363, AND ACTIVE SITE.
PubMed=11672523; DOI=10.1016/s0092-8674(01)00527-x;
Vaziri H., Dessain S.K., Ng Eaton E., Imai S., Frye R.A., Pandita T.K.,
Guarente L., Weinberg R.A.;
"hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase.";
Cell 107:149-159(2001).
[7]
FUNCTION, ENZYME ACTIVITY, SUBCELLULAR LOCATION, INTERACTION WITH PML,
MUTAGENESIS OF HIS-363, AND ACTIVE SITE.
PubMed=12006491; DOI=10.1093/emboj/21.10.2383;
Langley E., Pearson M., Faretta M., Bauer U.-M., Frye R.A., Minucci S.,
Pelicci P.G., Kouzarides T.;
"Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular
senescence.";
EMBO J. 21:2383-2396(2002).
[8]
ACTIVITY REGULATION.
PubMed=12297502; DOI=10.1074/jbc.m205670200;
Bitterman K.J., Anderson R.M., Cohen H.Y., Latorre-Esteves M.,
Sinclair D.A.;
"Inhibition of silencing and accelerated aging by nicotinamide, a putative
negative regulator of yeast sir2 and human SIRT1.";
J. Biol. Chem. 277:45099-45107(2002).
[9]
ACTIVITY REGULATION.
PubMed=12939617; DOI=10.1038/nature01960;
Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S., Wood J.G.,
Zipkin R.E., Chung P., Kisielewski A., Zhang L.-L., Scherer B.,
Sinclair D.A.;
"Small molecule activators of sirtuins extend Saccharomyces cerevisiae
lifespan.";
Nature 425:191-196(2003).
[10]
FUNCTION.
PubMed=15152190; DOI=10.1038/sj.emboj.7600244;
Frye R.A., Mayo M.W.;
"Modulation of NF-kappaB-dependent transcription and cell survival by the
SIRT1 deacetylase.";
EMBO J. 23:2369-2380(2004).
[11]
FUNCTION IN DEACETYLATION OF FOXO3, AND FUNCTION IN REGULATION OF FOXO3.
PubMed=14980222; DOI=10.1016/s0092-8674(04)00126-6;
Motta M.C., Divecha N., Lemieux M., Kamel C., Chen D., Gu W., Bultsma Y.,
McBurney M., Guarente L.;
"Mammalian SIRT1 represses forkhead transcription factors.";
Cell 116:551-563(2004).
[12]
FUNCTION IN DEACETYLATION OF MLLT7.
PubMed=15126506; DOI=10.1074/jbc.m401138200;
van der Horst A., Tertoolen L.G.J., de Vries-Smits L.M.M., Frye R.A.,
Medema R.H., Burgering B.M.T.;
"FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity
protein hSir2(SIRT1).";
J. Biol. Chem. 279:28873-28879(2004).
[13]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=15469825; DOI=10.1016/j.molcel.2004.08.031;
Vaquero A., Scher M., Lee D., Erdjument-Bromage H., Tempst P., Reinberg D.;
"Human SirT1 interacts with histone H1 and promotes formation of
facultative heterochromatin.";
Mol. Cell 16:93-105(2004).
[14]
FUNCTION IN DEACETYLATION OF FOXO3, AND FUNCTION IN REGULATION OF FOXO3.
PubMed=14976264; DOI=10.1126/science.1094637;
Brunet A., Sweeney L.B., Sturgill J.F., Chua K.F., Greer P.L., Lin Y.,
Tran H., Ross S.E., Mostoslavsky R., Cohen H.Y., Hu L.S., Cheng H.L.,
Jedrychowski M.P., Gygi S.P., Sinclair D.A., Alt F.W., Greenberg M.E.;
"Stress-dependent regulation of FOXO transcription factors by the SIRT1
deacetylase.";
Science 303:2011-2015(2004).
[15]
FUNCTION IN DEACETYLATION OF XRCC6, AND INDUCTION BY CR.
PubMed=15205477; DOI=10.1126/science.1099196;
Cohen H.Y., Miller C., Bitterman K.J., Wall N.R., Hekking B., Kessler B.,
Howitz K.T., Gorospe M., de Cabo R., Sinclair D.A.;
"Calorie restriction promotes mammalian cell survival by inducing the SIRT1
deacetylase.";
Science 305:390-392(2004).
[16]
INTERACTION WITH FHL2, FUNCTION IN DEACETYLATION OF FOXO1, AND FUNCTION IN
REGULATION OF FOXO1.
PubMed=15692560; DOI=10.1038/sj.emboj.7600570;
Yang Y., Hou H., Haller E.M., Nicosia S.V., Bai W.;
"Suppression of FOXO1 activity by FHL2 through SIRT1-mediated
deacetylation.";
EMBO J. 24:1021-1032(2005).
[17]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=16079181; DOI=10.1091/mbc.e05-01-0033;
Michishita E., Park J.Y., Burneskis J.M., Barrett J.C., Horikawa I.;
"Evolutionarily conserved and nonconserved cellular localizations and
functions of human SIRT proteins.";
Mol. Biol. Cell 16:4623-4635(2005).
[18]
FUNCTION IN DEACETYLATION OF MEF2D, AND INTERACTION WITH HDAC4.
PubMed=16166628; DOI=10.1128/mcb.25.19.8456-8464.2005;
Zhao X., Sternsdorf T., Bolger T.A., Evans R.M., Yao T.-P.;
"Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-
mediated lysine modifications.";
Mol. Cell. Biol. 25:8456-8464(2005).
[19]
INTERACTION WITH HIV-1 TAT (MICROBIAL INFECTION).
PubMed=15719057; DOI=10.1371/journal.pbio.0030041;
Pagans S., Pedal A., North B.J., Kaehlcke K., Marshall B.L., Dorr A.,
Hetzer-Egger C., Henklein P., Frye R., McBurney M.W., Hruby H., Jung M.,
Verdin E., Ott M.;
"SIRT1 regulates HIV transcription via Tat deacetylation.";
PLoS Biol. 3:210-220(2005).
[20]
ASSOCIATION WITH THE PRC4 COMPLEX, AND INTERACTION WITH SUZ12.
PubMed=15684044; DOI=10.1073/pnas.0409875102;
Kuzmichev A., Margueron R., Vaquero A., Preissner T.S., Scher M.,
Kirmizis A., Ouyang X., Brockdorff N., Abate-Shen C., Farnham P.J.,
Reinberg D.;
"Composition and histone substrates of polycomb repressive group complexes
change during cellular differentiation.";
Proc. Natl. Acad. Sci. U.S.A. 102:1859-1864(2005).
[21]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-47, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=16964243; DOI=10.1038/nbt1240;
Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.;
"A probability-based approach for high-throughput protein phosphorylation
analysis and site localization.";
Nat. Biotechnol. 24:1285-1292(2006).
[22]
FUNCTION, AND INTERACTION WITH E2F1.
PubMed=16892051; DOI=10.1038/ncb1468;
Wang C., Chen L., Hou X., Li Z., Kabra N., Ma Y., Nemoto S., Finkel T.,
Gu W., Cress W.D., Chen J.;
"Interactions between E2F1 and SirT1 regulate apoptotic response to DNA
damage.";
Nat. Cell Biol. 8:1025-1031(2006).
[23]
FUNCTION IN DEACETYLATION OF RB1.
PubMed=17620057; DOI=10.1042/bj20070151;
Wong S., Weber J.D.;
"Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1.";
Biochem. J. 407:451-460(2007).
[24]
INTERACTION WITH TLE1.
PubMed=17680780; DOI=10.1042/bj20070817;
Ghosh H.S., Spencer J.V., Ng B., McBurney M.W., Robbins P.D.;
"Sirt1 interacts with transducin-like enhancer of split-1 to inhibit
nuclear factor kappaB-mediated transcription.";
Biochem. J. 408:105-111(2007).
[25]
FUNCTION, MUTAGENESIS OF HIS-363, AND ACTIVE SITE.
PubMed=17290224; DOI=10.1038/sj.emboj.7601563;
Pedersen T.A., Bereshchenko O., Garcia-Silva S., Ermakova O., Kurz E.,
Mandrup S., Porse B.T., Nerlov C.;
"Distinct C/EBPalpha motifs regulate lipogenic and gluconeogenic gene
expression in vivo.";
EMBO J. 26:1081-1093(2007).
[26]
FUNCTION IN DEACETYLATION OF XRCC6, AND FUNCTION IN DNA REPAIR.
PubMed=17334224; DOI=10.1038/emm.2007.2;
Jeong J., Juhn K., Lee H., Kim S.H., Min B.H., Lee K.M., Cho M.H.,
Park G.H., Lee K.H.;
"SIRT1 promotes DNA repair activity and deacetylation of Ku70.";
Exp. Mol. Med. 39:8-13(2007).
[27]
FUNCTION IN DEACETYLATION OF TP73, AND FUNCTION IN REGULATION OF TP73.
PubMed=16998810; DOI=10.1002/jcp.20831;
Dai J.M., Wang Z.Y., Sun D.C., Lin R.X., Wang S.Q.;
"SIRT1 interacts with p73 and suppresses p73-dependent transcriptional
activity.";
J. Cell. Physiol. 210:161-166(2007).
[28]
FUNCTION IN AR-DEPENDENT REPRESSION.
PubMed=17505061; DOI=10.1210/me.2006-0467;
Dai Y., Ngo D., Forman L.W., Qin D.C., Jacob J., Faller D.V.;
"Sirtuin 1 is required for antagonist-induced transcriptional repression of
androgen-responsive genes by the androgen receptor.";
Mol. Endocrinol. 21:1807-1821(2007).
[29]
INTERACTION WITH RPS19BP1.
PubMed=17964266; DOI=10.1016/j.molcel.2007.08.030;
Kim E.-J., Kho J.-H., Kang M.-R., Um S.-J.;
"Active regulator of SIRT1 cooperates with SIRT1 and facilitates
suppression of p53 activity.";
Mol. Cell 28:277-290(2007).
[30]
ERRATUM OF PUBMED:17964266.
Kim E.-J., Kho J.-H., Kang M.-R., Um S.-J.;
Mol. Cell 28:513-513(2007).
[31]
FUNCTION IN DEACETYLATION OF NR1H3 AND NR1H2.
PubMed=17936707; DOI=10.1016/j.molcel.2007.07.032;
Li X., Zhang S., Blander G., Tse J.G., Krieger M., Guarente L.;
"SIRT1 deacetylates and positively regulates the nuclear receptor LXR.";
Mol. Cell 28:91-106(2007).
[32]
FUNCTION IN DEACETYLATION OF NBN, AND FUNCTION IN DNA REPAIR.
PubMed=17612497; DOI=10.1016/j.molcel.2007.05.029;
Yuan Z., Zhang X., Sengupta N., Lane W.S., Seto E.;
"SIRT1 regulates the function of the Nijmegen breakage syndrome protein.";
Mol. Cell 27:149-162(2007).
[33]
FUNCTION IN DEACETYLATION OF HIC1.
PubMed=17283066; DOI=10.1128/mcb.01098-06;
Stankovic-Valentin N., Deltour S., Seeler J., Pinte S., Vergoten G.,
Guerardel C., Dejean A., Leprince D.;
"An acetylation/deacetylation-SUMOylation switch through a phylogenetically
conserved psiKXEP motif in the tumor suppressor HIC1 regulates
transcriptional repression activity.";
Mol. Cell. Biol. 27:2661-2675(2007).
[34]
FUNCTION, MUTAGENESIS OF HIS-363, AND ACTIVE SITE.
PubMed=18004385; DOI=10.1038/nature06268;
Vaquero A., Scher M., Erdjument-Bromage H., Tempst P., Serrano L.,
Reinberg D.;
"SIRT1 regulates the histone methyl-transferase SUV39H1 during
heterochromatin formation.";
Nature 450:440-444(2007).
[35]
FUNCTION.
PubMed=18662546; DOI=10.1016/j.cell.2008.06.050;
Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F.,
Mostoslavsky R., Alt F.W., Schibler U.;
"SIRT1 regulates circadian clock gene expression through PER2
deacetylation.";
Cell 134:317-328(2008).
[36]
IDENTIFICATION IN THE ENOSC COMPLEX, FUNCTION, MUTAGENESIS OF HIS-363, AND
ACTIVE SITE.
PubMed=18485871; DOI=10.1016/j.cell.2008.03.030;
Murayama A., Ohmori K., Fujimura A., Minami H., Yasuzawa-Tanaka K.,
Kuroda T., Oie S., Daitoku H., Okuwaki M., Nagata K., Fukamizu A.,
Kimura K., Shimizu T., Yanagisawa J.;
"Epigenetic control of rDNA loci in response to intracellular energy
status.";
Cell 133:627-639(2008).
[37]
PHOSPHORYLATION AT SER-27 AND SER-47.
PubMed=18838864; DOI=10.4161/cc.7.19.6799;
Ford J., Ahmed S., Allison S., Jiang M., Milner J.;
"JNK2-dependent regulation of SIRT1 protein stability.";
Cell Cycle 7:3091-3097(2008).
[38]
INTERACTION WITH HIV-1 TAT (MICROBIAL INFECTION), AND FUNCTION IN T-CELL
ACTIVATION (MICROBIAL INFECTION).
PubMed=18329615; DOI=10.1016/j.chom.2008.02.002;
Kwon H.S., Brent M.M., Getachew R., Jayakumar P., Chen L.F., Schnolzer M.,
McBurney M.W., Marmorstein R., Greene W.C., Ott M.;
"Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1
deacetylase and induces T cell hyperactivation.";
Cell Host Microbe 3:158-167(2008).
[39]
FUNCTION IN DEACETYLATION OF WRN, AND FUNCTION IN DNA DAMAGE.
PubMed=18203716; DOI=10.1074/jbc.m709707200;
Li K., Casta A., Wang R., Lozada E., Fan W., Kane S., Ge Q., Gu W.,
Orren D., Luo J.;
"Regulation of WRN protein cellular localization and enzymatic activities
by SIRT1-mediated deacetylation.";
J. Biol. Chem. 283:7590-7598(2008).
[40]
FUNCTION IN DEACETYLATION OF STK11.
PubMed=18687677; DOI=10.1074/jbc.m805711200;
Lan F., Cacicedo J.M., Ruderman N., Ido Y.;
"SIRT1 modulation of the acetylation status, cytosolic localization, and
activity of LKB1. Possible role in AMP-activated protein kinase
activation.";
J. Biol. Chem. 283:27628-27635(2008).
[41]
INTERACTION WITH CCAR2, ACTIVITY REGULATION, MUTAGENESIS OF HIS-363, ACTIVE
SITE, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=18235501; DOI=10.1038/nature06500;
Kim J.-E., Chen J., Lou Z.;
"DBC1 is a negative regulator of SIRT1.";
Nature 451:583-586(2008).
[42]
INTERACTION WITH CCAR2, AND ACTIVITY REGULATION.
PubMed=18235502; DOI=10.1038/nature06515;
Zhao W., Kruse J.-P., Tang Y., Jung S.Y., Qin J., Gu W.;
"Negative regulation of the deacetylase SIRT1 by DBC1.";
Nature 451:587-590(2008).
[43]
PHOSPHORYLATION AT SER-14; SER-26; SER-27; SER-47; SER-159; SER-162;
SER-172; SER-173; THR-530; THR-544; SER-545; THR-719 AND SER-747, AND
MUTAGENESIS OF THR-530 AND SER-540.
PubMed=19107194; DOI=10.1371/journal.pone.0004020;
Sasaki T., Maier B., Koclega K.D., Chruszcz M., Gluba W., Stukenberg P.T.,
Minor W., Scrable H.;
"Phosphorylation regulates SIRT1 function.";
PLoS ONE 3:E4020-E4020(2008).
[44]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-719, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18669648; DOI=10.1073/pnas.0805139105;
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
Elledge S.J., Gygi S.P.;
"A quantitative atlas of mitotic phosphorylation.";
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
[45]
FUNCTION IN DEACETYLATION OF ATG5; ATG7 AND MAP1LC3B, AND FUNCTION IN
AUTOPHAGY.
PubMed=18296641; DOI=10.1073/pnas.0712145105;
Lee I.H., Cao L., Mostoslavsky R., Lombard D.B., Liu J., Bruns N.E.,
Tsokos M., Alt F.W., Finkel T.;
"A role for the NAD-dependent deacetylase Sirt1 in the regulation of
autophagy.";
Proc. Natl. Acad. Sci. U.S.A. 105:3374-3379(2008).
[46]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY
[LARGE SCALE ANALYSIS].
PubMed=19413330; DOI=10.1021/ac9004309;
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.;
"Lys-N and trypsin cover complementary parts of the phosphoproteome in a
refined SCX-based approach.";
Anal. Chem. 81:4493-4501(2009).
[47]
PHOSPHORYLATION AT SER-659 AND SER-661, AND MUTAGENESIS OF SER-659; SER-661
AND SER-684.
PubMed=19236849; DOI=10.1016/j.bbrc.2009.02.085;
Zschoernig B., Mahlknecht U.;
"Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2.";
Biochem. Biophys. Res. Commun. 381:372-377(2009).
[48]
FUNCTION.
PubMed=19220062; DOI=10.1021/bi802093g;
Du J., Jiang H., Lin H.;
"Investigating the ADP-ribosyltransferase activity of sirtuins with NAD
analogues and 32P-NAD.";
Biochemistry 48:2878-2890(2009).
[49]
INTERACTION WITH PPARA.
PubMed=19356714; DOI=10.1016/j.cmet.2009.02.006;
Purushotham A., Schug T.T., Xu Q., Surapureddi S., Guo X., Li X.;
"Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and
results in hepatic steatosis and inflammation.";
Cell Metab. 9:327-338(2009).
[50]
FUNCTION, AND INTERACTION WITH CREBZF.
PubMed=19690166; DOI=10.1074/jbc.m109.034165;
Xie Y.B., Park J.H., Kim D.K., Hwang J.H., Oh S., Park S.B., Shong M.,
Lee I.K., Choi H.S.;
"Transcriptional corepressor SMILE recruits SIRT1 to inhibit nuclear
receptor estrogen receptor-related receptor gamma transactivation.";
J. Biol. Chem. 284:28762-28774(2009).
[51]
FUNCTION IN DEACETYLATION OF MYC, AND FUNCTION IN REGULATION OF MYC.
PubMed=19364925; DOI=10.1083/jcb.200809167;
Yuan J., Minter-Dykhouse K., Lou Z.;
"A c-Myc-SIRT1 feedback loop regulates cell growth and transformation.";
J. Cell Biol. 185:203-211(2009).
[52]
FUNCTION IN DEACETYLATION OF PCAF, AND FUNCTION IN DNA REPAIR.
PubMed=19188449; DOI=10.1128/mcb.00552-08;
Pediconi N., Guerrieri F., Vossio S., Bruno T., Belloni L., Schinzari V.,
Scisciani C., Fanciulli M., Levrero M.;
"hSirT1-dependent regulation of the PCAF-E2F1-p73 apoptotic pathway in
response to DNA damage.";
Mol. Cell. Biol. 29:1989-1998(2009).
[53]
PHOSPHORYLATION AT SER-27; SER-47 AND THR-530, MUTAGENESIS OF SER-27;
SER-47 AND THR-530, AND SUBCELLULAR LOCATION.
PubMed=20027304; DOI=10.1371/journal.pone.0008414;
Nasrin N., Kaushik V.K., Fortier E., Wall D., Pearson K.J., de Cabo R.,
Bordone L.;
"JNK1 phosphorylates SIRT1 and promotes its enzymatic activity.";
PLoS ONE 4:E8414-E8414(2009).
[54]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-530; SER-535 AND THR-719, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Leukemic T-cell;
PubMed=19690332; DOI=10.1126/scisignal.2000007;
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
Rodionov V., Han D.K.;
"Quantitative phosphoproteomic analysis of T cell receptor signaling
reveals system-wide modulation of protein-protein interactions.";
Sci. Signal. 2:RA46-RA46(2009).
[55]
FUNCTION IN REGULATION OF STK11.
PubMed=20203304; DOI=10.1161/circresaha.109.215483;
Zu Y., Liu L., Lee M.Y., Xu C., Liang Y., Man R.Y., Vanhoutte P.M.,
Wang Y.;
"SIRT1 promotes proliferation and prevents senescence through targeting
LKB1 in primary porcine aortic endothelial cells.";
Circ. Res. 106:1384-1393(2010).
[56]
FUNCTION IN DNA REPAIR HOMOLOGOUS RECOMBINATION.
PubMed=20097625; DOI=10.1016/j.dnarep.2009.12.020;
Uhl M., Csernok A., Aydin S., Kreienberg R., Wiesmuller L., Gatz S.A.;
"Role of SIRT1 in homologous recombination.";
DNA Repair 9:383-393(2010).
[57]
INTERACTION WITH FOS AND JUN.
PubMed=20042607; DOI=10.1074/jbc.m109.038604;
Zhang R., Chen H.Z., Liu J.J., Jia Y.Y., Zhang Z.Q., Yang R.F., Zhang Y.,
Xu J., Wei Y.S., Liu D.P., Liang C.C.;
"SIRT1 suppresses activator protein-1 transcriptional activity and
cyclooxygenase-2 expression in macrophages.";
J. Biol. Chem. 285:7097-7110(2010).
[58]
FUNCTION IN DEACETYLATION OF KAT5.
PubMed=20100829; DOI=10.1074/jbc.m109.087585;
Wang J., Chen J.;
"SIRT1 regulates autoacetylation and histone acetyltransferase activity of
TIP60.";
J. Biol. Chem. 285:11458-11464(2010).
[59]
SUBCELLULAR LOCATION.
PubMed=20167603; DOI=10.1074/jbc.m110.102574;
Guo X., Williams J.G., Schug T.T., Li X.;
"DYRK1A and DYRK3 promote cell survival through phosphorylation and
activation of SIRT1.";
J. Biol. Chem. 285:13223-13232(2010).
[60]
FUNCTION IN DEACETYLATION OF SREBF1.
PubMed=20817729; DOI=10.1074/jbc.m110.122978;
Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., Wu S.Y.,
Chiang C.M., Veenstra T.D., Kemper J.K.;
"SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic
lipid metabolism.";
J. Biol. Chem. 285:33959-33970(2010).
[61]
FUNCTION IN DEACETYLATION OF HIF1A, AND FUNCTION IN REGULATION OF HIF1A.
PubMed=20620956; DOI=10.1016/j.molcel.2010.05.023;
Lim J.H., Lee Y.M., Chun Y.S., Chen J., Kim J.E., Park J.W.;
"Sirtuin 1 modulates cellular responses to hypoxia by deacetylating
hypoxia-inducible factor 1alpha.";
Mol. Cell 38:864-878(2010).
[62]
FUNCTION IN DEACETYLATION OF XPA.
PubMed=20670893; DOI=10.1016/j.molcel.2010.07.006;
Fan W., Luo J.;
"SIRT1 regulates UV-induced DNA repair through deacetylating XPA.";
Mol. Cell 39:247-258(2010).
[63]
FUNCTION IN DEACETYLATION OF APEX1, FUNCTION IN DNA REPAIR, MUTAGENESIS OF
HIS-363, ACTIVE SITE, INDUCTION, AND SUBCELLULAR LOCATION.
PubMed=19934257; DOI=10.1093/nar/gkp1039;
Yamamori T., DeRicco J., Naqvi A., Hoffman T.A., Mattagajasingh I.,
Kasuno K., Jung S.B., Kim C.S., Irani K.;
"SIRT1 deacetylates APE1 and regulates cellular base excision repair.";
Nucleic Acids Res. 38:832-845(2010).
[64]
FUNCTION, AND INTERACTION WITH NR0B2.
PubMed=20375098; DOI=10.1093/nar/gkq227;
Chanda D., Xie Y.B., Choi H.S.;
"Transcriptional corepressor SHP recruits SIRT1 histone deacetylase to
inhibit LRH-1 transactivation.";
Nucleic Acids Res. 38:4607-4619(2010).
[65]
INTERACTION WITH TSC2.
PubMed=20169165; DOI=10.1371/journal.pone.0009199;
Ghosh H.S., McBurney M., Robbins P.D.;
"SIRT1 negatively regulates the mammalian target of rapamycin.";
PLoS ONE 5:E9199-E9199(2010).
[66]
ALTERNATIVE SPLICING (ISOFORM 2), FUNCTION (ISOFORM 2), INDUCTION (ISOFORM
2), AND INTERACTION WITH TP53 AND RPS19BP1.
PubMed=20975832; DOI=10.1371/journal.pone.0013502;
Lynch C.J., Shah Z.H., Allison S.J., Ahmed S.U., Ford J., Warnock L.J.,
Li H., Serrano M., Milner J.;
"SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with
p53.";
PLoS ONE 5:E13502-E13502(2010).
[67]
FUNCTION IN DNA REPAIR, AND SUPPRESSION OF XPC.
PubMed=21149730; DOI=10.1073/pnas.1010377108;
Ming M., Shea C.R., Guo X., Li X., Soltani K., Han W., He Y.Y.;
"Regulation of global genome nucleotide excision repair by SIRT1 through
xeroderma pigmentosum C.";
Proc. Natl. Acad. Sci. U.S.A. 107:22623-22628(2010).
[68]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, PHOSPHORYLATION [LARGE SCALE
ANALYSIS] AT SER-14 AND SER-47, CLEAVAGE OF INITIATOR METHIONINE [LARGE
SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE
ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=20068231; DOI=10.1126/scisignal.2000475;
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.;
"Quantitative phosphoproteomics reveals widespread full phosphorylation
site occupancy during mitosis.";
Sci. Signal. 3:RA3-RA3(2010).
[69]
FUNCTION IN DEACETYLATION OF HMGCS1.
PubMed=21701047; DOI=10.18632/aging.100339;
Hirschey M.D., Shimazu T., Capra J.A., Pollard K.S., Verdin E.;
"SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and
HMGCS1,2.";
Aging (Albany NY) 3:635-642(2011).
[70]
PROCESSING.
PubMed=21305533; DOI=10.1002/art.30279;
Dvir-Ginzberg M., Gagarina V., Lee E.J., Booth R., Gabay O., Hall D.J.;
"Tumor necrosis factor alpha-mediated cleavage and inactivation of SirT1 in
human osteoarthritic chondrocytes.";
Arthritis Rheum. 63:2363-2373(2011).
[71]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21269460; DOI=10.1186/1752-0509-5-17;
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T.,
Bennett K.L., Superti-Furga G., Colinge J.;
"Initial characterization of the human central proteome.";
BMC Syst. Biol. 5:17-17(2011).
[72]
FUNCTION IN DEACETYLATION OF XBP1, INTERACTION WITH XBP1, AND SUBCELLULAR
LOCATION.
PubMed=20955178; DOI=10.1042/bj20101293;
Wang F.M., Chen Y.J., Ouyang H.J.;
"Regulation of unfolded protein response modulator XBP1s by acetylation and
deacetylation.";
Biochem. J. 433:245-252(2011).
[73]
FUNCTION IN DEACETYLATION OF MECOM.
PubMed=21555002; DOI=10.1016/j.bbagrm.2011.04.007;
Pradhan A.K., Kuila N., Singh S., Chakraborty S.;
"EVI1 up-regulates the stress responsive gene SIRT1 which triggers
deacetylation and degradation of EVI1.";
Biochim. Biophys. Acta 1809:269-275(2011).
[74]
INTERACTION WITH NR1I2.
PubMed=21933665; DOI=10.1016/j.bcp.2011.09.006;
Buler M., Aatsinki S.M., Skoumal R., Hakkola J.;
"Energy sensing factors PGC-1alpha and SIRT1 modulate PXR expression and
function.";
Biochem. Pharmacol. 82:2008-2015(2011).
[75]
FUNCTION IN DEACETYLATION OF MYC, AND FUNCTION IN REGULATION OF MYC.
PubMed=21807113; DOI=10.1016/j.biocel.2011.07.006;
Mao B., Zhao G., Lv X., Chen H.Z., Xue Z., Yang B., Liu D.P., Liang C.C.;
"Sirt1 deacetylates c-Myc and promotes c-Myc/Max association.";
Int. J. Biochem. Cell Biol. 43:1573-1581(2011).
[76]
PHOSPHORYLATION BY STK4/MST1.
PubMed=21212262; DOI=10.1074/jbc.m110.182543;
Yuan F., Xie Q., Wu J., Bai Y., Mao B., Dong Y., Bi W., Ji G., Tao W.,
Wang Y., Yuan Z.;
"MST1 promotes apoptosis through regulating Sirt1-dependent p53
deacetylation.";
J. Biol. Chem. 286:6940-6945(2011).
[77]
FUNCTION IN APOPTOSIS, PHOSPHORYLATION AT SER-47, AND MUTAGENESIS OF SER-47
AND PHE-474.
PubMed=21471201; DOI=10.1074/jbc.m111.240598;
Back J.H., Rezvani H.R., Zhu Y., Guyonnet-Duperat V., Athar M., Ratner D.,
Kim A.L.;
"Cancer cell survival following DNA damage-mediated premature senescence is
regulated by mammalian target of rapamycin (mTOR)-dependent Inhibition of
sirtuin 1.";
J. Biol. Chem. 286:19100-19108(2011).
[78]
FUNCTION IN STABILIZATION OF SUV39H1.
PubMed=21504832; DOI=10.1016/j.molcel.2011.02.034;
Bosch-Presegue L., Raurell-Vila H., Marazuela-Duque A., Kane-Goldsmith N.,
Valle A., Oliver J., Serrano L., Vaquero A.;
"Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and
ensures genome protection.";
Mol. Cell 42:210-223(2011).
[79]
FUNCTION IN DEACETYLATION OF DNMT1, AND FUNCTION IN REGULATION OF DNMT1.
PubMed=21947282; DOI=10.1128/mcb.06147-11;
Peng L., Yuan Z., Ling H., Fukasawa K., Robertson K., Olashaw N.,
Koomen J., Chen J., Lane W.S., Seto E.;
"SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters
its activities.";
Mol. Cell. Biol. 31:4720-4734(2011).
[80]
FUNCTION IN REGULATION OF MYCN, AND INTERACTION WITH MYCN.
PubMed=21698133; DOI=10.1371/journal.pgen.1002135;
Marshall G.M., Liu P.Y., Gherardi S., Scarlett C.J., Bedalov A., Xu N.,
Iraci N., Valli E., Ling D., Thomas W., van Bekkum M., Sekyere E.,
Jankowski K., Trahair T., Mackenzie K.L., Haber M., Norris M.D.,
Biankin A.V., Perini G., Liu T.;
"SIRT1 promotes N-Myc oncogenesis through a positive feedback loop
involving the effects of MKP3 and ERK on N-Myc protein stability.";
PLoS Genet. 7:E1002135-E1002135(2011).
[81]
INTERACTION WITH HCFC1.
PubMed=21909281; DOI=10.1371/journal.pgen.1002235;
Rizki G., Iwata T.N., Li J., Riedel C.G., Picard C.L., Jan M., Murphy C.T.,
Lee S.S.;
"The evolutionarily conserved longevity determinants HCF-1 and SIR-
2.1/SIRT1 collaborate to regulate DAF-16/FOXO.";
PLoS Genet. 7:E1002235-E1002235(2011).
[82]
INTERACTION WITH SETD7, METHYLATION, AND MUTAGENESIS OF LYS-233; LYS-235;
LYS-236 AND LYS-238.
PubMed=21245319; DOI=10.1073/pnas.1019619108;
Liu X., Wang D., Zhao Y., Tu B., Zheng Z., Wang L., Wang H., Gu W.,
Roeder R.G., Zhu W.G.;
"Methyltransferase Set7/9 regulates p53 activity by interacting with
Sirtuin 1 (SIRT1).";
Proc. Natl. Acad. Sci. U.S.A. 108:1925-1930(2011).
[83]
FUNCTION IN DEACETYLATION OF AKT1, AND FUNCTION IN REGULATION OF AKT1.
PubMed=21775285; DOI=10.1126/scisignal.2001465;
Sundaresan N.R., Pillai V.B., Wolfgeher D., Samant S., Vasudevan P.,
Parekh V., Raghuraman H., Cunningham J.M., Gupta M., Gupta M.P.;
"The deacetylase SIRT1 promotes membrane localization and activation of Akt
and PDK1 during tumorigenesis and cardiac hypertrophy.";
Sci. Signal. 4:RA46-RA46(2011).
[84]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, PHOSPHORYLATION [LARGE SCALE
ANALYSIS] AT SER-14; SER-47 AND THR-719, CLEAVAGE OF INITIATOR METHIONINE
[LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE
SCALE ANALYSIS].
PubMed=21406692; DOI=10.1126/scisignal.2001570;
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J., Johansen P.T.,
Kratchmarova I., Kassem M., Mann M., Olsen J.V., Blagoev B.;
"System-wide temporal characterization of the proteome and phosphoproteome
of human embryonic stem cell differentiation.";
Sci. Signal. 4:RS3-RS3(2011).
[85]
FUNCTION (SIRTT1 75 KDA FRAGMENT), AND SUBCELLULAR LOCATION (75SIRT1).
PubMed=21987377; DOI=10.1002/art.33407;
Oppenheimer H., Gabay O., Meir H., Haze A., Kandel L., Liebergall M.,
Gagarina V., Lee E.J., Dvir-Ginzberg M.;
"75kDa SirT1 blocks TNFalpha-mediated apoptosis in human osteoarthritic
chondrocytes.";
Arthritis Rheum. 64:718-728(2012).
[86]
FUNCTION IN DEACETYLATION OF CIITA.
PubMed=21890893; DOI=10.1093/nar/gkr651;
Wu X., Kong X., Chen D., Li H., Zhao Y., Xia M., Fang M., Li P., Fang F.,
Sun L., Tian W., Xu H., Yang Y., Qi X., Gao Y., Sha J., Chen Q., Xu Y.;
"SIRT1 links CIITA deacetylation to MHC II activation.";
Nucleic Acids Res. 39:9549-9558(2011).
[87]
FUNCTION IN DEACETYLATION OF PML.
PubMed=22274616; DOI=10.1038/emboj.2012.1;
Miki T., Xu Z., Chen-Goodspeed M., Liu M., Van Oort-Jansen A., Rea M.A.,
Zhao Z., Lee C.C., Chang K.S.;
"PML regulates PER2 nuclear localization and circadian function.";
EMBO J. 31:1427-1439(2012).
[88]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY
[LARGE SCALE ANALYSIS].
PubMed=22223895; DOI=10.1074/mcp.m111.015131;
Bienvenut W.V., Sumpton D., Martinez A., Lilla S., Espagne C., Meinnel T.,
Giglione C.;
"Comparative large-scale characterisation of plant vs. mammal proteins
reveals similar and idiosyncratic N-alpha acetylation features.";
Mol. Cell. Proteomics 11:M111.015131-M111.015131(2012).
[89]
FUNCTION IN DEACETYLATION OF FOXO3, AND FUNCTION IN REGULATION OF FOXO3.
PubMed=21841822; DOI=10.1038/onc.2011.347;
Wang F., Chan C.H., Chen K., Guan X., Lin H.K., Tong Q.;
"Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3
ubiquitination and degradation.";
Oncogene 31:1546-1557(2012).
[90]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY
[LARGE SCALE ANALYSIS].
PubMed=22814378; DOI=10.1073/pnas.1210303109;
Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E., Timmerman E.,
Prieto J., Arnesen T., Sherman F., Gevaert K., Aldabe R.;
"N-terminal acetylome analyses and functional insights of the N-terminal
acetyltransferase NatB.";
Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
[91]
INTERACTION WITH CCAR2.
PubMed=23352644; DOI=10.1016/j.canlet.2013.01.026;
Kim W., Kim J.E.;
"Deleted in breast cancer 1 (DBC1) deficiency results in apoptosis of
breast cancer cells through impaired responses to UV-induced DNA damage.";
Cancer Lett. 333:180-186(2013).
[92]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-14; SER-27; SER-47 AND
THR-719, AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma, and Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[93]
INTERACTION WITH PPARA.
PubMed=24043310; DOI=10.1128/mcb.00087-13;
Laurent G., de Boer V.C., Finley L.W., Sweeney M., Lu H., Schug T.T.,
Cen Y., Jeong S.M., Li X., Sauve A.A., Haigis M.C.;
"SIRT4 represses peroxisome proliferator-activated receptor alpha activity
to suppress hepatic fat oxidation.";
Mol. Cell. Biol. 33:4552-4561(2013).
[94]
FUNCTION.
PubMed=24415752; DOI=10.1074/jbc.m113.512913;
Nin V., Chini C.C., Escande C., Capellini V., Chini E.N.;
"Deleted in breast cancer 1 (DBC1) protein regulates hepatic
gluconeogenesis.";
J. Biol. Chem. 289:5518-5527(2014).
[95]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-14 AND SER-27, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Liver;
PubMed=24275569; DOI=10.1016/j.jprot.2013.11.014;
Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D., Wang L.,
Ye M., Zou H.;
"An enzyme assisted RP-RPLC approach for in-depth analysis of human liver
phosphoproteome.";
J. Proteomics 96:253-262(2014).
[96]
INTERACTION WITH CCAR2 AND TP53, MUTAGENESIS OF 256-ILE-ILE-257 AND
HIS-363, AND ACTIVE SITE.
PubMed=25406032; DOI=10.1038/ncomms6483;
Park J.H., Lee S.W., Yang S.W., Yoo H.M., Park J.M., Seong M.W., Ka S.H.,
Oh K.H., Jeon Y.J., Chung C.H.;
"Modification of DBC1 by SUMO2/3 is crucial for p53-mediated apoptosis in
response to DNA damage.";
Nat. Commun. 5:5483-5483(2014).
[97]
INTERACTION WITH CHEK2.
PubMed=25361978; DOI=10.1093/nar/gku1065;
Magni M., Ruscica V., Buscemi G., Kim J.E., Nachimuthu B.T., Fontanella E.,
Delia D., Zannini L.;
"Chk2 and REGgamma-dependent DBC1 regulation in DNA damage induced
apoptosis.";
Nucleic Acids Res. 42:13150-13160(2014).
[98]
FUNCTION IN DEACETYLATION OF CTNB1.
PubMed=24824780; DOI=10.1002/ijc.28967;
Pangon L., Mladenova D., Watkins L., Van Kralingen C., Currey N.,
Al-Sohaily S., Lecine P., Borg J.P., Kohonen-Corish M.R.;
"MCC inhibits beta-catenin transcriptional activity by sequestering DBC1 in
the cytoplasm.";
Int. J. Cancer 136:55-64(2015).
[99]
INTERACTION WITH NR1H3.
PubMed=25661920; DOI=10.1016/j.jsbmb.2015.02.001;
Sakurabashi A., Wada-Hiraike O., Hirano M., Fu H., Isono W., Fukuda T.,
Morita Y., Tanikawa M., Miyamoto Y., Oda K., Kawana K., Osuga Y., Fujii T.;
"CCAR2 negatively regulates nuclear receptor LXRalpha by competing with
SIRT1 deacetylase.";
J. Steroid Biochem. Mol. Biol. 149:80-88(2015).
[100]
INTERACTION WITH PACS2.
PubMed=29656858; DOI=10.1016/j.ajhg.2018.03.005;
DDD Study;
C4RCD Research Group;
Olson H.E., Jean-Marcais N., Yang E., Heron D., Tatton-Brown K.,
van der Zwaag P.A., Bijlsma E.K., Krock B.L., Backer E., Kamsteeg E.J.,
Sinnema M., Reijnders M.R.F., Bearden D., Begtrup A., Telegrafi A.,
Lunsing R.J., Burglen L., Lesca G., Cho M.T., Smith L.A., Sheidley B.R.,
Moufawad El Achkar C., Pearl P.L., Poduri A., Skraban C.M., Tarpinian J.,
Nesbitt A.I., Fransen van de Putte D.E., Ruivenkamp C.A.L., Rump P.,
Chatron N., Sabatier I., De Bellescize J., Guibaud L., Sweetser D.A.,
Waxler J.L., Wierenga K.J., Donadieu J., Narayanan V., Ramsey K.M.,
Nava C., Riviere J.B., Vitobello A., Tran Mau-Them F., Philippe C.,
Bruel A.L., Duffourd Y., Thomas L., Lelieveld S.H., Schuurs-Hoeijmakers J.,
Brunner H.G., Keren B., Thevenon J., Faivre L., Thomas G.,
Thauvin-Robinet C.;
"A recurrent de novo PACS2 heterozygous missense variant causes neonatal-
onset developmental epileptic encephalopathy, facial dysmorphism, and
cerebellar dysgenesis.";
Am. J. Hum. Genet. 102:995-1007(2018).
[101]
FUNCTION IN DEACETYLATION OF PCK1.
PubMed=30193097; DOI=10.1016/j.molcel.2018.07.031;
Latorre-Muro P., Baeza J., Armstrong E.A., Hurtado-Guerrero R., Corzana F.,
Wu L.E., Sinclair D.A., Lopez-Buesa P., Carrodeguas J.A., Denu J.M.;
"Dynamic acetylation of phosphoenolpyruvate carboxykinase toggles enzyme
activity between gluconeogenic and anaplerotic reactions.";
Mol. Cell 71:718-732(2018).
-!- FUNCTION: NAD-dependent protein deacetylase that links transcriptional
regulation directly to intracellular energetics and participates in the
coordination of several separated cellular functions such as cell
cycle, response to DNA damage, metabolism, apoptosis and autophagy
(PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222,
PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825,
PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051,
PubMed:16998810, PubMed:17283066, PubMed:17290224, PubMed:17334224,
PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707,
PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677,
PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166,
PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304,
PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729,
PubMed:20955178, PubMed:21149730, PubMed:21245319, PubMed:21471201,
PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047,
PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893,
PubMed:21947282, PubMed:22274616, PubMed:24415752, PubMed:24824780).
Can modulate chromatin function through deacetylation of histones and
can promote alterations in the methylation of histones and DNA, leading
to transcriptional repression (PubMed:15469825). Deacetylates a broad
range of transcription factors and coregulators, thereby regulating
target gene expression positively and negatively (PubMed:15152190,
PubMed:14980222, PubMed:14976264). Serves as a sensor of the cytosolic
ratio of NAD(+)/NADH which is altered by glucose deprivation and
metabolic changes associated with caloric restriction
(PubMed:15205477). Is essential in skeletal muscle cell differentiation
and in response to low nutrients mediates the inhibitory effect on
skeletal myoblast differentiation which also involves 5'-AMP-activated
protein kinase (AMPK) and nicotinamide phosphoribosyltransferase
(NAMPT) (By similarity). Component of the eNoSC (energy-dependent
nucleolar silencing) complex, a complex that mediates silencing of rDNA
in response to intracellular energy status and acts by recruiting
histone-modifying enzymes (PubMed:18485871). The eNoSC complex is able
to sense the energy status of cell: upon glucose starvation, elevation
of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3
deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by
SUV39H1 and the formation of silent chromatin in the rDNA locus
(PubMed:18485871, PubMed:21504832). Deacetylates 'Lys-266' of SUV39H1,
leading to its activation (PubMed:21504832). Inhibits skeletal muscle
differentiation by deacetylating PCAF and MYOD1 (PubMed:19188449).
Deacetylates H2A and 'Lys-26' of H1-4 (PubMed:15469825). Deacetylates
'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression
function through chromatin remodeling: Recruited to LRH1 target gene
promoters by NR0B2/SHP thereby stimulating histone H3 and H4
deacetylation leading to transcriptional repression (PubMed:20375098).
Proposed to contribute to genomic integrity via positive regulation of
telomere length; however, reports on localization to pericentromeric
heterochromatin are conflicting (By similarity). Proposed to play a
role in constitutive heterochromatin (CH) formation and/or maintenance
through regulation of the available pool of nuclear SUV39H1
(PubMed:15469825, PubMed:18004385). Upon oxidative/metabolic stress
decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination
by MDM2 (PubMed:18004385, PubMed:21504832). This increase in SUV39H1
levels enhances SUV39H1 turnover in CH, which in turn seems to
accelerate renewal of the heterochromatin which correlates with greater
genomic integrity during stress response (PubMed:18004385,
PubMed:21504832). Deacetylates 'Lys-382' of p53/TP53 and impairs its
ability to induce transcription-dependent proapoptotic program and
modulate cell senescence (PubMed:11672523, PubMed:12006491).
Deacetylates TAF1B and thereby represses rDNA transcription by the RNA
polymerase I (By similarity). Deacetylates MYC, promotes the
association of MYC with MAX and decreases MYC stability leading to
compromised transformational capability (PubMed:19364925,
PubMed:21807113). Deacetylates FOXO3 in response to oxidative stress
thereby increasing its ability to induce cell cycle arrest and
resistance to oxidative stress but inhibiting FOXO3-mediated induction
of apoptosis transcriptional activity; also leading to FOXO3
ubiquitination and protesomal degradation (PubMed:14980222,
PubMed:14976264, PubMed:21841822). Appears to have a similar effect on
MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis
(PubMed:15126506). Deacetylates DNMT1; thereby impairs DNMT1
methyltransferase-independent transcription repressor activity,
modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene
silencing (PubMed:21947282). Deacetylates RELA/NF-kappa-B p65 thereby
inhibiting its transactivating potential and augments apoptosis in
response to TNF-alpha (PubMed:15152190). Deacetylates HIF1A,
KAT5/TIP60, RB1 and HIC1 (PubMed:17620057, PubMed:17283066,
PubMed:20100829, PubMed:20620956). Deacetylates FOXO1 resulting in its
nuclear retention and enhancement of its transcriptional activity
leading to increased gluconeogenesis in liver (PubMed:15692560).
Inhibits E2F1 transcriptional activity and apoptotic function, possibly
by deacetylation (PubMed:16892051). Involved in HES1- and HEY2-mediated
transcriptional repression (PubMed:12535671). In cooperation with MYCN
seems to be involved in transcriptional repression of DUSP6/MAPK3
leading to MYCN stabilization by phosphorylation at 'Ser-62'
(PubMed:21698133). Deacetylates MEF2D (PubMed:16166628). Required for
antagonist-mediated transcription suppression of AR-dependent genes
which may be linked to local deacetylation of histone H3
(PubMed:17505061). Represses HNF1A-mediated transcription (By
similarity). Required for the repression of ESRRG by CREBZF
(PubMed:19690166). Deacetylates NR1H3 and NR1H2 and deacetylation of
NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR
target genes, promotes NR1H3 proteosomal degradation and results in
cholesterol efflux; a promoter clearing mechanism after reach round of
transcription is proposed (PubMed:17936707). Involved in lipid
metabolism (PubMed:20817729). Implicated in regulation of adipogenesis
and fat mobilization in white adipocytes by repression of PPARG which
probably involves association with NCOR1 and SMRT/NCOR2 (By
similarity). Deacetylates p300/EP300 and PRMT1 (By similarity).
Deacetylates ACSS2 leading to its activation, and HMGCS1 deacetylation
(PubMed:21701047). Involved in liver and muscle metabolism. Through
deacetylation and activation of PPARGC1A is required to activate fatty
acid oxidation in skeletal muscle under low-glucose conditions and is
involved in glucose homeostasis. Involved in regulation of PPARA and
fatty acid beta-oxidation in liver. Involved in positive regulation of
insulin secretion in pancreatic beta cells in response to glucose; the
function seems to imply transcriptional repression of UCP2. Proposed to
deacetylate IRS2 thereby facilitating its insulin-induced tyrosine
phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby
decreasing its stability and transactivation in lipogenic gene
expression (PubMed:17290224, PubMed:20817729). Involved in DNA damage
response by repressing genes which are involved in DNA repair, such as
XPC and TP73, deacetylating XRCC6/Ku70, and facilitating recruitment of
additional factors to sites of damaged DNA, such as SIRT1-deacetylated
NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA
interacts with RPA2 (PubMed:15205477, PubMed:17334224, PubMed:16998810,
PubMed:17612497, PubMed:20670893, PubMed:21149730). Also involved in
DNA repair of DNA double-strand breaks by homologous recombination and
specifically single-strand annealing independently of XRCC6/Ku70 and
NBN (PubMed:15205477, PubMed:17334224, PubMed:20097625).
Transcriptional suppression of XPC probably involves an E2F4:RBL2
suppressor complex and protein kinase B (AKT) signaling.
Transcriptional suppression of TP73 probably involves E2F4 and PCAF.
Deacetylates WRN thereby regulating its helicase and exonuclease
activities and regulates WRN nuclear translocation in response to DNA
damage (PubMed:18203716). Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and
stimulates cellular AP endonuclease activity by promoting the
association of APEX1 to XRCC1 (PubMed:19934257). Increases p53/TP53-
mediated transcription-independent apoptosis by blocking nuclear
translocation of cytoplasmic p53/TP53 and probably redirecting it to
mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542'
causing it to sequester BAX away from mitochondria thereby inhibiting
stress-induced apoptosis. Is involved in autophagy, presumably by
deacetylating ATG5, ATG7 and MAP1LC3B/ATG8 (PubMed:18296641).
Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to
PIP3 and promotes their activation (PubMed:21775285). Proposed to play
role in regulation of STK11/LBK1-dependent AMPK signaling pathways
implicated in cellular senescence which seems to involve the regulation
of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and
thereby increase its activity, cytoplasmic localization and association
with STRAD; however, the relevance of such activity in normal cells is
unclear (PubMed:18687677, PubMed:20203304). In endothelial cells is
shown to inhibit STK11/LBK1 activity and to promote its degradation.
Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its
degradation. Deacetylates CIITA and augments its MHC class II
transactivation and contributes to its stability (PubMed:21890893).
Deacetylates MECOM/EVI1 (PubMed:21555002). Deacetylates PML at 'Lys-
487' and this deacetylation promotes PML control of PER2 nuclear
localization (PubMed:22274616). During the neurogenic transition,
represses selective NOTCH1-target genes through histone deacetylation
in a BCL6-dependent manner and leading to neuronal differentiation.
Regulates the circadian expression of several core clock genes,
including ARNTL/BMAL1, RORC, PER2 and CRY1 and plays a critical role in
maintaining a controlled rhythmicity in histone acetylation, thereby
contributing to circadian chromatin remodeling (PubMed:18662546).
Deacetylates ARNTL/BMAL1 and histones at the circadian gene promoters
in order to facilitate repression by inhibitory components of the
circadian oscillator (By similarity). Deacetylates PER2, facilitating
its ubiquitination and degradation by the proteosome (By similarity).
Protects cardiomyocytes against palmitate-induced apoptosis (By
similarity). Deacetylates XBP1 isoform 2; deacetylation decreases
protein stability of XBP1 isoform 2 and inhibits its transcriptional
activity (PubMed:20955178). Deacetylates PCK1 and directs its activity
toward phosphoenolpyruvate production promoting gluconeogenesis
(PubMed:30193097). Involved in the CCAR2-mediated regulation of PCK1
and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at 'Lys-49'
(PubMed:24824780). In POMC (pro-opiomelanocortin) neurons, required for
leptin-induced activation of PI3K signaling (By similarity). In
addition to protein deacetylase activity, also acts as protein-lysine
deacylase: acts as a protein depropionylase by mediating
depropionylation of Osterix (SP7) (By similarity). Deacetylates SOX9;
promoting SOX9 nuclear localization and transactivation activity (By
similarity). {ECO:0000250|UniProtKB:Q923E4,
ECO:0000269|PubMed:11672523, ECO:0000269|PubMed:12006491,
ECO:0000269|PubMed:12535671, ECO:0000269|PubMed:14976264,
ECO:0000269|PubMed:14980222, ECO:0000269|PubMed:15126506,
ECO:0000269|PubMed:15152190, ECO:0000269|PubMed:15205477,
ECO:0000269|PubMed:15469825, ECO:0000269|PubMed:15692560,
ECO:0000269|PubMed:16079181, ECO:0000269|PubMed:16166628,
ECO:0000269|PubMed:16892051, ECO:0000269|PubMed:16998810,
ECO:0000269|PubMed:17283066, ECO:0000269|PubMed:17290224,
ECO:0000269|PubMed:17334224, ECO:0000269|PubMed:17505061,
ECO:0000269|PubMed:17612497, ECO:0000269|PubMed:17620057,
ECO:0000269|PubMed:17936707, ECO:0000269|PubMed:18203716,
ECO:0000269|PubMed:18296641, ECO:0000269|PubMed:18485871,
ECO:0000269|PubMed:18662546, ECO:0000269|PubMed:18687677,
ECO:0000269|PubMed:19188449, ECO:0000269|PubMed:19220062,
ECO:0000269|PubMed:19364925, ECO:0000269|PubMed:19690166,
ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:20097625,
ECO:0000269|PubMed:20100829, ECO:0000269|PubMed:20203304,
ECO:0000269|PubMed:20375098, ECO:0000269|PubMed:20620956,
ECO:0000269|PubMed:20670893, ECO:0000269|PubMed:20817729,
ECO:0000269|PubMed:20955178, ECO:0000269|PubMed:21149730,
ECO:0000269|PubMed:21245319, ECO:0000269|PubMed:21471201,
ECO:0000269|PubMed:21504832, ECO:0000269|PubMed:21555002,
ECO:0000269|PubMed:21698133, ECO:0000269|PubMed:21701047,
ECO:0000269|PubMed:21775285, ECO:0000269|PubMed:21807113,
ECO:0000269|PubMed:21841822, ECO:0000269|PubMed:21890893,
ECO:0000269|PubMed:21947282, ECO:0000269|PubMed:22274616,
ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780,
ECO:0000269|PubMed:30193097}.
-!- FUNCTION: [Isoform 2]: Deacetylates 'Lys-382' of p53/TP53, however with
lower activity than isoform 1. In combination, the two isoforms exert
an additive effect. Isoform 2 regulates p53/TP53 expression and
cellular stress response and is in turn repressed by p53/TP53
presenting a SIRT1 isoform-dependent auto-regulatory loop.
{ECO:0000269|PubMed:20975832}.
-!- FUNCTION: (Microbial infection) In case of HIV-1 infection, interacts
with and deacetylates the viral Tat protein. The viral Tat protein
inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65,
thereby potentiates its transcriptional activity and SIRT1 is proposed
to contribute to T-cell hyperactivation during infection.
{ECO:0000269|PubMed:18329615}.
-!- FUNCTION: [SirtT1 75 kDa fragment]: Catalytically inactive 75SirT1 may
be involved in regulation of apoptosis. May be involved in protecting
chondrocytes from apoptotic death by associating with cytochrome C and
interfering with apoptosome assembly. {ECO:0000269|PubMed:21987377}.
-!- CATALYTIC ACTIVITY:
Reaction=H2O + N(6)-acetyl-L-lysyl-[protein] + NAD(+) = 2''-O-acetyl-
ADP-D-ribose + L-lysyl-[protein] + nicotinamide;
Xref=Rhea:RHEA:43636, Rhea:RHEA-COMP:9752, Rhea:RHEA-COMP:10731,
ChEBI:CHEBI:15377, ChEBI:CHEBI:17154, ChEBI:CHEBI:29969,
ChEBI:CHEBI:57540, ChEBI:CHEBI:61930, ChEBI:CHEBI:83767;
EC=2.3.1.286; Evidence={ECO:0000255|PROSITE-ProRule:PRU00236,
ECO:0000269|PubMed:12006491};
-!- CATALYTIC ACTIVITY:
Reaction=H2O + N(6)-propanoyl-L-lysyl-[protein] + NAD(+) = 3''-O-
propanoyl-ADP-D-ribose + L-lysyl-[protein] + nicotinamide;
Xref=Rhea:RHEA:23500, Rhea:RHEA-COMP:9752, Rhea:RHEA-COMP:13758,
ChEBI:CHEBI:15377, ChEBI:CHEBI:17154, ChEBI:CHEBI:29969,
ChEBI:CHEBI:57540, ChEBI:CHEBI:138019, ChEBI:CHEBI:145015;
Evidence={ECO:0000250|UniProtKB:Q923E4};
PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:23501;
Evidence={ECO:0000250|UniProtKB:Q923E4};
-!- COFACTOR:
Name=Zn(2+); Xref=ChEBI:CHEBI:29105;
Evidence={ECO:0000250|UniProtKB:Q8IXJ6};
Note=Binds 1 zinc ion per subunit. {ECO:0000250|UniProtKB:Q8IXJ6};
-!- ACTIVITY REGULATION: Inhibited by nicotinamide. Activated by
resveratrol (3,5,4'-trihydroxy-trans-stilbene), butein (3,4,2',4'-
tetrahydroxychalcone), piceatannol (3,5,3',4'-tetrahydroxy-trans-
stilbene), Isoliquiritigenin (4,2',4'-trihydroxychalcone), fisetin
(3,7,3',4'-tetrahydroxyflavone) and quercetin (3,5,7,3',4'-
pentahydroxyflavone). MAPK8/JNK1 and RPS19BP1/AROS act as positive
regulators of deacetylation activity. Negatively regulated by CCAR2.
{ECO:0000269|PubMed:12297502, ECO:0000269|PubMed:12939617,
ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18235502}.
-!- SUBUNIT: Interacts with XBP1 isoform 2 (PubMed:20955178). Found in a
complex with PCAF and MYOD1. Interacts with FOXO1; the interaction
deacetylates FOXO1, resulting in its nuclear retention and promotion of
its transcriptional activity Component of the eNoSC complex, composed
of SIRT1, SUV39H1 and RRP8. Interacts with HES1, HEY2 and PML.
Interacts with RPS19BP1/AROS. Interacts with CCAR2 (via N-terminus);
the interaction disrupts the interaction between SIRT1 and p53/TP53.
Interacts with SETD7; the interaction induces the dissociation of SIRT1
from p53/TP53 and increases p53/TP53 activity. Interacts with MYCN,
NR1I2, CREBZF, TSC2, TLE1, FOS, JUN, NR0B2, PPARG, NCOR, IRS1, IRS2 and
NMNAT1. Interacts with HNF1A; the interaction occurs under nutrient
restriction. Interacts with SUZ12; the interaction mediates the
association with the PRC4 histone methylation complex which is specific
as an association with PCR2 and PCR3 complex variants is not found.
Interacts with BCL6; leads to a epigenetic repression of specific
target genes. Interacts with CLOCK, ARNTL/BMAL1 and PER2 (By
similarity). Interacts with PPARA; the interaction seems to be
modulated by NAD(+) levels (PubMed:24043310). Interacts with NR1H3 and
this interaction is inhibited in the presence of CCAR2. Interacts with
CHEK2. Interacts with p53/TP53. Exhibits a preferential interaction
with sumoylated CCAR2 over its unmodified form. Interacts with PACS2
(PubMed:29656858). Interacts with SIRT7 (By similarity).
{ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:12006491,
ECO:0000269|PubMed:12535671, ECO:0000269|PubMed:15684044,
ECO:0000269|PubMed:15692560, ECO:0000269|PubMed:16166628,
ECO:0000269|PubMed:16892051, ECO:0000269|PubMed:17680780,
ECO:0000269|PubMed:17964266, ECO:0000269|PubMed:18235501,
ECO:0000269|PubMed:18235502, ECO:0000269|PubMed:18485871,
ECO:0000269|PubMed:19356714, ECO:0000269|PubMed:19690166,
ECO:0000269|PubMed:20042607, ECO:0000269|PubMed:20169165,
ECO:0000269|PubMed:20375098, ECO:0000269|PubMed:20955178,
ECO:0000269|PubMed:20975832, ECO:0000269|PubMed:21245319,
ECO:0000269|PubMed:21698133, ECO:0000269|PubMed:21909281,
ECO:0000269|PubMed:21933665, ECO:0000269|PubMed:23352644,
ECO:0000269|PubMed:24043310, ECO:0000269|PubMed:25361978,
ECO:0000269|PubMed:25406032, ECO:0000269|PubMed:25661920,
ECO:0000269|PubMed:29656858}.
-!- SUBUNIT: (Microbial infection) Interacts with HIV-1 Tat.
{ECO:0000269|PubMed:15719057, ECO:0000269|PubMed:18329615}.
-!- INTERACTION:
Q96EB6; Q13085: ACACA; NbExp=3; IntAct=EBI-1802965, EBI-717681;
Q96EB6; P31749: AKT1; NbExp=5; IntAct=EBI-1802965, EBI-296087;
Q96EB6; P27695: APEX1; NbExp=6; IntAct=EBI-1802965, EBI-1048805;
Q96EB6; O95352: ATG7; NbExp=3; IntAct=EBI-1802965, EBI-987834;
Q96EB6; Q8N163: CCAR2; NbExp=16; IntAct=EBI-1802965, EBI-355410;
Q96EB6; P33076: CIITA; NbExp=4; IntAct=EBI-1802965, EBI-1538819;
Q96EB6; Q9NS37: CREBZF; NbExp=3; IntAct=EBI-1802965, EBI-632965;
Q96EB6; P68400: CSNK2A1; NbExp=5; IntAct=EBI-1802965, EBI-347804;
Q96EB6; P67870: CSNK2B; NbExp=5; IntAct=EBI-1802965, EBI-348169;
Q96EB6; P26358: DNMT1; NbExp=11; IntAct=EBI-1802965, EBI-719459;
Q96EB6; O14640: DVL1; NbExp=2; IntAct=EBI-1802965, EBI-723489;
Q96EB6; Q92997: DVL3; NbExp=3; IntAct=EBI-1802965, EBI-739789;
Q96EB6; Q01094: E2F1; NbExp=3; IntAct=EBI-1802965, EBI-448924;
Q96EB6; Q09472: EP300; NbExp=4; IntAct=EBI-1802965, EBI-447295;
Q96EB6; Q14192: FHL2; NbExp=2; IntAct=EBI-1802965, EBI-701903;
Q96EB6; Q12778: FOXO1; NbExp=4; IntAct=EBI-1802965, EBI-1108782;
Q96EB6; O43524: FOXO3; NbExp=5; IntAct=EBI-1802965, EBI-1644164;
Q96EB6; P98177: FOXO4; NbExp=3; IntAct=EBI-1802965, EBI-4481939;
Q96EB6; P51610: HCFC1; NbExp=2; IntAct=EBI-1802965, EBI-396176;
Q96EB6; Q14469: HES1; NbExp=4; IntAct=EBI-1802965, EBI-2832522;
Q96EB6; Q9UBP5: HEY2; NbExp=3; IntAct=EBI-1802965, EBI-750630;
Q96EB6; Q9Y4H2: IRS2; NbExp=2; IntAct=EBI-1802965, EBI-1049582;
Q96EB6; Q92831: KAT2B; NbExp=3; IntAct=EBI-1802965, EBI-477430;
Q96EB6; Q03164: KMT2A; NbExp=5; IntAct=EBI-1802965, EBI-591370;
Q96EB6; Q9GZQ8: MAP1LC3B; NbExp=2; IntAct=EBI-1802965, EBI-373144;
Q96EB6; Q03112: MECOM; NbExp=2; IntAct=EBI-1802965, EBI-1384862;
Q96EB6; P42345: MTOR; NbExp=2; IntAct=EBI-1802965, EBI-359260;
Q96EB6; P01106: MYC; NbExp=4; IntAct=EBI-1802965, EBI-447544;
Q96EB6; P04198: MYCN; NbExp=3; IntAct=EBI-1802965, EBI-878369;
Q96EB6; O60934: NBN; NbExp=5; IntAct=EBI-1802965, EBI-494844;
Q96EB6; Q02577: NHLH2; NbExp=2; IntAct=EBI-1802965, EBI-5378683;
Q96EB6; Q9HAN9: NMNAT1; NbExp=3; IntAct=EBI-1802965, EBI-3917542;
Q96EB6; Q15466: NR0B2; NbExp=6; IntAct=EBI-1802965, EBI-3910729;
Q96EB6; P27986: PIK3R1; NbExp=3; IntAct=EBI-1802965, EBI-79464;
Q96EB6; P37231: PPARG; NbExp=5; IntAct=EBI-1802965, EBI-781384;
Q96EB6; P10276: RARA; NbExp=3; IntAct=EBI-1802965, EBI-413374;
Q96EB6; Q04206: RELA; NbExp=5; IntAct=EBI-1802965, EBI-73886;
Q96EB6; Q86WX3: RPS19BP1; NbExp=11; IntAct=EBI-1802965, EBI-4479407;
Q96EB6; Q8N122: RPTOR; NbExp=3; IntAct=EBI-1802965, EBI-1567928;
Q96EB6; O43159: RRP8; NbExp=3; IntAct=EBI-1802965, EBI-2008793;
Q96EB6; Q8WTS6: SETD7; NbExp=11; IntAct=EBI-1802965, EBI-1268586;
Q96EB6; Q13573: SNW1; NbExp=7; IntAct=EBI-1802965, EBI-632715;
Q96EB6; P36956-3: SREBF1; NbExp=2; IntAct=EBI-1802965, EBI-948338;
Q96EB6; O43463: SUV39H1; NbExp=5; IntAct=EBI-1802965, EBI-349968;
Q96EB6; Q04724: TLE1; NbExp=4; IntAct=EBI-1802965, EBI-711424;
Q96EB6; P04637: TP53; NbExp=18; IntAct=EBI-1802965, EBI-366083;
Q96EB6; O15350: TP73; NbExp=4; IntAct=EBI-1802965, EBI-389606;
Q96EB6; P49815: TSC2; NbExp=2; IntAct=EBI-1802965, EBI-396587;
Q96EB6; Q14191: WRN; NbExp=9; IntAct=EBI-1802965, EBI-368417;
Q96EB6; P23025: XPA; NbExp=8; IntAct=EBI-1802965, EBI-295222;
Q96EB6; P12956: XRCC6; NbExp=7; IntAct=EBI-1802965, EBI-353208;
Q96EB6; Q9R1E0: Foxo1; Xeno; NbExp=2; IntAct=EBI-1802965, EBI-1371343;
Q96EB6; Q60974: Ncor1; Xeno; NbExp=2; IntAct=EBI-1802965, EBI-349004;
Q96EB6; Q60644: Nr1h2; Xeno; NbExp=2; IntAct=EBI-1802965, EBI-5276809;
Q96EB6; Q9Z0Y9: Nr1h3; Xeno; NbExp=2; IntAct=EBI-1802965, EBI-5276764;
Q96EB6; P37238: Pparg; Xeno; NbExp=3; IntAct=EBI-1802965, EBI-5260705;
Q96EB6; P37238-1: Pparg; Xeno; NbExp=2; IntAct=EBI-1802965, EBI-6267861;
Q96EB6; P04608: tat; Xeno; NbExp=3; IntAct=EBI-1802965, EBI-6164389;
-!- SUBCELLULAR LOCATION: Nucleus, PML body {ECO:0000269|PubMed:12006491}.
Cytoplasm {ECO:0000269|PubMed:20027304}. Nucleus
{ECO:0000269|PubMed:11672523, ECO:0000269|PubMed:15469825,
ECO:0000269|PubMed:16079181, ECO:0000269|PubMed:19934257,
ECO:0000269|PubMed:20027304, ECO:0000269|PubMed:20167603,
ECO:0000269|PubMed:20955178}. Note=Recruited to the nuclear bodies via
its interaction with PML (PubMed:12006491). Colocalized with APEX1 in
the nucleus (PubMed:19934257). May be found in nucleolus, nuclear
euchromatin, heterochromatin and inner membrane (PubMed:15469825).
Shuttles between nucleus and cytoplasm (By similarity). Colocalizes in
the nucleus with XBP1 isoform 2 (PubMed:20955178).
{ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:12006491,
ECO:0000269|PubMed:15469825, ECO:0000269|PubMed:19934257,
ECO:0000269|PubMed:20955178}.
-!- SUBCELLULAR LOCATION: [SirtT1 75 kDa fragment]: Cytoplasm
{ECO:0000269|PubMed:21987377}. Mitochondrion
{ECO:0000269|PubMed:21987377}.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing; Named isoforms=2;
Name=1;
IsoId=Q96EB6-1; Sequence=Displayed;
Name=2; Synonyms=delta-exon8;
IsoId=Q96EB6-2; Sequence=VSP_042189;
-!- TISSUE SPECIFICITY: Widely expressed. {ECO:0000269|PubMed:10381378}.
-!- INDUCTION: Up-regulated by methyl methanesulfonate (MMS). In H293T
cells by presence of rat calorie restriction (CR) serum.
{ECO:0000269|PubMed:15205477, ECO:0000269|PubMed:19934257}.
-!- PTM: Methylated on multiple lysine residues; methylation is enhanced
after DNA damage and is dispensable for deacetylase activity toward
p53/TP53. {ECO:0000269|PubMed:21245319}.
-!- PTM: Phosphorylated. Phosphorylated by STK4/MST1, resulting in
inhibition of SIRT1-mediated p53/TP53 deacetylation. Phosphorylation by
MAPK8/JNK1 at Ser-27, Ser-47, and Thr-530 leads to increased nuclear
localization and enzymatic activity. Phosphorylation at Thr-530 by
DYRK1A and DYRK3 activates deacetylase activity and promotes cell
survival. Phosphorylation by mammalian target of rapamycin complex 1
(mTORC1) at Ser-47 inhibits deacetylation activity. Phosphorylated by
CaMK2, leading to increased p53/TP53 and NF-kappa-B p65/RELA
deacetylation activity (By similarity). Phosphorylation at Ser-27
implicating MAPK9 is linked to protein stability. There is some
ambiguity for some phosphosites: Ser-159/Ser-162 and Thr-544/Ser-545.
{ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:18838864,
ECO:0000269|PubMed:19107194, ECO:0000269|PubMed:19236849,
ECO:0000269|PubMed:20027304, ECO:0000269|PubMed:21212262,
ECO:0000269|PubMed:21471201}.
-!- PTM: Proteolytically cleaved by cathepsin B upon TNF-alpha treatment to
yield catalytic inactive but stable SirtT1 75 kDa fragment (75SirT1).
{ECO:0000269|PubMed:21987377}.
-!- PTM: S-nitrosylated by GAPDH, leading to inhibit the NAD-dependent
protein deacetylase activity. {ECO:0000250|UniProtKB:Q923E4}.
-!- PTM: Acetylated at various Lys residues. Deacetylated via an
autocatalytic mechanism. Autodeacetylation at Lys-238 promotes its
protein deacetylase activity. {ECO:0000250|UniProtKB:Q923E4}.
-!- MISCELLANEOUS: Red wine, which contains resveratrol, may participate in
activation of sirtuin proteins, and may therefore participate in an
extended lifespan as it has been observed in yeast.
-!- MISCELLANEOUS: Calf histone H1 is used as substrate in the in vitro
deacetylation assay (PubMed:15469825). As, in vivo, interaction occurs
between SIRT1 with H1-4, deacetylation has been validated only for H1-
4. {ECO:0000305|PubMed:15469825}.
-!- MISCELLANEOUS: The reported ADP-ribosyltransferase activity of sirtuins
is likely some inefficient side reaction of the deacetylase activity
and may not be physiologically relevant. {ECO:0000305|PubMed:19220062}.
-!- SIMILARITY: Belongs to the sirtuin family. Class I subfamily.
{ECO:0000305}.
-!- SEQUENCE CAUTION:
Sequence=AAH12499.1; Type=Erroneous initiation; Note=Truncated N-terminus.; Evidence={ECO:0000305};
-!- WEB RESOURCE: Name=NIEHS-SNPs;
URL="http://egp.gs.washington.edu/data/sirt1/";
-!- WEB RESOURCE: Name=Atlas of Genetics and Cytogenetics in Oncology and
Haematology;
URL="http://atlasgeneticsoncology.org/Genes/SIRT1ID44006ch10q21.html";
---------------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
Distributed under the Creative Commons Attribution (CC BY 4.0) License
---------------------------------------------------------------------------
EMBL; AF083106; AAD40849.2; -; mRNA.
EMBL; AF235040; AAG38486.1; -; mRNA.
EMBL; DQ278604; ABB72675.1; -; Genomic_DNA.
EMBL; AL133551; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; BC012499; AAH12499.1; ALT_INIT; mRNA.
CCDS; CCDS7273.1; -. [Q96EB6-1]
RefSeq; NP_001135970.1; NM_001142498.1.
RefSeq; NP_001300978.1; NM_001314049.1.
RefSeq; NP_036370.2; NM_012238.4. [Q96EB6-1]
PDB; 4I5I; X-ray; 2.50 A; A/B=241-516.
PDB; 4IF6; X-ray; 2.25 A; A=234-510, B=641-665.
PDB; 4IG9; X-ray; 2.64 A; A/C/E/G=234-510, B/D/F/H=641-665.
PDB; 4KXQ; X-ray; 1.85 A; A=234-510, B=641-663.
PDB; 4ZZH; X-ray; 3.10 A; A=183-505.
PDB; 4ZZI; X-ray; 2.73 A; A=183-505.
PDB; 4ZZJ; X-ray; 2.74 A; A=183-505.
PDB; 5BTR; X-ray; 3.20 A; A/B/C=143-665.
PDBsum; 4I5I; -.
PDBsum; 4IF6; -.
PDBsum; 4IG9; -.
PDBsum; 4KXQ; -.
PDBsum; 4ZZH; -.
PDBsum; 4ZZI; -.
PDBsum; 4ZZJ; -.
PDBsum; 5BTR; -.
SMR; Q96EB6; -.
BioGRID; 116983; 279.
ComplexPortal; CPX-467; eNoSc complex.
CORUM; Q96EB6; -.
DIP; DIP-29757N; -.
IntAct; Q96EB6; 173.
MINT; Q96EB6; -.
STRING; 9606.ENSP00000212015; -.
BindingDB; Q96EB6; -.
ChEMBL; CHEMBL4506; -.
DrugBank; DB15493; Cambinol.
DrugBank; DB13978; Selisistat.
DrugBank; DB05073; SRT501.
DrugCentral; Q96EB6; -.
GuidetoPHARMACOLOGY; 2707; -.
iPTMnet; Q96EB6; -.
MetOSite; Q96EB6; -.
PhosphoSitePlus; Q96EB6; -.
BioMuta; SIRT1; -.
DMDM; 38258633; -.
EPD; Q96EB6; -.
jPOST; Q96EB6; -.
MassIVE; Q96EB6; -.
MaxQB; Q96EB6; -.
PaxDb; Q96EB6; -.
PeptideAtlas; Q96EB6; -.
PRIDE; Q96EB6; -.
ProteomicsDB; 76393; -. [Q96EB6-1]
ProteomicsDB; 76394; -. [Q96EB6-2]
Antibodypedia; 1637; 1067 antibodies.
Ensembl; ENST00000212015; ENSP00000212015; ENSG00000096717. [Q96EB6-1]
GeneID; 23411; -.
KEGG; hsa:23411; -.
UCSC; uc001jnd.3; human. [Q96EB6-1]
CTD; 23411; -.
DisGeNET; 23411; -.
EuPathDB; HostDB:ENSG00000096717.11; -.
GeneCards; SIRT1; -.
HGNC; HGNC:14929; SIRT1.
HPA; ENSG00000096717; Low tissue specificity.
MIM; 604479; gene.
neXtProt; NX_Q96EB6; -.
OpenTargets; ENSG00000096717; -.
PharmGKB; PA37935; -.
eggNOG; KOG2684; Eukaryota.
eggNOG; COG0846; LUCA.
GeneTree; ENSGT00940000159406; -.
HOGENOM; CLU_016587_0_0_1; -.
InParanoid; Q96EB6; -.
KO; K11411; -.
OMA; CVEEKSQ; -.
OrthoDB; 751525at2759; -.
PhylomeDB; Q96EB6; -.
TreeFam; TF105896; -.
Reactome; R-HSA-3371453; Regulation of HSF1-mediated heat shock response.
Reactome; R-HSA-400253; Circadian Clock.
Reactome; R-HSA-427359; SIRT1 negatively regulates rRNA expression.
Reactome; R-HSA-9617629; Regulation of FOXO transcriptional activity by acetylation.
SABIO-RK; Q96EB6; -.
SignaLink; Q96EB6; -.
SIGNOR; Q96EB6; -.
BioGRID-ORCS; 23411; 1 hit in 789 CRISPR screens.
GeneWiki; Sirtuin_1; -.
GenomeRNAi; 23411; -.
Pharos; Q96EB6; Tchem.
PRO; PR:Q96EB6; -.
Proteomes; UP000005640; Chromosome 10.
RNAct; Q96EB6; protein.
Bgee; ENSG00000096717; Expressed in right adrenal gland and 212 other tissues.
ExpressionAtlas; Q96EB6; baseline and differential.
Genevisible; Q96EB6; HS.
GO; GO:0005623; C:cell; IEA:GOC.
GO; GO:0005677; C:chromatin silencing complex; IDA:UniProtKB.
GO; GO:0005737; C:cytoplasm; IDA:BHF-UCL.
GO; GO:0005829; C:cytosol; IDA:HPA.
GO; GO:0005739; C:mitochondrion; IDA:HPA.
GO; GO:0000790; C:nuclear chromatin; IDA:UniProtKB.
GO; GO:0005635; C:nuclear envelope; IDA:BHF-UCL.
GO; GO:0005719; C:nuclear euchromatin; IDA:UniProtKB.
GO; GO:0005720; C:nuclear heterochromatin; IDA:UniProtKB.
GO; GO:0005637; C:nuclear inner membrane; IDA:UniProtKB.
GO; GO:0005730; C:nucleolus; IDA:BHF-UCL.
GO; GO:0005654; C:nucleoplasm; IDA:UniProtKB.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0016605; C:PML body; IDA:BHF-UCL.
GO; GO:0033553; C:rDNA heterochromatin; IDA:UniProtKB.
GO; GO:0043425; F:bHLH transcription factor binding; IPI:UniProtKB.
GO; GO:0019213; F:deacetylase activity; IDA:UniProtKB.
GO; GO:0019899; F:enzyme binding; IPI:UniProtKB.
GO; GO:0042393; F:histone binding; IPI:UniProtKB.
GO; GO:0004407; F:histone deacetylase activity; IDA:BHF-UCL.
GO; GO:0043398; F:HLH domain binding; IPI:BHF-UCL.
GO; GO:0042802; F:identical protein binding; IPI:BHF-UCL.
GO; GO:1990254; F:keratin filament binding; IPI:UniProtKB.
GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
GO; GO:0051019; F:mitogen-activated protein kinase binding; IPI:BHF-UCL.
GO; GO:0070403; F:NAD+ binding; IBA:GO_Central.
GO; GO:0017136; F:NAD-dependent histone deacetylase activity; IDA:BHF-UCL.
GO; GO:0046969; F:NAD-dependent histone deacetylase activity (H3-K9 specific); ISS:UniProtKB.
GO; GO:0034979; F:NAD-dependent protein deacetylase activity; IDA:UniProtKB.
GO; GO:0035257; F:nuclear hormone receptor binding; IPI:UniProtKB.
GO; GO:0002039; F:p53 binding; IPI:BHF-UCL.
GO; GO:0008022; F:protein C-terminus binding; IPI:UniProtKB.
GO; GO:0033558; F:protein deacetylase activity; IDA:UniProtKB.
GO; GO:0106231; F:protein-propionyllysine depropionylase activity; ISS:UniProtKB.
GO; GO:0000978; F:RNA polymerase II cis-regulatory region sequence-specific DNA binding; IEA:Ensembl.
GO; GO:0003713; F:transcription coactivator activity; IEA:Ensembl.
GO; GO:0003714; F:transcription corepressor activity; IDA:BHF-UCL.
GO; GO:0008134; F:transcription factor binding; IPI:UniProtKB.
GO; GO:0001525; P:angiogenesis; IDA:UniProtKB.
GO; GO:0042595; P:behavioral response to starvation; IEA:Ensembl.
GO; GO:0007569; P:cell aging; TAS:BHF-UCL.
GO; GO:0001678; P:cellular glucose homeostasis; ISS:UniProtKB.
GO; GO:0006974; P:cellular response to DNA damage stimulus; IDA:UniProtKB.
GO; GO:0070301; P:cellular response to hydrogen peroxide; IDA:BHF-UCL.
GO; GO:0071456; P:cellular response to hypoxia; IMP:UniProtKB.
GO; GO:0071479; P:cellular response to ionizing radiation; ISS:UniProtKB.
GO; GO:1990830; P:cellular response to leukemia inhibitory factor; IEA:Ensembl.
GO; GO:0009267; P:cellular response to starvation; ISS:BHF-UCL.
GO; GO:0071356; P:cellular response to tumor necrosis factor; IDA:UniProtKB.
GO; GO:0035356; P:cellular triglyceride homeostasis; ISS:UniProtKB.
GO; GO:0042632; P:cholesterol homeostasis; ISS:UniProtKB.
GO; GO:0006325; P:chromatin organization; IMP:UniProtKB.
GO; GO:0000183; P:chromatin silencing at rDNA; IDA:UniProtKB.
GO; GO:0032922; P:circadian regulation of gene expression; IMP:UniProtKB.
GO; GO:0000731; P:DNA synthesis involved in DNA repair; ISS:UniProtKB.
GO; GO:0006343; P:establishment of chromatin silencing; IDA:BHF-UCL.
GO; GO:0055089; P:fatty acid homeostasis; ISS:UniProtKB.
GO; GO:0016575; P:histone deacetylation; IDA:UniProtKB.
GO; GO:0070932; P:histone H3 deacetylation; IDA:BHF-UCL.
GO; GO:0042771; P:intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator; IMP:UniProtKB.
GO; GO:0033210; P:leptin-mediated signaling pathway; ISS:UniProtKB.
GO; GO:0010934; P:macrophage cytokine production; ISS:UniProtKB.
GO; GO:0030225; P:macrophage differentiation; ISS:UniProtKB.
GO; GO:0006344; P:maintenance of chromatin silencing; IMP:BHF-UCL.
GO; GO:0006346; P:methylation-dependent chromatin silencing; TAS:UniProtKB.
GO; GO:0007517; P:muscle organ development; IEA:UniProtKB-KW.
GO; GO:0060766; P:negative regulation of androgen receptor signaling pathway; IMP:BHF-UCL.
GO; GO:0043066; P:negative regulation of apoptotic process; IMP:UniProtKB.
GO; GO:2000480; P:negative regulation of cAMP-dependent protein kinase activity; IDA:UniProtKB.
GO; GO:0030308; P:negative regulation of cell growth; IMP:BHF-UCL.
GO; GO:2000655; P:negative regulation of cellular response to testosterone stimulus; IMP:BHF-UCL.
GO; GO:2000773; P:negative regulation of cellular senescence; IDA:UniProtKB.
GO; GO:0043518; P:negative regulation of DNA damage response, signal transduction by p53 class mediator; IDA:BHF-UCL.
GO; GO:0043433; P:negative regulation of DNA-binding transcription factor activity; IDA:BHF-UCL.
GO; GO:0045599; P:negative regulation of fat cell differentiation; ISS:BHF-UCL.
GO; GO:0010629; P:negative regulation of gene expression; IMP:AgBase.
GO; GO:0051097; P:negative regulation of helicase activity; IDA:UniProtKB.
GO; GO:0071441; P:negative regulation of histone H3-K14 acetylation; IMP:CACAO.
GO; GO:1900113; P:negative regulation of histone H3-K9 trimethylation; IEA:Ensembl.
GO; GO:2000619; P:negative regulation of histone H4-K16 acetylation; IMP:CACAO.
GO; GO:0043124; P:negative regulation of I-kappaB kinase/NF-kappaB signaling; IDA:UniProtKB.
GO; GO:1902166; P:negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator; ISS:BHF-UCL.
GO; GO:1901215; P:negative regulation of neuron death; IEA:Ensembl.
GO; GO:0032088; P:negative regulation of NF-kappaB transcription factor activity; IDA:UniProtKB.
GO; GO:1902176; P:negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway; IMP:BHF-UCL.
GO; GO:2000757; P:negative regulation of peptidyl-lysine acetylation; IDA:UniProtKB.
GO; GO:0042326; P:negative regulation of phosphorylation; IMP:UniProtKB.
GO; GO:0031393; P:negative regulation of prostaglandin biosynthetic process; ISS:UniProtKB.
GO; GO:1901984; P:negative regulation of protein acetylation; IMP:AgBase.
GO; GO:0051898; P:negative regulation of protein kinase B signaling; IMP:UniProtKB.
GO; GO:0032007; P:negative regulation of TOR signaling; IMP:UniProtKB.
GO; GO:0000122; P:negative regulation of transcription by RNA polymerase II; IDA:UniProtKB.
GO; GO:0045892; P:negative regulation of transcription, DNA-templated; IDA:UniProtKB.
GO; GO:0030512; P:negative regulation of transforming growth factor beta receptor signaling pathway; ISS:UniProtKB.
GO; GO:0001542; P:ovulation from ovarian follicle; IEA:Ensembl.
GO; GO:0018394; P:peptidyl-lysine acetylation; IMP:UniProtKB.
GO; GO:0034983; P:peptidyl-lysine deacetylation; IDA:BHF-UCL.
GO; GO:0002821; P:positive regulation of adaptive immune response; IDA:UniProtKB.
GO; GO:1904179; P:positive regulation of adipose tissue development; ISS:UniProtKB.
GO; GO:0045766; P:positive regulation of angiogenesis; IDA:BHF-UCL.
GO; GO:0043065; P:positive regulation of apoptotic process; IDA:UniProtKB.
GO; GO:0043536; P:positive regulation of blood vessel endothelial cell migration; IDA:BHF-UCL.
GO; GO:2000481; P:positive regulation of cAMP-dependent protein kinase activity; IMP:UniProtKB.
GO; GO:0008284; P:positive regulation of cell population proliferation; IMP:UniProtKB.
GO; GO:2000774; P:positive regulation of cellular senescence; IDA:UniProtKB.
GO; GO:0010875; P:positive regulation of cholesterol efflux; ISS:UniProtKB.
GO; GO:0031937; P:positive regulation of chromatin silencing; IMP:BHF-UCL.
GO; GO:0043280; P:positive regulation of cysteine-type endopeptidase activity involved in apoptotic process; IMP:UniProtKB.
GO; GO:0045739; P:positive regulation of DNA repair; IMP:UniProtKB.
GO; GO:1902237; P:positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway; IEA:Ensembl.
GO; GO:0001938; P:positive regulation of endothelial cell proliferation; IMP:AgBase.
GO; GO:0045722; P:positive regulation of gluconeogenesis; IDA:UniProtKB.
GO; GO:0051574; P:positive regulation of histone H3-K9 methylation; IMP:UniProtKB.
GO; GO:0046628; P:positive regulation of insulin receptor signaling pathway; IDA:UniProtKB.
GO; GO:0016239; P:positive regulation of macroautophagy; IDA:UniProtKB.
GO; GO:2000111; P:positive regulation of macrophage apoptotic process; ISS:UniProtKB.
GO; GO:0045348; P:positive regulation of MHC class II biosynthetic process; IDA:UniProtKB.
GO; GO:0014068; P:positive regulation of phosphatidylinositol 3-kinase signaling; ISS:UniProtKB.
GO; GO:0001934; P:positive regulation of protein phosphorylation; ISS:UniProtKB.
GO; GO:0051152; P:positive regulation of smooth muscle cell differentiation; IEA:Ensembl.
GO; GO:0045944; P:positive regulation of transcription by RNA polymerase II; IDA:UniProtKB.
GO; GO:0043161; P:proteasome-mediated ubiquitin-dependent protein catabolic process; IMP:UniProtKB.
GO; GO:0006476; P:protein deacetylation; IDA:UniProtKB.
GO; GO:0106230; P:protein depropionylation; ISS:UniProtKB.
GO; GO:0031648; P:protein destabilization; IDA:UniProtKB.
GO; GO:0016567; P:protein ubiquitination; IDA:UniProtKB.
GO; GO:0000720; P:pyrimidine dimer repair by nucleotide-excision repair; IMP:UniProtKB.
GO; GO:0042981; P:regulation of apoptotic process; IMP:UniProtKB.
GO; GO:0070857; P:regulation of bile acid biosynthetic process; ISS:UniProtKB.
GO; GO:0090335; P:regulation of brown fat cell differentiation; ISS:UniProtKB.
GO; GO:0042127; P:regulation of cell population proliferation; IMP:BHF-UCL.
GO; GO:1900034; P:regulation of cellular response to heat; TAS:Reactome.
GO; GO:0032071; P:regulation of endodeoxyribonuclease activity; IMP:UniProtKB.
GO; GO:0010906; P:regulation of glucose metabolic process; ISS:UniProtKB.
GO; GO:0010883; P:regulation of lipid storage; ISS:UniProtKB.
GO; GO:0007346; P:regulation of mitotic cell cycle; IDA:UniProtKB.
GO; GO:0035358; P:regulation of peroxisome proliferator activated receptor signaling pathway; ISS:BHF-UCL.
GO; GO:0071900; P:regulation of protein serine/threonine kinase activity; IMP:AgBase.
GO; GO:0034391; P:regulation of smooth muscle cell apoptotic process; ISS:UniProtKB.
GO; GO:0042542; P:response to hydrogen peroxide; IDA:UniProtKB.
GO; GO:0032868; P:response to insulin; ISS:UniProtKB.
GO; GO:0044321; P:response to leptin; ISS:UniProtKB.
GO; GO:0006979; P:response to oxidative stress; IDA:UniProtKB.
GO; GO:0000012; P:single strand break repair; IMP:UniProtKB.
GO; GO:0007283; P:spermatogenesis; IEA:Ensembl.
GO; GO:0090400; P:stress-induced premature senescence; IMP:CACAO.
GO; GO:0007179; P:transforming growth factor beta receptor signaling pathway; IDA:BHF-UCL.
GO; GO:0006642; P:triglyceride mobilization; ISS:BHF-UCL.
GO; GO:0070914; P:UV-damage excision repair; IMP:CACAO.
GO; GO:0016032; P:viral process; IEA:UniProtKB-KW.
GO; GO:0050872; P:white fat cell differentiation; ISS:BHF-UCL.
Gene3D; 3.30.1600.10; -; 1.
InterPro; IPR029035; DHS-like_NAD/FAD-binding_dom.
InterPro; IPR003000; Sirtuin.
InterPro; IPR026591; Sirtuin_cat_small_dom_sf.
InterPro; IPR026590; Ssirtuin_cat_dom.
Pfam; PF02146; SIR2; 1.
SUPFAM; SSF52467; SSF52467; 1.
PROSITE; PS50305; SIRTUIN; 1.
1: Evidence at protein level;
3D-structure; Acetylation; Alternative splicing; Apoptosis;
Biological rhythms; Cytoplasm; Developmental protein; Differentiation;
Host-virus interaction; Metal-binding; Methylation; Mitochondrion;
Myogenesis; NAD; Nucleus; Phosphoprotein; Polymorphism; Reference proteome;
S-nitrosylation; Transcription; Transcription regulation; Transferase;
Zinc.
INIT_MET 1
/note="Removed"
/evidence="ECO:0000244|PubMed:19413330,
ECO:0000244|PubMed:20068231, ECO:0000244|PubMed:21406692,
ECO:0000244|PubMed:22223895, ECO:0000244|PubMed:22814378"
CHAIN 2..747
/note="NAD-dependent protein deacetylase sirtuin-1"
/id="PRO_0000110256"
CHAIN 2..533
/note="SirtT1 75 kDa fragment"
/id="PRO_0000415289"
DOMAIN 244..498
/note="Deacetylase sirtuin-type"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
NP_BIND 261..280
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
NP_BIND 345..348
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
NP_BIND 440..442
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
NP_BIND 465..467
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
REGION 2..268
/note="Interaction with H1-4"
/evidence="ECO:0000269|PubMed:15469825"
REGION 2..139
/note="Interaction with CLOCK"
/evidence="ECO:0000250|UniProtKB:Q923E4"
REGION 143..541
/note="Interaction with CCAR2"
REGION 256..259
/note="Required for interaction with the sumoylated form of
CCAR2"
/evidence="ECO:0000269|PubMed:25406032"
REGION 538..540
/note="Phosphorylated at one of three serine residues"
MOTIF 32..39
/note="Nuclear localization signal"
/evidence="ECO:0000250"
MOTIF 138..145
/note="Nuclear export signal"
/evidence="ECO:0000250"
MOTIF 223..230
/note="Nuclear localization signal"
/evidence="ECO:0000250"
MOTIF 425..431
/note="Nuclear export signal"
/evidence="ECO:0000250"
COMPBIAS 54..98
/note="Ala-rich"
COMPBIAS 122..127
/note="Poly-Asp"
COMPBIAS 128..134
/note="Poly-Glu"
ACT_SITE 363
/note="Proton acceptor"
/evidence="ECO:0000269|PubMed:11672523,
ECO:0000269|PubMed:12006491, ECO:0000269|PubMed:12535671,
ECO:0000269|PubMed:17290224, ECO:0000269|PubMed:18004385,
ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18485871,
ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:25406032"
METAL 371
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
METAL 374
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
METAL 395
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
METAL 398
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
BINDING 482
/note="NAD; via amide nitrogen"
/evidence="ECO:0000250"
MOD_RES 2
/note="N-acetylalanine"
/evidence="ECO:0000244|PubMed:19413330,
ECO:0000244|PubMed:20068231, ECO:0000244|PubMed:21406692,
ECO:0000244|PubMed:22223895, ECO:0000244|PubMed:22814378"
MOD_RES 14
/note="Phosphoserine"
/evidence="ECO:0000244|PubMed:20068231,
ECO:0000244|PubMed:21406692, ECO:0000244|PubMed:23186163,
ECO:0000244|PubMed:24275569, ECO:0000269|PubMed:19107194"
MOD_RES 26
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:19107194"
MOD_RES 27
/note="Phosphoserine; by MAPK8"
/evidence="ECO:0000244|PubMed:23186163,
ECO:0000244|PubMed:24275569, ECO:0000269|PubMed:18838864,
ECO:0000269|PubMed:19107194, ECO:0000269|PubMed:20027304"
MOD_RES 47
/note="Phosphoserine; by MAPK8"
/evidence="ECO:0000244|PubMed:16964243,
ECO:0000244|PubMed:20068231, ECO:0000244|PubMed:21406692,
ECO:0000244|PubMed:23186163, ECO:0000269|PubMed:18838864,
ECO:0000269|PubMed:19107194, ECO:0000269|PubMed:20027304,
ECO:0000269|PubMed:21471201"
MOD_RES 159
/note="Phosphoserine"
/evidence="ECO:0000305|PubMed:19107194"
MOD_RES 162
/note="Phosphoserine"
/evidence="ECO:0000305|PubMed:19107194"
MOD_RES 172
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:19107194"
MOD_RES 173
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:19107194"
MOD_RES 238
/note="N6-acetyllysine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 377
/note="N6-acetyllysine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 395
/note="S-nitrosocysteine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 398
/note="S-nitrosocysteine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 430
/note="N6-acetyllysine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 513
/note="N6-acetyllysine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 530
/note="Phosphothreonine; by DYRK1A, DYRK3 and MAPK8"
/evidence="ECO:0000244|PubMed:19690332,
ECO:0000269|PubMed:19107194, ECO:0000269|PubMed:20027304"
MOD_RES 535
/note="Phosphoserine"
/evidence="ECO:0000244|PubMed:19690332"
MOD_RES 544
/note="Phosphothreonine"
/evidence="ECO:0000305|PubMed:19107194"
MOD_RES 545
/note="Phosphoserine"
/evidence="ECO:0000305|PubMed:19107194"
MOD_RES 610
/note="N6-acetyllysine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 659
/note="Phosphoserine; by CaMK2"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 661
/note="Phosphoserine; by CaMK2"
/evidence="ECO:0000305|PubMed:19236849"
MOD_RES 719
/note="Phosphothreonine"
/evidence="ECO:0000244|PubMed:18669648,
ECO:0000244|PubMed:19690332, ECO:0000244|PubMed:21406692,
ECO:0000244|PubMed:23186163, ECO:0000269|PubMed:19107194"
MOD_RES 747
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:19107194"
VAR_SEQ 454..639
/note="Missing (in isoform 2)"
/evidence="ECO:0000305"
/id="VSP_042189"
VARIANT 3
/note="D -> E (in dbSNP:rs35671182)"
/evidence="ECO:0000269|Ref.3"
/id="VAR_025148"
VARIANT 484
/note="V -> D (in dbSNP:rs1063111)"
/id="VAR_051976"
MUTAGEN 27
/note="S->A: Greatly diminishes phosphorylation by MAPK8;
when associated with A-47 and A-530."
/evidence="ECO:0000269|PubMed:20027304"
MUTAGEN 47
/note="S->A: Blocks residue phosphorylation, restores
deacetylation activity and inhibits DNA damage-induced
apoptosis."
/evidence="ECO:0000269|PubMed:20027304,
ECO:0000269|PubMed:21471201"
MUTAGEN 47
/note="S->A: Greatly diminishes phosphorylation by MAPK8;
when associated with A-27 and A-530."
/evidence="ECO:0000269|PubMed:20027304,
ECO:0000269|PubMed:21471201"
MUTAGEN 233
/note="K->R: Impairs in vitro methylation by SETD7; when
associated with R-235, R-236 and R-238."
/evidence="ECO:0000269|PubMed:21245319"
MUTAGEN 235
/note="K->R: Impairs in vitro methylation by SETD7; when
associated with R-233, R-236 and R-238."
/evidence="ECO:0000269|PubMed:21245319"
MUTAGEN 236
/note="K->R: Impairs in vitro methylation by SETD7; when
associated with R-233, R-235 and R-238."
/evidence="ECO:0000269|PubMed:21245319"
MUTAGEN 238
/note="K->R: Impairs in vitro methylation by SETD7; when
associated with R-233, R-235a and R-236."
/evidence="ECO:0000269|PubMed:21245319"
MUTAGEN 256..257
/note="II->KK: Loss of interaction with the sumoylated form
of CCAR2. No effect on its deacetylation activity."
/evidence="ECO:0000269|PubMed:25406032"
MUTAGEN 363
/note="H->Y: Loss of function. Reduces the interaction with
CCAR2 and APEX1. Increases acetylation of APEX1."
/evidence="ECO:0000269|PubMed:11672523,
ECO:0000269|PubMed:12006491, ECO:0000269|PubMed:12535671,
ECO:0000269|PubMed:17290224, ECO:0000269|PubMed:18004385,
ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18485871,
ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:25406032"
MUTAGEN 474
/note="F->A: Abolishes phosphorylation at Ser-47, restores
deacetylation activity and inhibits DNA damage-induced
apoptosis."
/evidence="ECO:0000269|PubMed:21471201"
MUTAGEN 530
/note="T->A: Greatly diminishes phosphorylation by MAPK8;
when associated with A-27 and A-47."
/evidence="ECO:0000269|PubMed:19107194,
ECO:0000269|PubMed:20027304"
MUTAGEN 530
/note="T->A: Reduces in vitro phosphorylation by CDK1.
Impairs cell proliferation and cell cycle progression; when
associated with A-540."
/evidence="ECO:0000269|PubMed:19107194,
ECO:0000269|PubMed:20027304"
MUTAGEN 540
/note="S->A: Reduces in vitro phosphorylation by CDK1.
Impairs cell proliferation and cell cycle progression; when
associated with A-530."
/evidence="ECO:0000269|PubMed:19107194"
MUTAGEN 659
/note="S->A: Reduces in vitro phosphorylation by CaMK2;
when associated with S-661. Greatly reduces in vivo
phosphorylation; when associated with A-661."
/evidence="ECO:0000269|PubMed:19236849"
MUTAGEN 661
/note="S->A: Reduces in vitro phosphorylation by CaMK2;
when associated with S-659. Greatly reduces in vivo
phosphorylation; when associated with A-659."
/evidence="ECO:0000269|PubMed:19236849"
MUTAGEN 684
/note="S->A: No effect on phosphorylation (in vitro and in
vivo)."
/evidence="ECO:0000269|PubMed:19236849"
CONFLICT 386..389
/note="DIFN -> ALFS (in Ref. 5; AAH12499)"
/evidence="ECO:0000305"
HELIX 184..194
/evidence="ECO:0000244|PDB:4ZZI"
HELIX 198..205
/evidence="ECO:0000244|PDB:4ZZI"
HELIX 217..228
/evidence="ECO:0000244|PDB:4ZZI"
HELIX 243..252
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 254..260
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 262..268
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 273..275
/evidence="ECO:0000244|PDB:4KXQ"
TURN 276..278
/evidence="ECO:0000244|PDB:4IG9"
HELIX 279..286
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 290..292
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 293..297
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 299..304
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 307..312
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 313..316
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 318..320
/evidence="ECO:0000244|PDB:4I5I"
HELIX 325..335
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 339..344
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 350..354
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 358..361
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 364..371
/evidence="ECO:0000244|PDB:4KXQ"
TURN 372..374
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 377..379
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 380..382
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 384..388
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 396..398
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 406..411
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 420..429
/evidence="ECO:0000244|PDB:4KXQ"
TURN 430..432
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 435..440
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 448..450
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 451..454
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 461..467
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 475..480
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 482..493
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 495..500
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 506..510
/evidence="ECO:0000244|PDB:5BTR"
STRAND 643..645
/evidence="ECO:0000244|PDB:4KXQ"
TURN 646..648
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 649..651
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 656..658
/evidence="ECO:0000244|PDB:4KXQ"
SEQUENCE 747 AA; 81681 MW; 2D3BEA6D73DA229F CRC64;
MADEAALALQ PGGSPSAAGA DREAASSPAG EPLRKRPRRD GPGLERSPGE PGGAAPEREV
PAAARGCPGA AAAALWREAE AEAAAAGGEQ EAQATAAAGE GDNGPGLQGP SREPPLADNL
YDEDDDDEGE EEEEAAAAAI GYRDNLLFGD EIITNGFHSC ESDEEDRASH ASSSDWTPRP
RIGPYTFVQQ HLMIGTDPRT ILKDLLPETI PPPELDDMTL WQIVINILSE PPKRKKRKDI
NTIEDAVKLL QECKKIIVLT GAGVSVSCGI PDFRSRDGIY ARLAVDFPDL PDPQAMFDIE
YFRKDPRPFF KFAKEIYPGQ FQPSLCHKFI ALSDKEGKLL RNYTQNIDTL EQVAGIQRII
QCHGSFATAS CLICKYKVDC EAVRGDIFNQ VVPRCPRCPA DEPLAIMKPE IVFFGENLPE
QFHRAMKYDK DEVDLLIVIG SSLKVRPVAL IPSSIPHEVP QILINREPLP HLHFDVELLG
DCDVIINELC HRLGGEYAKL CCNPVKLSEI TEKPPRTQKE LAYLSELPPT PLHVSEDSSS
PERTSPPDSS VIVTLLDQAA KSNDDLDVSE SKGCMEEKPQ EVQTSRNVES IAEQMENPDL
KNVGSSTGEK NERTSVAGTV RKCWPNRVAK EQISRRLDGN QYLFLPPNRY IFHGAEVYSD
SEDDVLSSSS CGSNSDSGTC QSPSLEEPME DESEIEEFYN GLEDEPDVPE RAGGAGFGTD
GDDQEAINEA ISVKQEVTDM NYPSNKS


Related products :

Catalog number Product name Quantity
18-003-43079 NAD-dependent deacetylase sirtuin-1 - EC 3.5.1.-; hSIRT1; hSIR2; SIR2-like protein 1 Polyclonal 0.05 mg Aff Pur
18-003-43079 NAD-dependent deacetylase sirtuin-1 - EC 3.5.1.-; hSIRT1; hSIR2; SIR2-like protein 1 Polyclonal 0.1 mg Protein A
EIAAB38505 Homo sapiens,hSIR2,hSIRT1,Human,NAD-dependent deacetylase sirtuin-1,SIR2L1,SIR2-like protein 1,SIRT1
18-003-43078 NAD-dependent deacetylase sirtuin-2 - EC 3.5.1.-; SIR2-like; SIR2-like protein 2 Polyclonal 0.1 mg Protein A
18-003-43078 NAD-dependent deacetylase sirtuin-2 - EC 3.5.1.-; SIR2-like; SIR2-like protein 2 Polyclonal 0.05 mg Aff Pur
EIAAB38504 Mouse,mSIR2a,Mus musculus,NAD-dependent deacetylase sirtuin-1,Sir2,SIR2alpha,Sir2l1,SIR2-like protein 1,Sirt1
18-003-43080 NAD-dependent deacetylase sirtuin-3. mitochondrial - EC 3.5.1.-; SIR2-like protein 3; hSIRT3 Polyclonal 0.05 mg Aff Pur
18-003-43080 NAD-dependent deacetylase sirtuin-3. mitochondrial - EC 3.5.1.-; SIR2-like protein 3; hSIRT3 Polyclonal 0.1 mg Protein A
EIAAB38510 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-5,Sir2l5,SIR2-like protein 5,Sirt5
EIAAB38516 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-7,Sir2l7,SIR2-like protein 7,Sirt7
EIAAB38513 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-6,Sir2l6,SIR2-like protein 6,Sirt6
E0430r ELISA kit NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
U0430r CLIA NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
E0430r ELISA NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
EIAAB38511 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-5,SIR2L5,SIR2-like protein 5,SIRT5
EIAAB38515 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-7,SIR2L7,SIR2-like protein 7,SIRT7
EIAAB38514 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-6,SIR2L6,SIR2-like protein 6,SIRT6
U2135m CLIA kit Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
E0430m ELISA kit Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
E0430m ELISA Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
E2135m ELISA kit Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
U0430m CLIA Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
U2135m CLIA Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
E2135m ELISA Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
E0430h ELISA kit Homo sapiens,Human,NAD-dependent deacetylase sirtuin-2,SIR2L,SIR2L2,SIR2-like protein 2,SIRT2 96T
Pathways :
WP1493: Carbon assimilation C4 pathway
WP1672: Mismatch repair
WP1676: Non-homologous end-joining
WP1678: Nucleotide excision repair
WP1625: Base excision repair
WP731: Sterol regulatory element binding protein related
WP1909: Signal regulatory protein (SIRP) family interactions
WP2272: Pathogenic Escherichia coli infection
WP1049: G Protein Signaling Pathways
WP1694: Pyrimidine metabolism
WP813: G Protein Signaling Pathways
WP1654: gamma-Hexachlorocyclohexane degradation
WP1661: Glyoxylate and dicarboxylate metabolism
WP2324: AGE/RAGE pathway
WP1371: G Protein Signaling Pathways
WP1714: Tyrosine metabolism
WP1502: Mitochondrial biogenesis
WP346: Protein Modifications
WP1613: 1,4-Dichlorobenzene degradation
WP1624: Bacterial secretion system
WP211: BMP signaling pathway
WP1689: Porphyrin and chlorophyll metabolism
WP1693: Purine metabolism
WP1650: Fluorobenzoate degradation
WP2218: sGC

Related Genes :
[SIRT1 SIR2L1] NAD-dependent protein deacetylase sirtuin-1 (hSIRT1) (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (hSIR2) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)]
[Sirt1 Sir2l1] NAD-dependent protein deacetylase sirtuin-1 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (SIR2alpha) (Sir2) (mSIR2a) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)]
[Sirt7 Sir2l7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[SIRT7 SIR2L7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[Sirt7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[SIRT7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[Sirt2 Sir2l2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2) (mSIR2L2)
[SIRT3 SIR2L3] NAD-dependent protein deacetylase sirtuin-3, mitochondrial (hSIRT3) (EC 2.3.1.286) (Regulatory protein SIR2 homolog 3) (SIR2-like protein 3)
[SIRT2 SIR2L SIR2L2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[Sirt3 Sir2l3] NAD-dependent protein deacetylase sirtuin-3 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 3) (SIR2-like protein 3) (mSIR2L3)
[Sirt2 Sir2l2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[SIRT2 QtsA-13614] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[SIRT2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[HST2 YPL015C LPA2C] NAD-dependent protein deacetylase HST2 (EC 2.3.1.286) (Homologous to SIR2 protein 2) (Regulatory protein SIR2 homolog 2)
[HST3 YOR025W OR26.15] NAD-dependent histone deacetylase HST3 (EC 2.3.1.286) (Homologous to SIR2 protein 3) (Regulatory protein SIR2 homolog 3)
[Sirt5 Sir2l5] NAD-dependent protein deacylase sirtuin-5, mitochondrial (EC 2.3.1.-) (Regulatory protein SIR2 homolog 5) (SIR2-like protein 5)
[sir2 cobB npdA MSMEG_5175 MSMEI_5041] NAD-dependent protein deacylase Sir2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[sir-2.1 R11A8.4] NAD-dependent protein deacetylase sir-2.1 (EC 2.3.1.286) (Protein sir-2.1) (Regulatory protein SIR2 homolog 1)
[SIR2 MAR1 YDL042C D2714] NAD-dependent histone deacetylase SIR2 (EC 2.3.1.286) (Regulatory protein SIR2) (Silent information regulator 2)
[cobB sir2 TM_0490] NAD-dependent protein deacetylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog) (Sir2Tm)
[Sirt1] NAD-dependent protein deacetylase sirtuin-1 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-)
[cobB SO_1938] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[hchA A8C65_13880 A9R57_25255 AMK83_16550 AWB10_10580 AWG90_013200 B7C53_22525 B9M99_11580 B9T59_01945 BJJ90_15205 BMT49_12710 BON65_01250 BON66_15955 BON86_06490 BON95_14610 BUE81_10670 BvCms12BK_01457 BvCms28BK_04168 BvCmsHHP001_02632 BvCmsKKP061_00566 BvCmsKSP045_04450 BvCmsKSP058_03204 BvCmsKSP067_02879 BvCmsNSP006_03750 BvCmsNSP007_03329 BvCmsNSP047_03567 BvCmsSINP011_04162 BW690_17225 BZL69_29425 C2U48_24800 C5715_19445 C5N07_21380 C6669_19295 C7B06_02290 C7B07_03930 C9Z23_21970 C9Z37_00915 C9Z43_06360 C9Z78_05610 CDC27_10055 CDL37_00765 CI693_17820 CI694_25210 CIG45_02340 COD46_23180 CQP61_17160 CRD98_26150 D2188_01360 D4628_09465 D6T98_10515 D6X36_17295 D9D20_21030 D9D43_06110 D9G29_20785 D9G69_01560 D9H68_20750 D9H70_25730 D9I87_15275 D9J58_04360 D9S45_22925 DEN89_24995 DEO04_05510 DL705_18425 DL800_09215 DLU50_17670 DLW88_16170 DLY44_04800 DND16_20085 DNR35_16895 DQE83_22775 DQP61_11280 DTL43_21780 DTZ20_09315 DU321_04440 DXT73_20690 E2134_24005 E2135_17195 E2855_02503 E2863_02392 E4K55_17625 E4K61_03800 E5P22_21380 E5S46_06650 EA213_19000 EA225_13320 EAX79_27320 EC95NR1_00961 ED648_25045 EG796_17135 EHD79_18540 EI028_00085 ELT20_21515 ELV08_24970 EPT01_11070 EQ825_23250 ERS085379_01273 ERS085386_05041 ExPECSC019_03873 ExPECSC038_01920 EXX71_02385 EXX78_21815 EYD11_09165 F7F11_20115 F7F18_11615 F7F29_22635 FNJ83_13175 FQ915_04255 FQR64_09390 FQZ46_21375 FWK02_18105 FZ043_14730 GIY13_02485 GNZ00_15670 GNZ02_11235 GNZ03_00440 GP712_09450 GQE64_12165 GQL64_10635 GQM17_02800 HmCmsJML079_02678 HMPREF3040_01583 HW43_13705 NCTC10082_04431 NCTC10418_03071 NCTC10767_03558 NCTC10974_02300 NCTC11022_01867 NCTC11126_04427 NCTC11181_05650 NCTC12950_02263 NCTC13216_04667 NCTC8985_00529 NCTC9111_05933 NCTC9703_00277 PGD_01271 PU06_24500 SAMEA3472043_00447 SAMEA3472055_03589 SAMEA3472056_01268 SAMEA3472070_00654 SAMEA3472080_04213 SAMEA3472090_03376 SAMEA3472110_00060 SAMEA3472112_00448 SAMEA3752372_00752 UN91_23615 WQ89_10695] Protein/nucleic acid deglycase HchA (EC 3.1.2.-) (EC 3.5.1.124) (Maillard deglycase)
[cobB1_2 cobB ACTI_81040] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[yjeF nnrD nnrE A6V01_16625 A9X72_22835 AC789_1c45800 ACN002_4392 AW106_17115 AWB10_23600 BB545_04070 BHJ80_02460 BN17_41441 BOH76_10905 BON72_19710 BON76_04155 BON95_14955 BTQ06_07255 BVL39_04290 C5N07_07145 C6669_06565 C7235_22665 C7B02_22745 C9162_14280 C9306_16010 C9Z28_08925 C9Z37_19300 C9Z69_17100 C9Z89_19770 CA593_04975 CIG45_09950 CMR93_01155 CO706_20770 COD30_21525 CR538_23135 CRD98_04165 CRM83_17370 D0X26_12915 D2184_07750 D4628_06615 D4636_22485 D5H35_20705 D6004_16440 D6T60_21965 D6T98_03825 D6X36_01235 D7Z75_22435 D9610_19255 D9F87_11835 D9G95_09255 D9J44_09440 D9K48_15185 D9S45_09270 DAH18_07435 DAH32_17635 DBQ99_23525 DEN97_13975 DEO19_11825 DIV22_15595 DL479_09745 DL530_20050 DL705_08080 DL800_29085 DLU50_02155 DLU67_01070 DLW60_20515 DM155_20490 DM267_22125 DM296_19440 DM820_22760 DN660_14005 DN700_22785 DN808_26000 DND79_22955 DOY67_18795 DP277_02605 DQF36_19900 DQF57_15735 DQF71_21295 DQF72_18940 DQP61_08520 DRW19_23395 DS143_20990 DS732_02620 DVB38_20810 E4K55_08625 EA223_01085 EAM59_16370 EAN77_04060 EAX79_02935 EB476_05880 EBM08_18815 ED600_08260 EG075_07990 EG599_16930 EG796_08825 EH412_13985 EHD79_20055 EHH55_18965 EHJ36_13975 EI028_05185 EJ366_20605 EJC75_20595 EKI52_12685 EYD11_20595 EYY78_08665 F7F00_14745 F7F18_09875 F7F23_18595 F7F26_20125 FQ915_09945 FQZ46_21935 GP664_20690 GP666_16320 GP935_18145 GP946_15695 GQN16_16290] Bifunctional NAD(P)H-hydrate repair enzyme (Nicotinamide nucleotide repair protein) [Includes: ADP-dependent (S)-NAD(P)H-hydrate dehydratase (EC 4.2.1.136) (ADP-dependent NAD(P)HX dehydratase); NAD(P)H-hydrate epimerase (EC 5.1.99.6)]
[cobB EAG77_00375 F0874_00155 F7V06_05500] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[cobB OR37_03990] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[nnrD nnrE BHS81_24940 BMA87_06210 BON75_25135 BUE81_24185 BW690_00535 C5P01_11605 C9114_00800 C9141_20385 C9160_20005 C9201_17640 C9Z03_11025 C9Z39_09990 CF006_04810 CG692_00180 CI641_014360 CI693_12780 COD46_22200 CWS33_03515 D2185_07770 D3821_07085 D3O91_01535 D3Y67_00680 D4011_02210 D4638_06395 D6W00_07670 D6X63_00505 D7W70_13040 D8Y65_09515 D9D20_08295 D9D44_05795 D9G29_02235 D9H68_15720 D9H94_06330 D9I18_04405 D9J11_13510 D9J52_05810 D9J63_13405 DAH30_09295 DAH34_17710 DAH37_06235 DEN89_23315 DEO04_15015 DK132_00975 DL292_04305 DL326_12595 DLU82_19955 DM973_03315 DMC44_08050 DMY83_06260 DNW42_15620 DOY22_05310 DOY61_22135 DQE91_09055 DT034_15395 E0I42_01095 E2119_06500 E5P22_06605 E5S42_20000 EA213_12050 EAI42_08035 EAI42_19730 EAI46_08330 ED307_02425 EEP23_07485 EH186_16255 EI021_09655 EI041_04975 EIZ86_02830 EL75_3998 EL79_4176 EL80_4091 ELT20_09170 EPT01_09990 EXX24_09350 EXX78_19455 F1E13_09470 F1E19_03510 FQ022_21765 FQR64_20885 FRV13_14670 FV293_00830 GHR40_02625 GKF89_03420 GNZ03_04915 GP654_08840 GP689_08305 GQE30_17865 GQE34_01730 GQE51_12505 GQE64_09140 GQL64_02225 GRW80_01300 RK56_012375] Bifunctional NAD(P)H-hydrate repair enzyme (Nicotinamide nucleotide repair protein) [Includes: ADP-dependent (S)-NAD(P)H-hydrate dehydratase (EC 4.2.1.136) (ADP-dependent NAD(P)HX dehydratase); NAD(P)H-hydrate epimerase (EC 5.1.99.6)]
[] Genome polyprotein [Cleaved into: Capsid protein C (Capsid protein) (Core protein); Protein prM (Precursor membrane protein); Peptide pr (Peptide precursor); Small envelope protein M (Matrix protein); Envelope protein E; Non-structural protein 1 (NS1); Non-structural protein 2A (NS2A); Serine protease subunit NS2B (Flavivirin protease NS2B regulatory subunit) (Non-structural protein 2B); Serine protease NS3 (EC 3.4.21.91) (EC 3.6.1.15) (EC 3.6.4.13) (Flavivirin protease NS3 catalytic subunit) (Non-structural protein 3); Non-structural protein 4A (NS4A); Peptide 2k; Non-structural protein 4B (NS4B); RNA-directed RNA polymerase NS5 (EC 2.1.1.56) (EC 2.1.1.57) (EC 2.7.7.48) (Non-structural protein 5)]
[hchA A9819_11910 ACN81_03425 AML35_08765 AW059_23935 BANRA_00208 BANRA_00433 BANRA_02614 BHF46_18455 BMA87_25350 BMT91_24760 BON76_21885 BvCmsC61A_00149 BvCmsKSNP120_04693 BvCmsKSP026_03873 BvCmsKSP076_04891 C7B08_25495 C9Z39_20510 CR538_10415 D3Y67_22910 D4023_08350 D9G42_11130 D9I97_22010 D9J11_25195 D9J52_16665 DJ503_24045 DLX40_18195 DM267_05215 DN627_18690 DP258_02540 DQE91_25240 EC3234A_36c00010 EC382_21100 ECTO6_01955 EHH55_07135 FORC82_1921 FV293_07100 GHR40_13690 GKE15_01795 GKE22_01795 GKE24_01795 GKE26_01795 GKE29_19015 GKE31_01795 GKE39_01795 GKE46_01795 GKE58_00235 GKE60_01795 GKE64_01795 GKE77_01800 GKE87_19180 GKE93_04790 GKF00_12775 GKF03_06100 GKF74_23075 GKF86_23585 GKF89_24720 GKG12_21690 GP700_02420 GP720_02430 GP727_01495 GP912_03195 NCTC12650_02300 NCTC8500_02249 NCTC9117_02637 NCTC9969_02156 SAMEA3472108_01151 SAMEA3484427_04795 SAMEA3484429_02051 SAMEA3752557_05476 SAMEA3752559_04333] Protein/nucleic acid deglycase HchA (EC 3.1.2.-) (EC 3.5.1.124) (Maillard deglycase)

Bibliography :
No related Items