GENTAUR Belgium BVBA BE0473327336 Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45
GENTAUR U.S.A Genprice Inc,Logistics 547 Yurok Circle, SanJose, CA 95123
Tel (408) 780-0908, Fax (408) 780-0908, [email protected]

Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, Gentaur another in time delivery

NAD-dependent protein deacetylase sirtuin-1 (hSIRT1) (EC 2 3 1 286) (NAD-dependent protein deacylase sirtuin-1) (EC 2 3 1 -) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (hSIR2) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)]

 SIR1_HUMAN              Reviewed;         747 AA.
Q96EB6; Q2XNF6; Q5JVQ0; Q9GZR9; Q9Y6F0;
31-OCT-2003, integrated into UniProtKB/Swiss-Prot.
31-OCT-2003, sequence version 2.
10-FEB-2021, entry version 201.
RecName: Full=NAD-dependent protein deacetylase sirtuin-1 {ECO:0000305};
Short=hSIRT1;
EC=2.3.1.286 {ECO:0000269|PubMed:12006491};
AltName: Full=NAD-dependent protein deacylase sirtuin-1;
EC=2.3.1.- {ECO:0000250|UniProtKB:Q923E4};
AltName: Full=Regulatory protein SIR2 homolog 1;
AltName: Full=SIR2-like protein 1;
Short=hSIR2;
Contains:
RecName: Full=SirtT1 75 kDa fragment;
Short=75SirT1;
Name=SIRT1 {ECO:0000312|HGNC:HGNC:14929}; Synonyms=SIR2L1;
Homo sapiens (Human).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
Homo.
NCBI_TaxID=9606;
[1]
NUCLEOTIDE SEQUENCE [MRNA], AND TISSUE SPECIFICITY.
TISSUE=Testis;
PubMed=10381378; DOI=10.1006/bbrc.1999.0897;
Frye R.A.;
"Characterization of five human cDNAs with homology to the yeast SIR2 gene:
Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-
ribosyltransferase activity.";
Biochem. Biophys. Res. Commun. 260:273-279(1999).
[2]
NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, INTERACTION WITH HES1 AND HEY2,
MUTAGENESIS OF HIS-363, AND ACTIVE SITE.
PubMed=12535671; DOI=10.1016/s0006-291x(02)03020-6;
Takata T., Ishikawa F.;
"Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1
and HEY2 and is involved in HES1- and HEY2-mediated transcriptional
repression.";
Biochem. Biophys. Res. Commun. 301:250-257(2003).
[3]
NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT GLU-3.
NIEHS SNPs program;
Submitted (NOV-2005) to the EMBL/GenBank/DDBJ databases.
[4]
NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
PubMed=15164054; DOI=10.1038/nature02462;
Deloukas P., Earthrowl M.E., Grafham D.V., Rubenfield M., French L.,
Steward C.A., Sims S.K., Jones M.C., Searle S., Scott C., Howe K.,
Hunt S.E., Andrews T.D., Gilbert J.G.R., Swarbreck D., Ashurst J.L.,
Taylor A., Battles J., Bird C.P., Ainscough R., Almeida J.P.,
Ashwell R.I.S., Ambrose K.D., Babbage A.K., Bagguley C.L., Bailey J.,
Banerjee R., Bates K., Beasley H., Bray-Allen S., Brown A.J., Brown J.Y.,
Burford D.C., Burrill W., Burton J., Cahill P., Camire D., Carter N.P.,
Chapman J.C., Clark S.Y., Clarke G., Clee C.M., Clegg S., Corby N.,
Coulson A., Dhami P., Dutta I., Dunn M., Faulkner L., Frankish A.,
Frankland J.A., Garner P., Garnett J., Gribble S., Griffiths C.,
Grocock R., Gustafson E., Hammond S., Harley J.L., Hart E., Heath P.D.,
Ho T.P., Hopkins B., Horne J., Howden P.J., Huckle E., Hynds C.,
Johnson C., Johnson D., Kana A., Kay M., Kimberley A.M., Kershaw J.K.,
Kokkinaki M., Laird G.K., Lawlor S., Lee H.M., Leongamornlert D.A.,
Laird G., Lloyd C., Lloyd D.M., Loveland J., Lovell J., McLaren S.,
McLay K.E., McMurray A., Mashreghi-Mohammadi M., Matthews L., Milne S.,
Nickerson T., Nguyen M., Overton-Larty E., Palmer S.A., Pearce A.V.,
Peck A.I., Pelan S., Phillimore B., Porter K., Rice C.M., Rogosin A.,
Ross M.T., Sarafidou T., Sehra H.K., Shownkeen R., Skuce C.D., Smith M.,
Standring L., Sycamore N., Tester J., Thorpe A., Torcasso W., Tracey A.,
Tromans A., Tsolas J., Wall M., Walsh J., Wang H., Weinstock K., West A.P.,
Willey D.L., Whitehead S.L., Wilming L., Wray P.W., Young L., Chen Y.,
Lovering R.C., Moschonas N.K., Siebert R., Fechtel K., Bentley D.,
Durbin R.M., Hubbard T., Doucette-Stamm L., Beck S., Smith D.R., Rogers J.;
"The DNA sequence and comparative analysis of human chromosome 10.";
Nature 429:375-381(2004).
[5]
NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 124-747.
TISSUE=Prostate;
PubMed=15489334; DOI=10.1101/gr.2596504;
The MGC Project Team;
"The status, quality, and expansion of the NIH full-length cDNA project:
the Mammalian Gene Collection (MGC).";
Genome Res. 14:2121-2127(2004).
[6]
FUNCTION IN DEACETYLATION OF TP53, SUBCELLULAR LOCATION, MUTAGENESIS OF
HIS-363, AND ACTIVE SITE.
PubMed=11672523; DOI=10.1016/s0092-8674(01)00527-x;
Vaziri H., Dessain S.K., Ng Eaton E., Imai S., Frye R.A., Pandita T.K.,
Guarente L., Weinberg R.A.;
"hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase.";
Cell 107:149-159(2001).
[7]
FUNCTION, ENZYME ACTIVITY, SUBCELLULAR LOCATION, INTERACTION WITH PML,
MUTAGENESIS OF HIS-363, AND ACTIVE SITE.
PubMed=12006491; DOI=10.1093/emboj/21.10.2383;
Langley E., Pearson M., Faretta M., Bauer U.-M., Frye R.A., Minucci S.,
Pelicci P.G., Kouzarides T.;
"Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular
senescence.";
EMBO J. 21:2383-2396(2002).
[8]
ACTIVITY REGULATION.
PubMed=12297502; DOI=10.1074/jbc.m205670200;
Bitterman K.J., Anderson R.M., Cohen H.Y., Latorre-Esteves M.,
Sinclair D.A.;
"Inhibition of silencing and accelerated aging by nicotinamide, a putative
negative regulator of yeast sir2 and human SIRT1.";
J. Biol. Chem. 277:45099-45107(2002).
[9]
ACTIVITY REGULATION.
PubMed=12939617; DOI=10.1038/nature01960;
Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S., Wood J.G.,
Zipkin R.E., Chung P., Kisielewski A., Zhang L.-L., Scherer B.,
Sinclair D.A.;
"Small molecule activators of sirtuins extend Saccharomyces cerevisiae
lifespan.";
Nature 425:191-196(2003).
[10]
FUNCTION.
PubMed=15152190; DOI=10.1038/sj.emboj.7600244;
Frye R.A., Mayo M.W.;
"Modulation of NF-kappaB-dependent transcription and cell survival by the
SIRT1 deacetylase.";
EMBO J. 23:2369-2380(2004).
[11]
FUNCTION IN DEACETYLATION OF FOXO3, AND FUNCTION IN REGULATION OF FOXO3.
PubMed=14980222; DOI=10.1016/s0092-8674(04)00126-6;
Motta M.C., Divecha N., Lemieux M., Kamel C., Chen D., Gu W., Bultsma Y.,
McBurney M., Guarente L.;
"Mammalian SIRT1 represses forkhead transcription factors.";
Cell 116:551-563(2004).
[12]
FUNCTION IN DEACETYLATION OF MLLT7.
PubMed=15126506; DOI=10.1074/jbc.m401138200;
van der Horst A., Tertoolen L.G.J., de Vries-Smits L.M.M., Frye R.A.,
Medema R.H., Burgering B.M.T.;
"FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity
protein hSir2(SIRT1).";
J. Biol. Chem. 279:28873-28879(2004).
[13]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=15469825; DOI=10.1016/j.molcel.2004.08.031;
Vaquero A., Scher M., Lee D., Erdjument-Bromage H., Tempst P., Reinberg D.;
"Human SirT1 interacts with histone H1 and promotes formation of
facultative heterochromatin.";
Mol. Cell 16:93-105(2004).
[14]
FUNCTION IN DEACETYLATION OF FOXO3, AND FUNCTION IN REGULATION OF FOXO3.
PubMed=14976264; DOI=10.1126/science.1094637;
Brunet A., Sweeney L.B., Sturgill J.F., Chua K.F., Greer P.L., Lin Y.,
Tran H., Ross S.E., Mostoslavsky R., Cohen H.Y., Hu L.S., Cheng H.L.,
Jedrychowski M.P., Gygi S.P., Sinclair D.A., Alt F.W., Greenberg M.E.;
"Stress-dependent regulation of FOXO transcription factors by the SIRT1
deacetylase.";
Science 303:2011-2015(2004).
[15]
FUNCTION IN DEACETYLATION OF XRCC6, AND INDUCTION BY CR.
PubMed=15205477; DOI=10.1126/science.1099196;
Cohen H.Y., Miller C., Bitterman K.J., Wall N.R., Hekking B., Kessler B.,
Howitz K.T., Gorospe M., de Cabo R., Sinclair D.A.;
"Calorie restriction promotes mammalian cell survival by inducing the SIRT1
deacetylase.";
Science 305:390-392(2004).
[16]
INTERACTION WITH FHL2, FUNCTION IN DEACETYLATION OF FOXO1, AND FUNCTION IN
REGULATION OF FOXO1.
PubMed=15692560; DOI=10.1038/sj.emboj.7600570;
Yang Y., Hou H., Haller E.M., Nicosia S.V., Bai W.;
"Suppression of FOXO1 activity by FHL2 through SIRT1-mediated
deacetylation.";
EMBO J. 24:1021-1032(2005).
[17]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=16079181; DOI=10.1091/mbc.e05-01-0033;
Michishita E., Park J.Y., Burneskis J.M., Barrett J.C., Horikawa I.;
"Evolutionarily conserved and nonconserved cellular localizations and
functions of human SIRT proteins.";
Mol. Biol. Cell 16:4623-4635(2005).
[18]
FUNCTION IN DEACETYLATION OF MEF2D, AND INTERACTION WITH HDAC4.
PubMed=16166628; DOI=10.1128/mcb.25.19.8456-8464.2005;
Zhao X., Sternsdorf T., Bolger T.A., Evans R.M., Yao T.-P.;
"Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-
mediated lysine modifications.";
Mol. Cell. Biol. 25:8456-8464(2005).
[19]
INTERACTION WITH HIV-1 TAT (MICROBIAL INFECTION).
PubMed=15719057; DOI=10.1371/journal.pbio.0030041;
Pagans S., Pedal A., North B.J., Kaehlcke K., Marshall B.L., Dorr A.,
Hetzer-Egger C., Henklein P., Frye R., McBurney M.W., Hruby H., Jung M.,
Verdin E., Ott M.;
"SIRT1 regulates HIV transcription via Tat deacetylation.";
PLoS Biol. 3:210-220(2005).
[20]
ASSOCIATION WITH THE PRC4 COMPLEX, AND INTERACTION WITH SUZ12.
PubMed=15684044; DOI=10.1073/pnas.0409875102;
Kuzmichev A., Margueron R., Vaquero A., Preissner T.S., Scher M.,
Kirmizis A., Ouyang X., Brockdorff N., Abate-Shen C., Farnham P.J.,
Reinberg D.;
"Composition and histone substrates of polycomb repressive group complexes
change during cellular differentiation.";
Proc. Natl. Acad. Sci. U.S.A. 102:1859-1864(2005).
[21]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-47, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=16964243; DOI=10.1038/nbt1240;
Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.;
"A probability-based approach for high-throughput protein phosphorylation
analysis and site localization.";
Nat. Biotechnol. 24:1285-1292(2006).
[22]
FUNCTION, AND INTERACTION WITH E2F1.
PubMed=16892051; DOI=10.1038/ncb1468;
Wang C., Chen L., Hou X., Li Z., Kabra N., Ma Y., Nemoto S., Finkel T.,
Gu W., Cress W.D., Chen J.;
"Interactions between E2F1 and SirT1 regulate apoptotic response to DNA
damage.";
Nat. Cell Biol. 8:1025-1031(2006).
[23]
FUNCTION IN DEACETYLATION OF RB1.
PubMed=17620057; DOI=10.1042/bj20070151;
Wong S., Weber J.D.;
"Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1.";
Biochem. J. 407:451-460(2007).
[24]
INTERACTION WITH TLE1.
PubMed=17680780; DOI=10.1042/bj20070817;
Ghosh H.S., Spencer J.V., Ng B., McBurney M.W., Robbins P.D.;
"Sirt1 interacts with transducin-like enhancer of split-1 to inhibit
nuclear factor kappaB-mediated transcription.";
Biochem. J. 408:105-111(2007).
[25]
FUNCTION, MUTAGENESIS OF HIS-363, AND ACTIVE SITE.
PubMed=17290224; DOI=10.1038/sj.emboj.7601563;
Pedersen T.A., Bereshchenko O., Garcia-Silva S., Ermakova O., Kurz E.,
Mandrup S., Porse B.T., Nerlov C.;
"Distinct C/EBPalpha motifs regulate lipogenic and gluconeogenic gene
expression in vivo.";
EMBO J. 26:1081-1093(2007).
[26]
FUNCTION IN DEACETYLATION OF XRCC6, AND FUNCTION IN DNA REPAIR.
PubMed=17334224; DOI=10.1038/emm.2007.2;
Jeong J., Juhn K., Lee H., Kim S.H., Min B.H., Lee K.M., Cho M.H.,
Park G.H., Lee K.H.;
"SIRT1 promotes DNA repair activity and deacetylation of Ku70.";
Exp. Mol. Med. 39:8-13(2007).
[27]
FUNCTION IN DEACETYLATION OF TP73, AND FUNCTION IN REGULATION OF TP73.
PubMed=16998810; DOI=10.1002/jcp.20831;
Dai J.M., Wang Z.Y., Sun D.C., Lin R.X., Wang S.Q.;
"SIRT1 interacts with p73 and suppresses p73-dependent transcriptional
activity.";
J. Cell. Physiol. 210:161-166(2007).
[28]
FUNCTION IN AR-DEPENDENT REPRESSION.
PubMed=17505061; DOI=10.1210/me.2006-0467;
Dai Y., Ngo D., Forman L.W., Qin D.C., Jacob J., Faller D.V.;
"Sirtuin 1 is required for antagonist-induced transcriptional repression of
androgen-responsive genes by the androgen receptor.";
Mol. Endocrinol. 21:1807-1821(2007).
[29]
INTERACTION WITH RPS19BP1.
PubMed=17964266; DOI=10.1016/j.molcel.2007.08.030;
Kim E.-J., Kho J.-H., Kang M.-R., Um S.-J.;
"Active regulator of SIRT1 cooperates with SIRT1 and facilitates
suppression of p53 activity.";
Mol. Cell 28:277-290(2007).
[30]
ERRATUM OF PUBMED:17964266.
Kim E.-J., Kho J.-H., Kang M.-R., Um S.-J.;
Mol. Cell 28:513-513(2007).
[31]
FUNCTION IN DEACETYLATION OF NR1H3 AND NR1H2.
PubMed=17936707; DOI=10.1016/j.molcel.2007.07.032;
Li X., Zhang S., Blander G., Tse J.G., Krieger M., Guarente L.;
"SIRT1 deacetylates and positively regulates the nuclear receptor LXR.";
Mol. Cell 28:91-106(2007).
[32]
FUNCTION IN DEACETYLATION OF NBN, AND FUNCTION IN DNA REPAIR.
PubMed=17612497; DOI=10.1016/j.molcel.2007.05.029;
Yuan Z., Zhang X., Sengupta N., Lane W.S., Seto E.;
"SIRT1 regulates the function of the Nijmegen breakage syndrome protein.";
Mol. Cell 27:149-162(2007).
[33]
FUNCTION IN DEACETYLATION OF HIC1.
PubMed=17283066; DOI=10.1128/mcb.01098-06;
Stankovic-Valentin N., Deltour S., Seeler J., Pinte S., Vergoten G.,
Guerardel C., Dejean A., Leprince D.;
"An acetylation/deacetylation-SUMOylation switch through a phylogenetically
conserved psiKXEP motif in the tumor suppressor HIC1 regulates
transcriptional repression activity.";
Mol. Cell. Biol. 27:2661-2675(2007).
[34]
FUNCTION, MUTAGENESIS OF HIS-363, AND ACTIVE SITE.
PubMed=18004385; DOI=10.1038/nature06268;
Vaquero A., Scher M., Erdjument-Bromage H., Tempst P., Serrano L.,
Reinberg D.;
"SIRT1 regulates the histone methyl-transferase SUV39H1 during
heterochromatin formation.";
Nature 450:440-444(2007).
[35]
FUNCTION.
PubMed=18662546; DOI=10.1016/j.cell.2008.06.050;
Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F.,
Mostoslavsky R., Alt F.W., Schibler U.;
"SIRT1 regulates circadian clock gene expression through PER2
deacetylation.";
Cell 134:317-328(2008).
[36]
IDENTIFICATION IN THE ENOSC COMPLEX, FUNCTION, MUTAGENESIS OF HIS-363, AND
ACTIVE SITE.
PubMed=18485871; DOI=10.1016/j.cell.2008.03.030;
Murayama A., Ohmori K., Fujimura A., Minami H., Yasuzawa-Tanaka K.,
Kuroda T., Oie S., Daitoku H., Okuwaki M., Nagata K., Fukamizu A.,
Kimura K., Shimizu T., Yanagisawa J.;
"Epigenetic control of rDNA loci in response to intracellular energy
status.";
Cell 133:627-639(2008).
[37]
PHOSPHORYLATION AT SER-27 AND SER-47.
PubMed=18838864; DOI=10.4161/cc.7.19.6799;
Ford J., Ahmed S., Allison S., Jiang M., Milner J.;
"JNK2-dependent regulation of SIRT1 protein stability.";
Cell Cycle 7:3091-3097(2008).
[38]
INTERACTION WITH HIV-1 TAT (MICROBIAL INFECTION), AND FUNCTION IN T-CELL
ACTIVATION (MICROBIAL INFECTION).
PubMed=18329615; DOI=10.1016/j.chom.2008.02.002;
Kwon H.S., Brent M.M., Getachew R., Jayakumar P., Chen L.F., Schnolzer M.,
McBurney M.W., Marmorstein R., Greene W.C., Ott M.;
"Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1
deacetylase and induces T cell hyperactivation.";
Cell Host Microbe 3:158-167(2008).
[39]
FUNCTION IN DEACETYLATION OF WRN, AND FUNCTION IN DNA DAMAGE.
PubMed=18203716; DOI=10.1074/jbc.m709707200;
Li K., Casta A., Wang R., Lozada E., Fan W., Kane S., Ge Q., Gu W.,
Orren D., Luo J.;
"Regulation of WRN protein cellular localization and enzymatic activities
by SIRT1-mediated deacetylation.";
J. Biol. Chem. 283:7590-7598(2008).
[40]
FUNCTION IN DEACETYLATION OF STK11.
PubMed=18687677; DOI=10.1074/jbc.m805711200;
Lan F., Cacicedo J.M., Ruderman N., Ido Y.;
"SIRT1 modulation of the acetylation status, cytosolic localization, and
activity of LKB1. Possible role in AMP-activated protein kinase
activation.";
J. Biol. Chem. 283:27628-27635(2008).
[41]
INTERACTION WITH CCAR2, ACTIVITY REGULATION, MUTAGENESIS OF HIS-363, ACTIVE
SITE, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=18235501; DOI=10.1038/nature06500;
Kim J.-E., Chen J., Lou Z.;
"DBC1 is a negative regulator of SIRT1.";
Nature 451:583-586(2008).
[42]
INTERACTION WITH CCAR2, AND ACTIVITY REGULATION.
PubMed=18235502; DOI=10.1038/nature06515;
Zhao W., Kruse J.-P., Tang Y., Jung S.Y., Qin J., Gu W.;
"Negative regulation of the deacetylase SIRT1 by DBC1.";
Nature 451:587-590(2008).
[43]
PHOSPHORYLATION AT SER-14; SER-26; SER-27; SER-47; SER-159; SER-162;
SER-172; SER-173; THR-530; THR-544; SER-545; THR-719 AND SER-747, AND
MUTAGENESIS OF THR-530 AND SER-540.
PubMed=19107194; DOI=10.1371/journal.pone.0004020;
Sasaki T., Maier B., Koclega K.D., Chruszcz M., Gluba W., Stukenberg P.T.,
Minor W., Scrable H.;
"Phosphorylation regulates SIRT1 function.";
PLoS ONE 3:E4020-E4020(2008).
[44]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-719, AND IDENTIFICATION BY
MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=18669648; DOI=10.1073/pnas.0805139105;
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
Elledge S.J., Gygi S.P.;
"A quantitative atlas of mitotic phosphorylation.";
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
[45]
FUNCTION IN DEACETYLATION OF ATG5; ATG7 AND MAP1LC3B, AND FUNCTION IN
AUTOPHAGY.
PubMed=18296641; DOI=10.1073/pnas.0712145105;
Lee I.H., Cao L., Mostoslavsky R., Lombard D.B., Liu J., Bruns N.E.,
Tsokos M., Alt F.W., Finkel T.;
"A role for the NAD-dependent deacetylase Sirt1 in the regulation of
autophagy.";
Proc. Natl. Acad. Sci. U.S.A. 105:3374-3379(2008).
[46]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY
[LARGE SCALE ANALYSIS].
PubMed=19413330; DOI=10.1021/ac9004309;
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.;
"Lys-N and trypsin cover complementary parts of the phosphoproteome in a
refined SCX-based approach.";
Anal. Chem. 81:4493-4501(2009).
[47]
PHOSPHORYLATION AT SER-659 AND SER-661, AND MUTAGENESIS OF SER-659; SER-661
AND SER-684.
PubMed=19236849; DOI=10.1016/j.bbrc.2009.02.085;
Zschoernig B., Mahlknecht U.;
"Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2.";
Biochem. Biophys. Res. Commun. 381:372-377(2009).
[48]
FUNCTION.
PubMed=19220062; DOI=10.1021/bi802093g;
Du J., Jiang H., Lin H.;
"Investigating the ADP-ribosyltransferase activity of sirtuins with NAD
analogues and 32P-NAD.";
Biochemistry 48:2878-2890(2009).
[49]
INTERACTION WITH PPARA.
PubMed=19356714; DOI=10.1016/j.cmet.2009.02.006;
Purushotham A., Schug T.T., Xu Q., Surapureddi S., Guo X., Li X.;
"Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and
results in hepatic steatosis and inflammation.";
Cell Metab. 9:327-338(2009).
[50]
FUNCTION, AND INTERACTION WITH CREBZF.
PubMed=19690166; DOI=10.1074/jbc.m109.034165;
Xie Y.B., Park J.H., Kim D.K., Hwang J.H., Oh S., Park S.B., Shong M.,
Lee I.K., Choi H.S.;
"Transcriptional corepressor SMILE recruits SIRT1 to inhibit nuclear
receptor estrogen receptor-related receptor gamma transactivation.";
J. Biol. Chem. 284:28762-28774(2009).
[51]
FUNCTION IN DEACETYLATION OF MYC, AND FUNCTION IN REGULATION OF MYC.
PubMed=19364925; DOI=10.1083/jcb.200809167;
Yuan J., Minter-Dykhouse K., Lou Z.;
"A c-Myc-SIRT1 feedback loop regulates cell growth and transformation.";
J. Cell Biol. 185:203-211(2009).
[52]
FUNCTION IN DEACETYLATION OF PCAF, AND FUNCTION IN DNA REPAIR.
PubMed=19188449; DOI=10.1128/mcb.00552-08;
Pediconi N., Guerrieri F., Vossio S., Bruno T., Belloni L., Schinzari V.,
Scisciani C., Fanciulli M., Levrero M.;
"hSirT1-dependent regulation of the PCAF-E2F1-p73 apoptotic pathway in
response to DNA damage.";
Mol. Cell. Biol. 29:1989-1998(2009).
[53]
PHOSPHORYLATION AT SER-27; SER-47 AND THR-530, MUTAGENESIS OF SER-27;
SER-47 AND THR-530, AND SUBCELLULAR LOCATION.
PubMed=20027304; DOI=10.1371/journal.pone.0008414;
Nasrin N., Kaushik V.K., Fortier E., Wall D., Pearson K.J., de Cabo R.,
Bordone L.;
"JNK1 phosphorylates SIRT1 and promotes its enzymatic activity.";
PLoS ONE 4:E8414-E8414(2009).
[54]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-530; SER-535 AND THR-719, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Leukemic T-cell;
PubMed=19690332; DOI=10.1126/scisignal.2000007;
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
Rodionov V., Han D.K.;
"Quantitative phosphoproteomic analysis of T cell receptor signaling
reveals system-wide modulation of protein-protein interactions.";
Sci. Signal. 2:RA46-RA46(2009).
[55]
FUNCTION IN REGULATION OF STK11.
PubMed=20203304; DOI=10.1161/circresaha.109.215483;
Zu Y., Liu L., Lee M.Y., Xu C., Liang Y., Man R.Y., Vanhoutte P.M.,
Wang Y.;
"SIRT1 promotes proliferation and prevents senescence through targeting
LKB1 in primary porcine aortic endothelial cells.";
Circ. Res. 106:1384-1393(2010).
[56]
FUNCTION IN DNA REPAIR HOMOLOGOUS RECOMBINATION.
PubMed=20097625; DOI=10.1016/j.dnarep.2009.12.020;
Uhl M., Csernok A., Aydin S., Kreienberg R., Wiesmuller L., Gatz S.A.;
"Role of SIRT1 in homologous recombination.";
DNA Repair 9:383-393(2010).
[57]
INTERACTION WITH FOS AND JUN.
PubMed=20042607; DOI=10.1074/jbc.m109.038604;
Zhang R., Chen H.Z., Liu J.J., Jia Y.Y., Zhang Z.Q., Yang R.F., Zhang Y.,
Xu J., Wei Y.S., Liu D.P., Liang C.C.;
"SIRT1 suppresses activator protein-1 transcriptional activity and
cyclooxygenase-2 expression in macrophages.";
J. Biol. Chem. 285:7097-7110(2010).
[58]
FUNCTION IN DEACETYLATION OF KAT5.
PubMed=20100829; DOI=10.1074/jbc.m109.087585;
Wang J., Chen J.;
"SIRT1 regulates autoacetylation and histone acetyltransferase activity of
TIP60.";
J. Biol. Chem. 285:11458-11464(2010).
[59]
SUBCELLULAR LOCATION.
PubMed=20167603; DOI=10.1074/jbc.m110.102574;
Guo X., Williams J.G., Schug T.T., Li X.;
"DYRK1A and DYRK3 promote cell survival through phosphorylation and
activation of SIRT1.";
J. Biol. Chem. 285:13223-13232(2010).
[60]
FUNCTION IN DEACETYLATION OF SREBF1.
PubMed=20817729; DOI=10.1074/jbc.m110.122978;
Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., Wu S.Y.,
Chiang C.M., Veenstra T.D., Kemper J.K.;
"SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic
lipid metabolism.";
J. Biol. Chem. 285:33959-33970(2010).
[61]
FUNCTION IN DEACETYLATION OF HIF1A, AND FUNCTION IN REGULATION OF HIF1A.
PubMed=20620956; DOI=10.1016/j.molcel.2010.05.023;
Lim J.H., Lee Y.M., Chun Y.S., Chen J., Kim J.E., Park J.W.;
"Sirtuin 1 modulates cellular responses to hypoxia by deacetylating
hypoxia-inducible factor 1alpha.";
Mol. Cell 38:864-878(2010).
[62]
FUNCTION IN DEACETYLATION OF XPA.
PubMed=20670893; DOI=10.1016/j.molcel.2010.07.006;
Fan W., Luo J.;
"SIRT1 regulates UV-induced DNA repair through deacetylating XPA.";
Mol. Cell 39:247-258(2010).
[63]
FUNCTION IN DEACETYLATION OF APEX1, FUNCTION IN DNA REPAIR, MUTAGENESIS OF
HIS-363, ACTIVE SITE, INDUCTION, AND SUBCELLULAR LOCATION.
PubMed=19934257; DOI=10.1093/nar/gkp1039;
Yamamori T., DeRicco J., Naqvi A., Hoffman T.A., Mattagajasingh I.,
Kasuno K., Jung S.B., Kim C.S., Irani K.;
"SIRT1 deacetylates APE1 and regulates cellular base excision repair.";
Nucleic Acids Res. 38:832-845(2010).
[64]
FUNCTION, AND INTERACTION WITH NR0B2.
PubMed=20375098; DOI=10.1093/nar/gkq227;
Chanda D., Xie Y.B., Choi H.S.;
"Transcriptional corepressor SHP recruits SIRT1 histone deacetylase to
inhibit LRH-1 transactivation.";
Nucleic Acids Res. 38:4607-4619(2010).
[65]
INTERACTION WITH TSC2.
PubMed=20169165; DOI=10.1371/journal.pone.0009199;
Ghosh H.S., McBurney M., Robbins P.D.;
"SIRT1 negatively regulates the mammalian target of rapamycin.";
PLoS ONE 5:E9199-E9199(2010).
[66]
ALTERNATIVE SPLICING (ISOFORM 2), FUNCTION (ISOFORM 2), INDUCTION (ISOFORM
2), AND INTERACTION WITH TP53 AND RPS19BP1.
PubMed=20975832; DOI=10.1371/journal.pone.0013502;
Lynch C.J., Shah Z.H., Allison S.J., Ahmed S.U., Ford J., Warnock L.J.,
Li H., Serrano M., Milner J.;
"SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with
p53.";
PLoS ONE 5:E13502-E13502(2010).
[67]
FUNCTION IN DNA REPAIR, AND SUPPRESSION OF XPC.
PubMed=21149730; DOI=10.1073/pnas.1010377108;
Ming M., Shea C.R., Guo X., Li X., Soltani K., Han W., He Y.Y.;
"Regulation of global genome nucleotide excision repair by SIRT1 through
xeroderma pigmentosum C.";
Proc. Natl. Acad. Sci. U.S.A. 107:22623-22628(2010).
[68]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, PHOSPHORYLATION [LARGE SCALE
ANALYSIS] AT SER-14 AND SER-47, CLEAVAGE OF INITIATOR METHIONINE [LARGE
SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE
ANALYSIS].
TISSUE=Cervix carcinoma;
PubMed=20068231; DOI=10.1126/scisignal.2000475;
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.;
"Quantitative phosphoproteomics reveals widespread full phosphorylation
site occupancy during mitosis.";
Sci. Signal. 3:RA3-RA3(2010).
[69]
FUNCTION IN DEACETYLATION OF HMGCS1.
PubMed=21701047; DOI=10.18632/aging.100339;
Hirschey M.D., Shimazu T., Capra J.A., Pollard K.S., Verdin E.;
"SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and
HMGCS1,2.";
Aging (Albany NY) 3:635-642(2011).
[70]
PROCESSING.
PubMed=21305533; DOI=10.1002/art.30279;
Dvir-Ginzberg M., Gagarina V., Lee E.J., Booth R., Gabay O., Hall D.J.;
"Tumor necrosis factor alpha-mediated cleavage and inactivation of SirT1 in
human osteoarthritic chondrocytes.";
Arthritis Rheum. 63:2363-2373(2011).
[71]
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=21269460; DOI=10.1186/1752-0509-5-17;
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T.,
Bennett K.L., Superti-Furga G., Colinge J.;
"Initial characterization of the human central proteome.";
BMC Syst. Biol. 5:17-17(2011).
[72]
FUNCTION IN DEACETYLATION OF XBP1, INTERACTION WITH XBP1, AND SUBCELLULAR
LOCATION.
PubMed=20955178; DOI=10.1042/bj20101293;
Wang F.M., Chen Y.J., Ouyang H.J.;
"Regulation of unfolded protein response modulator XBP1s by acetylation and
deacetylation.";
Biochem. J. 433:245-252(2011).
[73]
FUNCTION IN DEACETYLATION OF MECOM.
PubMed=21555002; DOI=10.1016/j.bbagrm.2011.04.007;
Pradhan A.K., Kuila N., Singh S., Chakraborty S.;
"EVI1 up-regulates the stress responsive gene SIRT1 which triggers
deacetylation and degradation of EVI1.";
Biochim. Biophys. Acta 1809:269-275(2011).
[74]
INTERACTION WITH NR1I2.
PubMed=21933665; DOI=10.1016/j.bcp.2011.09.006;
Buler M., Aatsinki S.M., Skoumal R., Hakkola J.;
"Energy sensing factors PGC-1alpha and SIRT1 modulate PXR expression and
function.";
Biochem. Pharmacol. 82:2008-2015(2011).
[75]
FUNCTION IN DEACETYLATION OF MYC, AND FUNCTION IN REGULATION OF MYC.
PubMed=21807113; DOI=10.1016/j.biocel.2011.07.006;
Mao B., Zhao G., Lv X., Chen H.Z., Xue Z., Yang B., Liu D.P., Liang C.C.;
"Sirt1 deacetylates c-Myc and promotes c-Myc/Max association.";
Int. J. Biochem. Cell Biol. 43:1573-1581(2011).
[76]
PHOSPHORYLATION BY STK4/MST1.
PubMed=21212262; DOI=10.1074/jbc.m110.182543;
Yuan F., Xie Q., Wu J., Bai Y., Mao B., Dong Y., Bi W., Ji G., Tao W.,
Wang Y., Yuan Z.;
"MST1 promotes apoptosis through regulating Sirt1-dependent p53
deacetylation.";
J. Biol. Chem. 286:6940-6945(2011).
[77]
FUNCTION IN APOPTOSIS, PHOSPHORYLATION AT SER-47, AND MUTAGENESIS OF SER-47
AND PHE-474.
PubMed=21471201; DOI=10.1074/jbc.m111.240598;
Back J.H., Rezvani H.R., Zhu Y., Guyonnet-Duperat V., Athar M., Ratner D.,
Kim A.L.;
"Cancer cell survival following DNA damage-mediated premature senescence is
regulated by mammalian target of rapamycin (mTOR)-dependent Inhibition of
sirtuin 1.";
J. Biol. Chem. 286:19100-19108(2011).
[78]
FUNCTION IN STABILIZATION OF SUV39H1.
PubMed=21504832; DOI=10.1016/j.molcel.2011.02.034;
Bosch-Presegue L., Raurell-Vila H., Marazuela-Duque A., Kane-Goldsmith N.,
Valle A., Oliver J., Serrano L., Vaquero A.;
"Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and
ensures genome protection.";
Mol. Cell 42:210-223(2011).
[79]
FUNCTION IN DEACETYLATION OF DNMT1, AND FUNCTION IN REGULATION OF DNMT1.
PubMed=21947282; DOI=10.1128/mcb.06147-11;
Peng L., Yuan Z., Ling H., Fukasawa K., Robertson K., Olashaw N.,
Koomen J., Chen J., Lane W.S., Seto E.;
"SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters
its activities.";
Mol. Cell. Biol. 31:4720-4734(2011).
[80]
FUNCTION IN REGULATION OF MYCN, AND INTERACTION WITH MYCN.
PubMed=21698133; DOI=10.1371/journal.pgen.1002135;
Marshall G.M., Liu P.Y., Gherardi S., Scarlett C.J., Bedalov A., Xu N.,
Iraci N., Valli E., Ling D., Thomas W., van Bekkum M., Sekyere E.,
Jankowski K., Trahair T., Mackenzie K.L., Haber M., Norris M.D.,
Biankin A.V., Perini G., Liu T.;
"SIRT1 promotes N-Myc oncogenesis through a positive feedback loop
involving the effects of MKP3 and ERK on N-Myc protein stability.";
PLoS Genet. 7:E1002135-E1002135(2011).
[81]
INTERACTION WITH HCFC1.
PubMed=21909281; DOI=10.1371/journal.pgen.1002235;
Rizki G., Iwata T.N., Li J., Riedel C.G., Picard C.L., Jan M., Murphy C.T.,
Lee S.S.;
"The evolutionarily conserved longevity determinants HCF-1 and SIR-
2.1/SIRT1 collaborate to regulate DAF-16/FOXO.";
PLoS Genet. 7:E1002235-E1002235(2011).
[82]
INTERACTION WITH SETD7, METHYLATION, AND MUTAGENESIS OF LYS-233; LYS-235;
LYS-236 AND LYS-238.
PubMed=21245319; DOI=10.1073/pnas.1019619108;
Liu X., Wang D., Zhao Y., Tu B., Zheng Z., Wang L., Wang H., Gu W.,
Roeder R.G., Zhu W.G.;
"Methyltransferase Set7/9 regulates p53 activity by interacting with
Sirtuin 1 (SIRT1).";
Proc. Natl. Acad. Sci. U.S.A. 108:1925-1930(2011).
[83]
FUNCTION IN DEACETYLATION OF AKT1, AND FUNCTION IN REGULATION OF AKT1.
PubMed=21775285; DOI=10.1126/scisignal.2001465;
Sundaresan N.R., Pillai V.B., Wolfgeher D., Samant S., Vasudevan P.,
Parekh V., Raghuraman H., Cunningham J.M., Gupta M., Gupta M.P.;
"The deacetylase SIRT1 promotes membrane localization and activation of Akt
and PDK1 during tumorigenesis and cardiac hypertrophy.";
Sci. Signal. 4:RA46-RA46(2011).
[84]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, PHOSPHORYLATION [LARGE SCALE
ANALYSIS] AT SER-14; SER-47 AND THR-719, CLEAVAGE OF INITIATOR METHIONINE
[LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE
SCALE ANALYSIS].
PubMed=21406692; DOI=10.1126/scisignal.2001570;
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J., Johansen P.T.,
Kratchmarova I., Kassem M., Mann M., Olsen J.V., Blagoev B.;
"System-wide temporal characterization of the proteome and phosphoproteome
of human embryonic stem cell differentiation.";
Sci. Signal. 4:RS3-RS3(2011).
[85]
FUNCTION (SIRTT1 75 KDA FRAGMENT), AND SUBCELLULAR LOCATION (75SIRT1).
PubMed=21987377; DOI=10.1002/art.33407;
Oppenheimer H., Gabay O., Meir H., Haze A., Kandel L., Liebergall M.,
Gagarina V., Lee E.J., Dvir-Ginzberg M.;
"75kDa SirT1 blocks TNFalpha-mediated apoptosis in human osteoarthritic
chondrocytes.";
Arthritis Rheum. 64:718-728(2012).
[86]
FUNCTION IN DEACETYLATION OF CIITA.
PubMed=21890893; DOI=10.1093/nar/gkr651;
Wu X., Kong X., Chen D., Li H., Zhao Y., Xia M., Fang M., Li P., Fang F.,
Sun L., Tian W., Xu H., Yang Y., Qi X., Gao Y., Sha J., Chen Q., Xu Y.;
"SIRT1 links CIITA deacetylation to MHC II activation.";
Nucleic Acids Res. 39:9549-9558(2011).
[87]
FUNCTION IN DEACETYLATION OF PML.
PubMed=22274616; DOI=10.1038/emboj.2012.1;
Miki T., Xu Z., Chen-Goodspeed M., Liu M., Van Oort-Jansen A., Rea M.A.,
Zhao Z., Lee C.C., Chang K.S.;
"PML regulates PER2 nuclear localization and circadian function.";
EMBO J. 31:1427-1439(2012).
[88]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY
[LARGE SCALE ANALYSIS].
PubMed=22223895; DOI=10.1074/mcp.m111.015131;
Bienvenut W.V., Sumpton D., Martinez A., Lilla S., Espagne C., Meinnel T.,
Giglione C.;
"Comparative large-scale characterisation of plant vs. mammal proteins
reveals similar and idiosyncratic N-alpha acetylation features.";
Mol. Cell. Proteomics 11:M111.015131-M111.015131(2012).
[89]
FUNCTION IN DEACETYLATION OF FOXO3, AND FUNCTION IN REGULATION OF FOXO3.
PubMed=21841822; DOI=10.1038/onc.2011.347;
Wang F., Chan C.H., Chen K., Guan X., Lin H.K., Tong Q.;
"Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3
ubiquitination and degradation.";
Oncogene 31:1546-1557(2012).
[90]
ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR
METHIONINE [LARGE SCALE ANALYSIS], AND IDENTIFICATION BY MASS SPECTROMETRY
[LARGE SCALE ANALYSIS].
PubMed=22814378; DOI=10.1073/pnas.1210303109;
Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E., Timmerman E.,
Prieto J., Arnesen T., Sherman F., Gevaert K., Aldabe R.;
"N-terminal acetylome analyses and functional insights of the N-terminal
acetyltransferase NatB.";
Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
[91]
INTERACTION WITH CCAR2.
PubMed=23352644; DOI=10.1016/j.canlet.2013.01.026;
Kim W., Kim J.E.;
"Deleted in breast cancer 1 (DBC1) deficiency results in apoptosis of
breast cancer cells through impaired responses to UV-induced DNA damage.";
Cancer Lett. 333:180-186(2013).
[92]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-14; SER-27; SER-47 AND
THR-719, AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Cervix carcinoma, and Erythroleukemia;
PubMed=23186163; DOI=10.1021/pr300630k;
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J.,
Mohammed S.;
"Toward a comprehensive characterization of a human cancer cell
phosphoproteome.";
J. Proteome Res. 12:260-271(2013).
[93]
INTERACTION WITH PPARA.
PubMed=24043310; DOI=10.1128/mcb.00087-13;
Laurent G., de Boer V.C., Finley L.W., Sweeney M., Lu H., Schug T.T.,
Cen Y., Jeong S.M., Li X., Sauve A.A., Haigis M.C.;
"SIRT4 represses peroxisome proliferator-activated receptor alpha activity
to suppress hepatic fat oxidation.";
Mol. Cell. Biol. 33:4552-4561(2013).
[94]
FUNCTION.
PubMed=24415752; DOI=10.1074/jbc.m113.512913;
Nin V., Chini C.C., Escande C., Capellini V., Chini E.N.;
"Deleted in breast cancer 1 (DBC1) protein regulates hepatic
gluconeogenesis.";
J. Biol. Chem. 289:5518-5527(2014).
[95]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-14 AND SER-27, AND
IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
TISSUE=Liver;
PubMed=24275569; DOI=10.1016/j.jprot.2013.11.014;
Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D., Wang L.,
Ye M., Zou H.;
"An enzyme assisted RP-RPLC approach for in-depth analysis of human liver
phosphoproteome.";
J. Proteomics 96:253-262(2014).
[96]
INTERACTION WITH CCAR2 AND TP53, MUTAGENESIS OF 256-ILE-ILE-257 AND
HIS-363, AND ACTIVE SITE.
PubMed=25406032; DOI=10.1038/ncomms6483;
Park J.H., Lee S.W., Yang S.W., Yoo H.M., Park J.M., Seong M.W., Ka S.H.,
Oh K.H., Jeon Y.J., Chung C.H.;
"Modification of DBC1 by SUMO2/3 is crucial for p53-mediated apoptosis in
response to DNA damage.";
Nat. Commun. 5:5483-5483(2014).
[97]
INTERACTION WITH CHEK2.
PubMed=25361978; DOI=10.1093/nar/gku1065;
Magni M., Ruscica V., Buscemi G., Kim J.E., Nachimuthu B.T., Fontanella E.,
Delia D., Zannini L.;
"Chk2 and REGgamma-dependent DBC1 regulation in DNA damage induced
apoptosis.";
Nucleic Acids Res. 42:13150-13160(2014).
[98]
FUNCTION IN DEACETYLATION OF CTNB1.
PubMed=24824780; DOI=10.1002/ijc.28967;
Pangon L., Mladenova D., Watkins L., Van Kralingen C., Currey N.,
Al-Sohaily S., Lecine P., Borg J.P., Kohonen-Corish M.R.;
"MCC inhibits beta-catenin transcriptional activity by sequestering DBC1 in
the cytoplasm.";
Int. J. Cancer 136:55-64(2015).
[99]
INTERACTION WITH NR1H3.
PubMed=25661920; DOI=10.1016/j.jsbmb.2015.02.001;
Sakurabashi A., Wada-Hiraike O., Hirano M., Fu H., Isono W., Fukuda T.,
Morita Y., Tanikawa M., Miyamoto Y., Oda K., Kawana K., Osuga Y., Fujii T.;
"CCAR2 negatively regulates nuclear receptor LXRalpha by competing with
SIRT1 deacetylase.";
J. Steroid Biochem. Mol. Biol. 149:80-88(2015).
[100]
INTERACTION WITH PACS2.
PubMed=29656858; DOI=10.1016/j.ajhg.2018.03.005;
DDD Study;
C4RCD Research Group;
Olson H.E., Jean-Marcais N., Yang E., Heron D., Tatton-Brown K.,
van der Zwaag P.A., Bijlsma E.K., Krock B.L., Backer E., Kamsteeg E.J.,
Sinnema M., Reijnders M.R.F., Bearden D., Begtrup A., Telegrafi A.,
Lunsing R.J., Burglen L., Lesca G., Cho M.T., Smith L.A., Sheidley B.R.,
Moufawad El Achkar C., Pearl P.L., Poduri A., Skraban C.M., Tarpinian J.,
Nesbitt A.I., Fransen van de Putte D.E., Ruivenkamp C.A.L., Rump P.,
Chatron N., Sabatier I., De Bellescize J., Guibaud L., Sweetser D.A.,
Waxler J.L., Wierenga K.J., Donadieu J., Narayanan V., Ramsey K.M.,
Nava C., Riviere J.B., Vitobello A., Tran Mau-Them F., Philippe C.,
Bruel A.L., Duffourd Y., Thomas L., Lelieveld S.H., Schuurs-Hoeijmakers J.,
Brunner H.G., Keren B., Thevenon J., Faivre L., Thomas G.,
Thauvin-Robinet C.;
"A recurrent de novo PACS2 heterozygous missense variant causes neonatal-
onset developmental epileptic encephalopathy, facial dysmorphism, and
cerebellar dysgenesis.";
Am. J. Hum. Genet. 102:995-1007(2018).
[101]
FUNCTION IN DEACETYLATION OF PCK1.
PubMed=30193097; DOI=10.1016/j.molcel.2018.07.031;
Latorre-Muro P., Baeza J., Armstrong E.A., Hurtado-Guerrero R., Corzana F.,
Wu L.E., Sinclair D.A., Lopez-Buesa P., Carrodeguas J.A., Denu J.M.;
"Dynamic acetylation of phosphoenolpyruvate carboxykinase toggles enzyme
activity between gluconeogenic and anaplerotic reactions.";
Mol. Cell 71:718-732(2018).
[102]
FUNCTION.
PubMed=31722219; DOI=10.1016/j.celrep.2019.10.028;
Wang T., Zou Y., Huang N., Teng J., Chen J.;
"CCDC84 Acetylation Oscillation Regulates Centrosome Duplication by
Modulating HsSAS-6 Degradation.";
Cell Rep. 29:2078-2091.e5(2019).
-!- FUNCTION: NAD-dependent protein deacetylase that links transcriptional
regulation directly to intracellular energetics and participates in the
coordination of several separated cellular functions such as cell
cycle, response to DNA damage, metabolism, apoptosis and autophagy
(PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222,
PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825,
PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051,
PubMed:16998810, PubMed:17283066, PubMed:17290224, PubMed:17334224,
PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707,
PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677,
PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166,
PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304,
PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729,
PubMed:20955178, PubMed:21149730, PubMed:21245319, PubMed:21471201,
PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047,
PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893,
PubMed:21947282, PubMed:22274616, PubMed:24415752, PubMed:24824780).
Can modulate chromatin function through deacetylation of histones and
can promote alterations in the methylation of histones and DNA, leading
to transcriptional repression (PubMed:15469825). Deacetylates a broad
range of transcription factors and coregulators, thereby regulating
target gene expression positively and negatively (PubMed:15152190,
PubMed:14980222, PubMed:14976264). Serves as a sensor of the cytosolic
ratio of NAD(+)/NADH which is altered by glucose deprivation and
metabolic changes associated with caloric restriction
(PubMed:15205477). Is essential in skeletal muscle cell differentiation
and in response to low nutrients mediates the inhibitory effect on
skeletal myoblast differentiation which also involves 5'-AMP-activated
protein kinase (AMPK) and nicotinamide phosphoribosyltransferase
(NAMPT) (By similarity). Component of the eNoSC (energy-dependent
nucleolar silencing) complex, a complex that mediates silencing of rDNA
in response to intracellular energy status and acts by recruiting
histone-modifying enzymes (PubMed:18485871). The eNoSC complex is able
to sense the energy status of cell: upon glucose starvation, elevation
of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3
deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by
SUV39H1 and the formation of silent chromatin in the rDNA locus
(PubMed:18485871, PubMed:21504832). Deacetylates 'Lys-266' of SUV39H1,
leading to its activation (PubMed:21504832). Inhibits skeletal muscle
differentiation by deacetylating PCAF and MYOD1 (PubMed:19188449).
Deacetylates H2A and 'Lys-26' of H1-4 (PubMed:15469825). Deacetylates
'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression
function through chromatin remodeling: Recruited to LRH1 target gene
promoters by NR0B2/SHP thereby stimulating histone H3 and H4
deacetylation leading to transcriptional repression (PubMed:20375098).
Proposed to contribute to genomic integrity via positive regulation of
telomere length; however, reports on localization to pericentromeric
heterochromatin are conflicting (By similarity). Proposed to play a
role in constitutive heterochromatin (CH) formation and/or maintenance
through regulation of the available pool of nuclear SUV39H1
(PubMed:15469825, PubMed:18004385). Upon oxidative/metabolic stress
decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination
by MDM2 (PubMed:18004385, PubMed:21504832). This increase in SUV39H1
levels enhances SUV39H1 turnover in CH, which in turn seems to
accelerate renewal of the heterochromatin which correlates with greater
genomic integrity during stress response (PubMed:18004385,
PubMed:21504832). Deacetylates 'Lys-382' of p53/TP53 and impairs its
ability to induce transcription-dependent proapoptotic program and
modulate cell senescence (PubMed:11672523, PubMed:12006491).
Deacetylates TAF1B and thereby represses rDNA transcription by the RNA
polymerase I (By similarity). Deacetylates MYC, promotes the
association of MYC with MAX and decreases MYC stability leading to
compromised transformational capability (PubMed:19364925,
PubMed:21807113). Deacetylates FOXO3 in response to oxidative stress
thereby increasing its ability to induce cell cycle arrest and
resistance to oxidative stress but inhibiting FOXO3-mediated induction
of apoptosis transcriptional activity; also leading to FOXO3
ubiquitination and protesomal degradation (PubMed:14980222,
PubMed:14976264, PubMed:21841822). Appears to have a similar effect on
MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis
(PubMed:15126506). Deacetylates DNMT1; thereby impairs DNMT1
methyltransferase-independent transcription repressor activity,
modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene
silencing (PubMed:21947282). Deacetylates RELA/NF-kappa-B p65 thereby
inhibiting its transactivating potential and augments apoptosis in
response to TNF-alpha (PubMed:15152190). Deacetylates HIF1A,
KAT5/TIP60, RB1 and HIC1 (PubMed:17620057, PubMed:17283066,
PubMed:20100829, PubMed:20620956). Deacetylates FOXO1 resulting in its
nuclear retention and enhancement of its transcriptional activity
leading to increased gluconeogenesis in liver (PubMed:15692560).
Inhibits E2F1 transcriptional activity and apoptotic function, possibly
by deacetylation (PubMed:16892051). Involved in HES1- and HEY2-mediated
transcriptional repression (PubMed:12535671). In cooperation with MYCN
seems to be involved in transcriptional repression of DUSP6/MAPK3
leading to MYCN stabilization by phosphorylation at 'Ser-62'
(PubMed:21698133). Deacetylates MEF2D (PubMed:16166628). Required for
antagonist-mediated transcription suppression of AR-dependent genes
which may be linked to local deacetylation of histone H3
(PubMed:17505061). Represses HNF1A-mediated transcription (By
similarity). Required for the repression of ESRRG by CREBZF
(PubMed:19690166). Deacetylates NR1H3 and NR1H2 and deacetylation of
NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR
target genes, promotes NR1H3 proteosomal degradation and results in
cholesterol efflux; a promoter clearing mechanism after reach round of
transcription is proposed (PubMed:17936707). Involved in lipid
metabolism (PubMed:20817729). Implicated in regulation of adipogenesis
and fat mobilization in white adipocytes by repression of PPARG which
probably involves association with NCOR1 and SMRT/NCOR2 (By
similarity). Deacetylates p300/EP300 and PRMT1 (By similarity).
Deacetylates ACSS2 leading to its activation, and HMGCS1 deacetylation
(PubMed:21701047). Involved in liver and muscle metabolism. Through
deacetylation and activation of PPARGC1A is required to activate fatty
acid oxidation in skeletal muscle under low-glucose conditions and is
involved in glucose homeostasis. Involved in regulation of PPARA and
fatty acid beta-oxidation in liver. Involved in positive regulation of
insulin secretion in pancreatic beta cells in response to glucose; the
function seems to imply transcriptional repression of UCP2. Proposed to
deacetylate IRS2 thereby facilitating its insulin-induced tyrosine
phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby
decreasing its stability and transactivation in lipogenic gene
expression (PubMed:17290224, PubMed:20817729). Involved in DNA damage
response by repressing genes which are involved in DNA repair, such as
XPC and TP73, deacetylating XRCC6/Ku70, and facilitating recruitment of
additional factors to sites of damaged DNA, such as SIRT1-deacetylated
NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA
interacts with RPA2 (PubMed:15205477, PubMed:17334224, PubMed:16998810,
PubMed:17612497, PubMed:20670893, PubMed:21149730). Also involved in
DNA repair of DNA double-strand breaks by homologous recombination and
specifically single-strand annealing independently of XRCC6/Ku70 and
NBN (PubMed:15205477, PubMed:17334224, PubMed:20097625).
Transcriptional suppression of XPC probably involves an E2F4:RBL2
suppressor complex and protein kinase B (AKT) signaling.
Transcriptional suppression of TP73 probably involves E2F4 and PCAF.
Deacetylates WRN thereby regulating its helicase and exonuclease
activities and regulates WRN nuclear translocation in response to DNA
damage (PubMed:18203716). Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and
stimulates cellular AP endonuclease activity by promoting the
association of APEX1 to XRCC1 (PubMed:19934257). Increases p53/TP53-
mediated transcription-independent apoptosis by blocking nuclear
translocation of cytoplasmic p53/TP53 and probably redirecting it to
mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542'
causing it to sequester BAX away from mitochondria thereby inhibiting
stress-induced apoptosis. Is involved in autophagy, presumably by
deacetylating ATG5, ATG7 and MAP1LC3B/ATG8 (PubMed:18296641).
Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to
PIP3 and promotes their activation (PubMed:21775285). Proposed to play
role in regulation of STK11/LBK1-dependent AMPK signaling pathways
implicated in cellular senescence which seems to involve the regulation
of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and
thereby increase its activity, cytoplasmic localization and association
with STRAD; however, the relevance of such activity in normal cells is
unclear (PubMed:18687677, PubMed:20203304). In endothelial cells is
shown to inhibit STK11/LBK1 activity and to promote its degradation.
Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its
degradation. Deacetylates CIITA and augments its MHC class II
transactivation and contributes to its stability (PubMed:21890893).
Deacetylates MECOM/EVI1 (PubMed:21555002). Deacetylates PML at 'Lys-
487' and this deacetylation promotes PML control of PER2 nuclear
localization (PubMed:22274616). During the neurogenic transition,
represses selective NOTCH1-target genes through histone deacetylation
in a BCL6-dependent manner and leading to neuronal differentiation.
Regulates the circadian expression of several core clock genes,
including ARNTL/BMAL1, RORC, PER2 and CRY1 and plays a critical role in
maintaining a controlled rhythmicity in histone acetylation, thereby
contributing to circadian chromatin remodeling (PubMed:18662546).
Deacetylates ARNTL/BMAL1 and histones at the circadian gene promoters
in order to facilitate repression by inhibitory components of the
circadian oscillator (By similarity). Deacetylates PER2, facilitating
its ubiquitination and degradation by the proteosome (By similarity).
Protects cardiomyocytes against palmitate-induced apoptosis (By
similarity). Deacetylates XBP1 isoform 2; deacetylation decreases
protein stability of XBP1 isoform 2 and inhibits its transcriptional
activity (PubMed:20955178). Deacetylates PCK1 and directs its activity
toward phosphoenolpyruvate production promoting gluconeogenesis
(PubMed:30193097). Involved in the CCAR2-mediated regulation of PCK1
and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at 'Lys-49'
(PubMed:24824780). In POMC (pro-opiomelanocortin) neurons, required for
leptin-induced activation of PI3K signaling (By similarity). In
addition to protein deacetylase activity, also acts as protein-lysine
deacylase: acts as a protein depropionylase by mediating
depropionylation of Osterix (SP7) (By similarity). Deacetylates SOX9;
promoting SOX9 nuclear localization and transactivation activity (By
similarity). Involved in the regulation of centrosome duplication.
Deacetylates CENATAC in G1 phase, allowing for SASS6 accumulation on
the centrosome and subsequent procentriole assembly (PubMed:31722219).
{ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:11672523,
ECO:0000269|PubMed:12006491, ECO:0000269|PubMed:12535671,
ECO:0000269|PubMed:14976264, ECO:0000269|PubMed:14980222,
ECO:0000269|PubMed:15126506, ECO:0000269|PubMed:15152190,
ECO:0000269|PubMed:15205477, ECO:0000269|PubMed:15469825,
ECO:0000269|PubMed:15692560, ECO:0000269|PubMed:16079181,
ECO:0000269|PubMed:16166628, ECO:0000269|PubMed:16892051,
ECO:0000269|PubMed:16998810, ECO:0000269|PubMed:17283066,
ECO:0000269|PubMed:17290224, ECO:0000269|PubMed:17334224,
ECO:0000269|PubMed:17505061, ECO:0000269|PubMed:17612497,
ECO:0000269|PubMed:17620057, ECO:0000269|PubMed:17936707,
ECO:0000269|PubMed:18203716, ECO:0000269|PubMed:18296641,
ECO:0000269|PubMed:18485871, ECO:0000269|PubMed:18662546,
ECO:0000269|PubMed:18687677, ECO:0000269|PubMed:19188449,
ECO:0000269|PubMed:19220062, ECO:0000269|PubMed:19364925,
ECO:0000269|PubMed:19690166, ECO:0000269|PubMed:19934257,
ECO:0000269|PubMed:20097625, ECO:0000269|PubMed:20100829,
ECO:0000269|PubMed:20203304, ECO:0000269|PubMed:20375098,
ECO:0000269|PubMed:20620956, ECO:0000269|PubMed:20670893,
ECO:0000269|PubMed:20817729, ECO:0000269|PubMed:20955178,
ECO:0000269|PubMed:21149730, ECO:0000269|PubMed:21245319,
ECO:0000269|PubMed:21471201, ECO:0000269|PubMed:21504832,
ECO:0000269|PubMed:21555002, ECO:0000269|PubMed:21698133,
ECO:0000269|PubMed:21701047, ECO:0000269|PubMed:21775285,
ECO:0000269|PubMed:21807113, ECO:0000269|PubMed:21841822,
ECO:0000269|PubMed:21890893, ECO:0000269|PubMed:21947282,
ECO:0000269|PubMed:22274616, ECO:0000269|PubMed:24415752,
ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:30193097,
ECO:0000269|PubMed:31722219}.
-!- FUNCTION: [Isoform 2]: Deacetylates 'Lys-382' of p53/TP53, however with
lower activity than isoform 1. In combination, the two isoforms exert
an additive effect. Isoform 2 regulates p53/TP53 expression and
cellular stress response and is in turn repressed by p53/TP53
presenting a SIRT1 isoform-dependent auto-regulatory loop.
{ECO:0000269|PubMed:20975832}.
-!- FUNCTION: (Microbial infection) In case of HIV-1 infection, interacts
with and deacetylates the viral Tat protein. The viral Tat protein
inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65,
thereby potentiates its transcriptional activity and SIRT1 is proposed
to contribute to T-cell hyperactivation during infection.
{ECO:0000269|PubMed:18329615}.
-!- FUNCTION: [SirtT1 75 kDa fragment]: Catalytically inactive 75SirT1 may
be involved in regulation of apoptosis. May be involved in protecting
chondrocytes from apoptotic death by associating with cytochrome C and
interfering with apoptosome assembly. {ECO:0000269|PubMed:21987377}.
-!- CATALYTIC ACTIVITY:
Reaction=H2O + N(6)-acetyl-L-lysyl-[protein] + NAD(+) = 2''-O-acetyl-
ADP-D-ribose + L-lysyl-[protein] + nicotinamide;
Xref=Rhea:RHEA:43636, Rhea:RHEA-COMP:9752, Rhea:RHEA-COMP:10731,
ChEBI:CHEBI:15377, ChEBI:CHEBI:17154, ChEBI:CHEBI:29969,
ChEBI:CHEBI:57540, ChEBI:CHEBI:61930, ChEBI:CHEBI:83767;
EC=2.3.1.286; Evidence={ECO:0000255|PROSITE-ProRule:PRU00236,
ECO:0000269|PubMed:12006491};
-!- CATALYTIC ACTIVITY:
Reaction=H2O + N(6)-propanoyl-L-lysyl-[protein] + NAD(+) = 3''-O-
propanoyl-ADP-D-ribose + L-lysyl-[protein] + nicotinamide;
Xref=Rhea:RHEA:23500, Rhea:RHEA-COMP:9752, Rhea:RHEA-COMP:13758,
ChEBI:CHEBI:15377, ChEBI:CHEBI:17154, ChEBI:CHEBI:29969,
ChEBI:CHEBI:57540, ChEBI:CHEBI:138019, ChEBI:CHEBI:145015;
Evidence={ECO:0000250|UniProtKB:Q923E4};
PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:23501;
Evidence={ECO:0000250|UniProtKB:Q923E4};
-!- COFACTOR:
Name=Zn(2+); Xref=ChEBI:CHEBI:29105;
Evidence={ECO:0000250|UniProtKB:Q8IXJ6};
Note=Binds 1 zinc ion per subunit. {ECO:0000250|UniProtKB:Q8IXJ6};
-!- ACTIVITY REGULATION: Inhibited by nicotinamide. Activated by
resveratrol (3,5,4'-trihydroxy-trans-stilbene), butein (3,4,2',4'-
tetrahydroxychalcone), piceatannol (3,5,3',4'-tetrahydroxy-trans-
stilbene), Isoliquiritigenin (4,2',4'-trihydroxychalcone), fisetin
(3,7,3',4'-tetrahydroxyflavone) and quercetin (3,5,7,3',4'-
pentahydroxyflavone). MAPK8/JNK1 and RPS19BP1/AROS act as positive
regulators of deacetylation activity. Negatively regulated by CCAR2.
{ECO:0000269|PubMed:12297502, ECO:0000269|PubMed:12939617,
ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18235502}.
-!- SUBUNIT: Interacts with XBP1 isoform 2 (PubMed:20955178). Found in a
complex with PCAF and MYOD1. Interacts with FOXO1; the interaction
deacetylates FOXO1, resulting in its nuclear retention and promotion of
its transcriptional activity Component of the eNoSC complex, composed
of SIRT1, SUV39H1 and RRP8. Interacts with HES1, HEY2 and PML.
Interacts with RPS19BP1/AROS. Interacts with CCAR2 (via N-terminus);
the interaction disrupts the interaction between SIRT1 and p53/TP53.
Interacts with SETD7; the interaction induces the dissociation of SIRT1
from p53/TP53 and increases p53/TP53 activity. Interacts with MYCN,
NR1I2, CREBZF, TSC2, TLE1, FOS, JUN, NR0B2, PPARG, NCOR, IRS1, IRS2 and
NMNAT1. Interacts with HNF1A; the interaction occurs under nutrient
restriction. Interacts with SUZ12; the interaction mediates the
association with the PRC4 histone methylation complex which is specific
as an association with PCR2 and PCR3 complex variants is not found.
Interacts with BCL6; leads to a epigenetic repression of specific
target genes. Interacts with CLOCK, ARNTL/BMAL1 and PER2 (By
similarity). Interacts with PPARA; the interaction seems to be
modulated by NAD(+) levels (PubMed:24043310). Interacts with NR1H3 and
this interaction is inhibited in the presence of CCAR2. Interacts with
CHEK2. Interacts with p53/TP53. Exhibits a preferential interaction
with sumoylated CCAR2 over its unmodified form. Interacts with PACS2
(PubMed:29656858). Interacts with SIRT7 (By similarity).
{ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:12006491,
ECO:0000269|PubMed:12535671, ECO:0000269|PubMed:15684044,
ECO:0000269|PubMed:15692560, ECO:0000269|PubMed:16166628,
ECO:0000269|PubMed:16892051, ECO:0000269|PubMed:17680780,
ECO:0000269|PubMed:17964266, ECO:0000269|PubMed:18235501,
ECO:0000269|PubMed:18235502, ECO:0000269|PubMed:18485871,
ECO:0000269|PubMed:19356714, ECO:0000269|PubMed:19690166,
ECO:0000269|PubMed:20042607, ECO:0000269|PubMed:20169165,
ECO:0000269|PubMed:20375098, ECO:0000269|PubMed:20955178,
ECO:0000269|PubMed:20975832, ECO:0000269|PubMed:21245319,
ECO:0000269|PubMed:21698133, ECO:0000269|PubMed:21909281,
ECO:0000269|PubMed:21933665, ECO:0000269|PubMed:23352644,
ECO:0000269|PubMed:24043310, ECO:0000269|PubMed:25361978,
ECO:0000269|PubMed:25406032, ECO:0000269|PubMed:25661920,
ECO:0000269|PubMed:29656858}.
-!- SUBUNIT: (Microbial infection) Interacts with HIV-1 Tat.
{ECO:0000269|PubMed:15719057, ECO:0000269|PubMed:18329615}.
-!- INTERACTION:
Q96EB6; Q13085: ACACA; NbExp=3; IntAct=EBI-1802965, EBI-717681;
Q96EB6; P31749: AKT1; NbExp=5; IntAct=EBI-1802965, EBI-296087;
Q96EB6; P27695: APEX1; NbExp=6; IntAct=EBI-1802965, EBI-1048805;
Q96EB6; O95352: ATG7; NbExp=3; IntAct=EBI-1802965, EBI-987834;
Q96EB6; Q8N163: CCAR2; NbExp=16; IntAct=EBI-1802965, EBI-355410;
Q96EB6; P33076: CIITA; NbExp=4; IntAct=EBI-1802965, EBI-1538819;
Q96EB6; Q9NS37: CREBZF; NbExp=3; IntAct=EBI-1802965, EBI-632965;
Q96EB6; Q9Y5P2: CSAG3; NbExp=8; IntAct=EBI-1802965, EBI-26354757;
Q96EB6; P68400: CSNK2A1; NbExp=5; IntAct=EBI-1802965, EBI-347804;
Q96EB6; P67870: CSNK2B; NbExp=5; IntAct=EBI-1802965, EBI-348169;
Q96EB6; P26358: DNMT1; NbExp=11; IntAct=EBI-1802965, EBI-719459;
Q96EB6; O14640: DVL1; NbExp=2; IntAct=EBI-1802965, EBI-723489;
Q96EB6; Q92997: DVL3; NbExp=3; IntAct=EBI-1802965, EBI-739789;
Q96EB6; Q01094: E2F1; NbExp=3; IntAct=EBI-1802965, EBI-448924;
Q96EB6; Q09472: EP300; NbExp=4; IntAct=EBI-1802965, EBI-447295;
Q96EB6; Q14192: FHL2; NbExp=2; IntAct=EBI-1802965, EBI-701903;
Q96EB6; Q12778: FOXO1; NbExp=4; IntAct=EBI-1802965, EBI-1108782;
Q96EB6; O43524: FOXO3; NbExp=5; IntAct=EBI-1802965, EBI-1644164;
Q96EB6; P98177: FOXO4; NbExp=3; IntAct=EBI-1802965, EBI-4481939;
Q96EB6; P51610: HCFC1; NbExp=2; IntAct=EBI-1802965, EBI-396176;
Q96EB6; Q14469: HES1; NbExp=4; IntAct=EBI-1802965, EBI-2832522;
Q96EB6; Q9UBP5: HEY2; NbExp=3; IntAct=EBI-1802965, EBI-750630;
Q96EB6; Q9Y4H2: IRS2; NbExp=2; IntAct=EBI-1802965, EBI-1049582;
Q96EB6; Q92831: KAT2B; NbExp=3; IntAct=EBI-1802965, EBI-477430;
Q96EB6; Q03164: KMT2A; NbExp=5; IntAct=EBI-1802965, EBI-591370;
Q96EB6; Q9GZQ8: MAP1LC3B; NbExp=2; IntAct=EBI-1802965, EBI-373144;
Q96EB6; Q03112: MECOM; NbExp=2; IntAct=EBI-1802965, EBI-1384862;
Q96EB6; P42345: MTOR; NbExp=2; IntAct=EBI-1802965, EBI-359260;
Q96EB6; P01106: MYC; NbExp=4; IntAct=EBI-1802965, EBI-447544;
Q96EB6; P04198: MYCN; NbExp=3; IntAct=EBI-1802965, EBI-878369;
Q96EB6; O60934: NBN; NbExp=5; IntAct=EBI-1802965, EBI-494844;
Q96EB6; Q02577: NHLH2; NbExp=2; IntAct=EBI-1802965, EBI-5378683;
Q96EB6; Q9HAN9: NMNAT1; NbExp=3; IntAct=EBI-1802965, EBI-3917542;
Q96EB6; Q15466: NR0B2; NbExp=6; IntAct=EBI-1802965, EBI-3910729;
Q96EB6; P27986: PIK3R1; NbExp=3; IntAct=EBI-1802965, EBI-79464;
Q96EB6; P37231: PPARG; NbExp=5; IntAct=EBI-1802965, EBI-781384;
Q96EB6; P10276: RARA; NbExp=3; IntAct=EBI-1802965, EBI-413374;
Q96EB6; Q04206: RELA; NbExp=5; IntAct=EBI-1802965, EBI-73886;
Q96EB6; Q86WX3: RPS19BP1; NbExp=11; IntAct=EBI-1802965, EBI-4479407;
Q96EB6; Q8N122: RPTOR; NbExp=3; IntAct=EBI-1802965, EBI-1567928;
Q96EB6; O43159: RRP8; NbExp=3; IntAct=EBI-1802965, EBI-2008793;
Q96EB6; Q8WTS6: SETD7; NbExp=11; IntAct=EBI-1802965, EBI-1268586;
Q96EB6; Q13573: SNW1; NbExp=7; IntAct=EBI-1802965, EBI-632715;
Q96EB6; P36956-3: SREBF1; NbExp=2; IntAct=EBI-1802965, EBI-948338;
Q96EB6; O43463: SUV39H1; NbExp=5; IntAct=EBI-1802965, EBI-349968;
Q96EB6; Q04724: TLE1; NbExp=4; IntAct=EBI-1802965, EBI-711424;
Q96EB6; P04637: TP53; NbExp=18; IntAct=EBI-1802965, EBI-366083;
Q96EB6; O15350: TP73; NbExp=4; IntAct=EBI-1802965, EBI-389606;
Q96EB6; P49815: TSC2; NbExp=2; IntAct=EBI-1802965, EBI-396587;
Q96EB6; Q14191: WRN; NbExp=9; IntAct=EBI-1802965, EBI-368417;
Q96EB6; P23025: XPA; NbExp=8; IntAct=EBI-1802965, EBI-295222;
Q96EB6; P12956: XRCC6; NbExp=7; IntAct=EBI-1802965, EBI-353208;
Q96EB6; Q9R1E0: Foxo1; Xeno; NbExp=2; IntAct=EBI-1802965, EBI-1371343;
Q96EB6; Q60974: Ncor1; Xeno; NbExp=2; IntAct=EBI-1802965, EBI-349004;
Q96EB6; Q60644: Nr1h2; Xeno; NbExp=2; IntAct=EBI-1802965, EBI-5276809;
Q96EB6; Q9Z0Y9: Nr1h3; Xeno; NbExp=2; IntAct=EBI-1802965, EBI-5276764;
Q96EB6; P37238: Pparg; Xeno; NbExp=3; IntAct=EBI-1802965, EBI-5260705;
Q96EB6; P37238-1: Pparg; Xeno; NbExp=2; IntAct=EBI-1802965, EBI-6267861;
Q96EB6; P04608: tat; Xeno; NbExp=3; IntAct=EBI-1802965, EBI-6164389;
-!- SUBCELLULAR LOCATION: Nucleus, PML body {ECO:0000269|PubMed:12006491}.
Cytoplasm {ECO:0000269|PubMed:20027304}. Nucleus
{ECO:0000269|PubMed:11672523, ECO:0000269|PubMed:15469825,
ECO:0000269|PubMed:16079181, ECO:0000269|PubMed:19934257,
ECO:0000269|PubMed:20027304, ECO:0000269|PubMed:20167603,
ECO:0000269|PubMed:20955178}. Note=Recruited to the nuclear bodies via
its interaction with PML (PubMed:12006491). Colocalized with APEX1 in
the nucleus (PubMed:19934257). May be found in nucleolus, nuclear
euchromatin, heterochromatin and inner membrane (PubMed:15469825).
Shuttles between nucleus and cytoplasm (By similarity). Colocalizes in
the nucleus with XBP1 isoform 2 (PubMed:20955178).
{ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:12006491,
ECO:0000269|PubMed:15469825, ECO:0000269|PubMed:19934257,
ECO:0000269|PubMed:20955178}.
-!- SUBCELLULAR LOCATION: [SirtT1 75 kDa fragment]: Cytoplasm
{ECO:0000269|PubMed:21987377}. Mitochondrion
{ECO:0000269|PubMed:21987377}.
-!- ALTERNATIVE PRODUCTS:
Event=Alternative splicing; Named isoforms=2;
Name=1;
IsoId=Q96EB6-1; Sequence=Displayed;
Name=2; Synonyms=delta-exon8;
IsoId=Q96EB6-2; Sequence=VSP_042189;
-!- TISSUE SPECIFICITY: Widely expressed. {ECO:0000269|PubMed:10381378}.
-!- INDUCTION: Up-regulated by methyl methanesulfonate (MMS). In H293T
cells by presence of rat calorie restriction (CR) serum.
{ECO:0000269|PubMed:15205477, ECO:0000269|PubMed:19934257}.
-!- PTM: Methylated on multiple lysine residues; methylation is enhanced
after DNA damage and is dispensable for deacetylase activity toward
p53/TP53. {ECO:0000269|PubMed:21245319}.
-!- PTM: Phosphorylated. Phosphorylated by STK4/MST1, resulting in
inhibition of SIRT1-mediated p53/TP53 deacetylation. Phosphorylation by
MAPK8/JNK1 at Ser-27, Ser-47, and Thr-530 leads to increased nuclear
localization and enzymatic activity. Phosphorylation at Thr-530 by
DYRK1A and DYRK3 activates deacetylase activity and promotes cell
survival. Phosphorylation by mammalian target of rapamycin complex 1
(mTORC1) at Ser-47 inhibits deacetylation activity. Phosphorylated by
CaMK2, leading to increased p53/TP53 and NF-kappa-B p65/RELA
deacetylation activity (By similarity). Phosphorylation at Ser-27
implicating MAPK9 is linked to protein stability. There is some
ambiguity for some phosphosites: Ser-159/Ser-162 and Thr-544/Ser-545.
{ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:18838864,
ECO:0000269|PubMed:19107194, ECO:0000269|PubMed:19236849,
ECO:0000269|PubMed:20027304, ECO:0000269|PubMed:21212262,
ECO:0000269|PubMed:21471201}.
-!- PTM: Proteolytically cleaved by cathepsin B upon TNF-alpha treatment to
yield catalytic inactive but stable SirtT1 75 kDa fragment (75SirT1).
{ECO:0000269|PubMed:21987377}.
-!- PTM: S-nitrosylated by GAPDH, leading to inhibit the NAD-dependent
protein deacetylase activity. {ECO:0000250|UniProtKB:Q923E4}.
-!- PTM: Acetylated at various Lys residues. Deacetylated via an
autocatalytic mechanism. Autodeacetylation at Lys-238 promotes its
protein deacetylase activity. {ECO:0000250|UniProtKB:Q923E4}.
-!- MISCELLANEOUS: Red wine, which contains resveratrol, may participate in
activation of sirtuin proteins, and may therefore participate in an
extended lifespan as it has been observed in yeast.
-!- MISCELLANEOUS: Calf histone H1 is used as substrate in the in vitro
deacetylation assay (PubMed:15469825). As, in vivo, interaction occurs
between SIRT1 with H1-4, deacetylation has been validated only for H1-
4. {ECO:0000305|PubMed:15469825}.
-!- MISCELLANEOUS: The reported ADP-ribosyltransferase activity of sirtuins
is likely some inefficient side reaction of the deacetylase activity
and may not be physiologically relevant. {ECO:0000305|PubMed:19220062}.
-!- SIMILARITY: Belongs to the sirtuin family. Class I subfamily.
{ECO:0000305}.
-!- SEQUENCE CAUTION:
Sequence=AAH12499.1; Type=Erroneous initiation; Note=Truncated N-terminus.; Evidence={ECO:0000305};
-!- WEB RESOURCE: Name=NIEHS-SNPs;
URL="http://egp.gs.washington.edu/data/sirt1/";
-!- WEB RESOURCE: Name=Atlas of Genetics and Cytogenetics in Oncology and
Haematology;
URL="http://atlasgeneticsoncology.org/Genes/SIRT1ID44006ch10q21.html";
---------------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
Distributed under the Creative Commons Attribution (CC BY 4.0) License
---------------------------------------------------------------------------
EMBL; AF083106; AAD40849.2; -; mRNA.
EMBL; AF235040; AAG38486.1; -; mRNA.
EMBL; DQ278604; ABB72675.1; -; Genomic_DNA.
EMBL; AL133551; -; NOT_ANNOTATED_CDS; Genomic_DNA.
EMBL; BC012499; AAH12499.1; ALT_INIT; mRNA.
CCDS; CCDS7273.1; -. [Q96EB6-1]
RefSeq; NP_001135970.1; NM_001142498.1.
RefSeq; NP_001300978.1; NM_001314049.1.
RefSeq; NP_036370.2; NM_012238.4. [Q96EB6-1]
PDB; 4I5I; X-ray; 2.50 A; A/B=241-516.
PDB; 4IF6; X-ray; 2.25 A; A=234-510, B=641-665.
PDB; 4IG9; X-ray; 2.64 A; A/C/E/G=234-510, B/D/F/H=641-665.
PDB; 4KXQ; X-ray; 1.85 A; A=234-510, B=641-663.
PDB; 4ZZH; X-ray; 3.10 A; A=183-505.
PDB; 4ZZI; X-ray; 2.73 A; A=183-505.
PDB; 4ZZJ; X-ray; 2.74 A; A=183-505.
PDB; 5BTR; X-ray; 3.20 A; A/B/C=143-665.
PDBsum; 4I5I; -.
PDBsum; 4IF6; -.
PDBsum; 4IG9; -.
PDBsum; 4KXQ; -.
PDBsum; 4ZZH; -.
PDBsum; 4ZZI; -.
PDBsum; 4ZZJ; -.
PDBsum; 5BTR; -.
SMR; Q96EB6; -.
BioGRID; 116983; 291.
ComplexPortal; CPX-467; eNoSc complex.
CORUM; Q96EB6; -.
DIP; DIP-29757N; -.
IntAct; Q96EB6; 176.
MINT; Q96EB6; -.
STRING; 9606.ENSP00000212015; -.
BindingDB; Q96EB6; -.
ChEMBL; CHEMBL4506; -.
DrugBank; DB15493; Cambinol.
DrugBank; DB02709; Resveratrol.
DrugBank; DB13978; Selisistat.
DrugCentral; Q96EB6; -.
GuidetoPHARMACOLOGY; 2707; -.
iPTMnet; Q96EB6; -.
MetOSite; Q96EB6; -.
PhosphoSitePlus; Q96EB6; -.
BioMuta; SIRT1; -.
DMDM; 38258633; -.
EPD; Q96EB6; -.
jPOST; Q96EB6; -.
MassIVE; Q96EB6; -.
MaxQB; Q96EB6; -.
PaxDb; Q96EB6; -.
PeptideAtlas; Q96EB6; -.
PRIDE; Q96EB6; -.
ProteomicsDB; 76393; -. [Q96EB6-1]
ProteomicsDB; 76394; -. [Q96EB6-2]
Antibodypedia; 1637; 1096 antibodies.
Ensembl; ENST00000212015; ENSP00000212015; ENSG00000096717. [Q96EB6-1]
GeneID; 23411; -.
KEGG; hsa:23411; -.
UCSC; uc001jnd.3; human. [Q96EB6-1]
CTD; 23411; -.
DisGeNET; 23411; -.
GeneCards; SIRT1; -.
HGNC; HGNC:14929; SIRT1.
HPA; ENSG00000096717; Low tissue specificity.
MIM; 604479; gene.
neXtProt; NX_Q96EB6; -.
OpenTargets; ENSG00000096717; -.
PharmGKB; PA37935; -.
VEuPathDB; HostDB:ENSG00000096717.11; -.
eggNOG; KOG2684; Eukaryota.
GeneTree; ENSGT00940000159406; -.
HOGENOM; CLU_016587_0_0_1; -.
InParanoid; Q96EB6; -.
OMA; CVEEKSQ; -.
OrthoDB; 751525at2759; -.
PhylomeDB; Q96EB6; -.
TreeFam; TF105896; -.
PathwayCommons; Q96EB6; -.
Reactome; R-HSA-3371453; Regulation of HSF1-mediated heat shock response.
Reactome; R-HSA-400253; Circadian Clock.
Reactome; R-HSA-427359; SIRT1 negatively regulates rRNA expression.
Reactome; R-HSA-9617629; Regulation of FOXO transcriptional activity by acetylation.
SABIO-RK; Q96EB6; -.
SignaLink; Q96EB6; -.
SIGNOR; Q96EB6; -.
BioGRID-ORCS; 23411; 9 hits in 881 CRISPR screens.
GeneWiki; Sirtuin_1; -.
GenomeRNAi; 23411; -.
Pharos; Q96EB6; Tchem.
PRO; PR:Q96EB6; -.
Proteomes; UP000005640; Chromosome 10.
RNAct; Q96EB6; protein.
Bgee; ENSG00000096717; Expressed in testis and 227 other tissues.
ExpressionAtlas; Q96EB6; baseline and differential.
Genevisible; Q96EB6; HS.
GO; GO:0005677; C:chromatin silencing complex; IDA:UniProtKB.
GO; GO:0005737; C:cytoplasm; IDA:BHF-UCL.
GO; GO:0005829; C:cytosol; IDA:HPA.
GO; GO:0005739; C:mitochondrion; IDA:HPA.
GO; GO:0000790; C:nuclear chromatin; IDA:UniProtKB.
GO; GO:0005635; C:nuclear envelope; IDA:BHF-UCL.
GO; GO:0005719; C:nuclear euchromatin; IDA:UniProtKB.
GO; GO:0005720; C:nuclear heterochromatin; IDA:UniProtKB.
GO; GO:0005637; C:nuclear inner membrane; IDA:UniProtKB.
GO; GO:0005730; C:nucleolus; IDA:BHF-UCL.
GO; GO:0005654; C:nucleoplasm; IDA:UniProtKB.
GO; GO:0005634; C:nucleus; IDA:UniProtKB.
GO; GO:0016605; C:PML body; IDA:BHF-UCL.
GO; GO:0033553; C:rDNA heterochromatin; IDA:UniProtKB.
GO; GO:0043425; F:bHLH transcription factor binding; IPI:UniProtKB.
GO; GO:0019213; F:deacetylase activity; IDA:UniProtKB.
GO; GO:0019899; F:enzyme binding; IPI:UniProtKB.
GO; GO:0042393; F:histone binding; IPI:UniProtKB.
GO; GO:0004407; F:histone deacetylase activity; IDA:BHF-UCL.
GO; GO:0043398; F:HLH domain binding; IPI:BHF-UCL.
GO; GO:0042802; F:identical protein binding; IPI:BHF-UCL.
GO; GO:1990254; F:keratin filament binding; IPI:UniProtKB.
GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
GO; GO:0051019; F:mitogen-activated protein kinase binding; IPI:BHF-UCL.
GO; GO:0070403; F:NAD+ binding; IBA:GO_Central.
GO; GO:0017136; F:NAD-dependent histone deacetylase activity; IDA:BHF-UCL.
GO; GO:0046969; F:NAD-dependent histone deacetylase activity (H3-K9 specific); ISS:UniProtKB.
GO; GO:0034979; F:NAD-dependent protein deacetylase activity; IDA:UniProtKB.
GO; GO:0035257; F:nuclear hormone receptor binding; IPI:UniProtKB.
GO; GO:0002039; F:p53 binding; IPI:BHF-UCL.
GO; GO:1990841; F:promoter-specific chromatin binding; IEA:Ensembl.
GO; GO:0008022; F:protein C-terminus binding; IPI:UniProtKB.
GO; GO:0033558; F:protein deacetylase activity; IDA:UniProtKB.
GO; GO:0106231; F:protein-propionyllysine depropionylase activity; ISS:UniProtKB.
GO; GO:0000978; F:RNA polymerase II cis-regulatory region sequence-specific DNA binding; IEA:Ensembl.
GO; GO:0003713; F:transcription coactivator activity; IEA:Ensembl.
GO; GO:0003714; F:transcription corepressor activity; IDA:BHF-UCL.
GO; GO:0008134; F:transcription factor binding; IPI:UniProtKB.
GO; GO:0001525; P:angiogenesis; IDA:UniProtKB.
GO; GO:0042595; P:behavioral response to starvation; IEA:Ensembl.
GO; GO:0007569; P:cell aging; TAS:BHF-UCL.
GO; GO:0001678; P:cellular glucose homeostasis; ISS:UniProtKB.
GO; GO:0006974; P:cellular response to DNA damage stimulus; IDA:UniProtKB.
GO; GO:0070301; P:cellular response to hydrogen peroxide; IDA:BHF-UCL.
GO; GO:0071456; P:cellular response to hypoxia; IMP:UniProtKB.
GO; GO:0071479; P:cellular response to ionizing radiation; ISS:UniProtKB.
GO; GO:1990830; P:cellular response to leukemia inhibitory factor; IEA:Ensembl.
GO; GO:0009267; P:cellular response to starvation; ISS:BHF-UCL.
GO; GO:0071356; P:cellular response to tumor necrosis factor; IDA:UniProtKB.
GO; GO:0035356; P:cellular triglyceride homeostasis; ISS:UniProtKB.
GO; GO:0042632; P:cholesterol homeostasis; ISS:UniProtKB.
GO; GO:0006325; P:chromatin organization; IMP:UniProtKB.
GO; GO:0032922; P:circadian regulation of gene expression; IMP:UniProtKB.
GO; GO:0006346; P:DNA methylation-dependent heterochromatin assembly; TAS:UniProtKB.
GO; GO:0000731; P:DNA synthesis involved in DNA repair; ISS:UniProtKB.
GO; GO:0055089; P:fatty acid homeostasis; ISS:UniProtKB.
GO; GO:0031507; P:heterochromatin assembly; IDA:BHF-UCL.
GO; GO:0070829; P:heterochromatin maintenance; IMP:BHF-UCL.
GO; GO:0016575; P:histone deacetylation; IDA:UniProtKB.
GO; GO:0070932; P:histone H3 deacetylation; IDA:BHF-UCL.
GO; GO:0042771; P:intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator; IMP:UniProtKB.
GO; GO:0033210; P:leptin-mediated signaling pathway; ISS:UniProtKB.
GO; GO:0010934; P:macrophage cytokine production; ISS:UniProtKB.
GO; GO:0030225; P:macrophage differentiation; ISS:UniProtKB.
GO; GO:0007517; P:muscle organ development; IEA:UniProtKB-KW.
GO; GO:0060766; P:negative regulation of androgen receptor signaling pathway; IMP:BHF-UCL.
GO; GO:0043066; P:negative regulation of apoptotic process; IMP:UniProtKB.
GO; GO:2000480; P:negative regulation of cAMP-dependent protein kinase activity; IDA:UniProtKB.
GO; GO:0030308; P:negative regulation of cell growth; IMP:BHF-UCL.
GO; GO:2000655; P:negative regulation of cellular response to testosterone stimulus; IMP:BHF-UCL.
GO; GO:2000773; P:negative regulation of cellular senescence; IDA:UniProtKB.
GO; GO:0043518; P:negative regulation of DNA damage response, signal transduction by p53 class mediator; IDA:BHF-UCL.
GO; GO:0043433; P:negative regulation of DNA-binding transcription factor activity; IDA:BHF-UCL.
GO; GO:0045599; P:negative regulation of fat cell differentiation; ISS:BHF-UCL.
GO; GO:0010629; P:negative regulation of gene expression; IMP:AgBase.
GO; GO:0051097; P:negative regulation of helicase activity; IDA:UniProtKB.
GO; GO:0071441; P:negative regulation of histone H3-K14 acetylation; IMP:CACAO.
GO; GO:1900113; P:negative regulation of histone H3-K9 trimethylation; IEA:Ensembl.
GO; GO:2000619; P:negative regulation of histone H4-K16 acetylation; IMP:CACAO.
GO; GO:0043124; P:negative regulation of I-kappaB kinase/NF-kappaB signaling; IDA:UniProtKB.
GO; GO:1902166; P:negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator; ISS:BHF-UCL.
GO; GO:1901215; P:negative regulation of neuron death; IEA:Ensembl.
GO; GO:0032088; P:negative regulation of NF-kappaB transcription factor activity; IDA:UniProtKB.
GO; GO:1902176; P:negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway; IMP:BHF-UCL.
GO; GO:2000757; P:negative regulation of peptidyl-lysine acetylation; IDA:UniProtKB.
GO; GO:0042326; P:negative regulation of phosphorylation; IMP:UniProtKB.
GO; GO:0031393; P:negative regulation of prostaglandin biosynthetic process; ISS:UniProtKB.
GO; GO:1901984; P:negative regulation of protein acetylation; IMP:AgBase.
GO; GO:0051898; P:negative regulation of protein kinase B signaling; IMP:UniProtKB.
GO; GO:0032007; P:negative regulation of TOR signaling; IMP:UniProtKB.
GO; GO:0000122; P:negative regulation of transcription by RNA polymerase II; IDA:UniProtKB.
GO; GO:0045892; P:negative regulation of transcription, DNA-templated; IDA:UniProtKB.
GO; GO:0030512; P:negative regulation of transforming growth factor beta receptor signaling pathway; ISS:UniProtKB.
GO; GO:0001542; P:ovulation from ovarian follicle; IEA:Ensembl.
GO; GO:0018394; P:peptidyl-lysine acetylation; IMP:UniProtKB.
GO; GO:0034983; P:peptidyl-lysine deacetylation; IDA:BHF-UCL.
GO; GO:0002821; P:positive regulation of adaptive immune response; IDA:UniProtKB.
GO; GO:1904179; P:positive regulation of adipose tissue development; ISS:UniProtKB.
GO; GO:0045766; P:positive regulation of angiogenesis; IDA:BHF-UCL.
GO; GO:0043065; P:positive regulation of apoptotic process; IDA:UniProtKB.
GO; GO:0043536; P:positive regulation of blood vessel endothelial cell migration; IDA:BHF-UCL.
GO; GO:2000481; P:positive regulation of cAMP-dependent protein kinase activity; IMP:UniProtKB.
GO; GO:0008284; P:positive regulation of cell population proliferation; IMP:UniProtKB.
GO; GO:2000774; P:positive regulation of cellular senescence; IDA:UniProtKB.
GO; GO:0010875; P:positive regulation of cholesterol efflux; ISS:UniProtKB.
GO; GO:0043280; P:positive regulation of cysteine-type endopeptidase activity involved in apoptotic process; IMP:UniProtKB.
GO; GO:0045739; P:positive regulation of DNA repair; IMP:UniProtKB.
GO; GO:1902237; P:positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway; IEA:Ensembl.
GO; GO:0001938; P:positive regulation of endothelial cell proliferation; IMP:AgBase.
GO; GO:0045722; P:positive regulation of gluconeogenesis; IDA:UniProtKB.
GO; GO:0051574; P:positive regulation of histone H3-K9 methylation; IMP:UniProtKB.
GO; GO:0046628; P:positive regulation of insulin receptor signaling pathway; IDA:UniProtKB.
GO; GO:0016239; P:positive regulation of macroautophagy; IDA:UniProtKB.
GO; GO:2000111; P:positive regulation of macrophage apoptotic process; ISS:UniProtKB.
GO; GO:0045348; P:positive regulation of MHC class II biosynthetic process; IDA:UniProtKB.
GO; GO:0014068; P:positive regulation of phosphatidylinositol 3-kinase signaling; ISS:UniProtKB.
GO; GO:0001934; P:positive regulation of protein phosphorylation; ISS:UniProtKB.
GO; GO:0051152; P:positive regulation of smooth muscle cell differentiation; IEA:Ensembl.
GO; GO:0045944; P:positive regulation of transcription by RNA polymerase II; IDA:UniProtKB.
GO; GO:0043161; P:proteasome-mediated ubiquitin-dependent protein catabolic process; IMP:UniProtKB.
GO; GO:0006476; P:protein deacetylation; IDA:UniProtKB.
GO; GO:0106230; P:protein depropionylation; ISS:UniProtKB.
GO; GO:0031648; P:protein destabilization; IDA:UniProtKB.
GO; GO:0016567; P:protein ubiquitination; IDA:UniProtKB.
GO; GO:0000720; P:pyrimidine dimer repair by nucleotide-excision repair; IMP:UniProtKB.
GO; GO:0000183; P:rDNA heterochromatin assembly; IDA:UniProtKB.
GO; GO:0042981; P:regulation of apoptotic process; IMP:UniProtKB.
GO; GO:0070857; P:regulation of bile acid biosynthetic process; ISS:UniProtKB.
GO; GO:0090335; P:regulation of brown fat cell differentiation; ISS:UniProtKB.
GO; GO:0042127; P:regulation of cell population proliferation; IMP:BHF-UCL.
GO; GO:1900034; P:regulation of cellular response to heat; TAS:Reactome.
GO; GO:0010824; P:regulation of centrosome duplication; IDA:UniProtKB.
GO; GO:0032071; P:regulation of endodeoxyribonuclease activity; IMP:UniProtKB.
GO; GO:0010906; P:regulation of glucose metabolic process; ISS:UniProtKB.
GO; GO:0010883; P:regulation of lipid storage; ISS:UniProtKB.
GO; GO:0007346; P:regulation of mitotic cell cycle; IDA:UniProtKB.
GO; GO:0035358; P:regulation of peroxisome proliferator activated receptor signaling pathway; ISS:BHF-UCL.
GO; GO:0071900; P:regulation of protein serine/threonine kinase activity; IMP:AgBase.
GO; GO:0034391; P:regulation of smooth muscle cell apoptotic process; ISS:UniProtKB.
GO; GO:0042542; P:response to hydrogen peroxide; IDA:UniProtKB.
GO; GO:0032868; P:response to insulin; ISS:UniProtKB.
GO; GO:0044321; P:response to leptin; ISS:UniProtKB.
GO; GO:0006979; P:response to oxidative stress; IDA:UniProtKB.
GO; GO:0000012; P:single strand break repair; IMP:UniProtKB.
GO; GO:0007283; P:spermatogenesis; IEA:Ensembl.
GO; GO:0090400; P:stress-induced premature senescence; IMP:CACAO.
GO; GO:0007179; P:transforming growth factor beta receptor signaling pathway; IDA:BHF-UCL.
GO; GO:0006642; P:triglyceride mobilization; ISS:BHF-UCL.
GO; GO:0070914; P:UV-damage excision repair; IMP:CACAO.
GO; GO:0016032; P:viral process; IEA:UniProtKB-KW.
GO; GO:0050872; P:white fat cell differentiation; ISS:BHF-UCL.
Gene3D; 3.30.1600.10; -; 1.
InterPro; IPR029035; DHS-like_NAD/FAD-binding_dom.
InterPro; IPR003000; Sirtuin.
InterPro; IPR026591; Sirtuin_cat_small_dom_sf.
InterPro; IPR026590; Ssirtuin_cat_dom.
Pfam; PF02146; SIR2; 1.
SUPFAM; SSF52467; SSF52467; 1.
PROSITE; PS50305; SIRTUIN; 1.
1: Evidence at protein level;
3D-structure; Acetylation; Alternative splicing; Apoptosis;
Biological rhythms; Cytoplasm; Developmental protein; Differentiation;
Host-virus interaction; Metal-binding; Methylation; Mitochondrion;
Myogenesis; NAD; Nucleus; Phosphoprotein; Reference proteome;
S-nitrosylation; Transcription; Transcription regulation; Transferase;
Zinc.
INIT_MET 1
/note="Removed"
/evidence="ECO:0000244|PubMed:19413330,
ECO:0000244|PubMed:20068231, ECO:0000244|PubMed:21406692,
ECO:0000244|PubMed:22223895, ECO:0000244|PubMed:22814378"
CHAIN 2..747
/note="NAD-dependent protein deacetylase sirtuin-1"
/id="PRO_0000110256"
CHAIN 2..533
/note="SirtT1 75 kDa fragment"
/id="PRO_0000415289"
DOMAIN 244..498
/note="Deacetylase sirtuin-type"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
NP_BIND 261..280
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
NP_BIND 345..348
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
NP_BIND 440..442
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
NP_BIND 465..467
/note="NAD"
/evidence="ECO:0000250|UniProtKB:Q8IXJ6"
REGION 2..268
/note="Interaction with H1-4"
/evidence="ECO:0000269|PubMed:15469825"
REGION 2..139
/note="Interaction with CLOCK"
/evidence="ECO:0000250|UniProtKB:Q923E4"
REGION 143..541
/note="Interaction with CCAR2"
REGION 256..259
/note="Required for interaction with the sumoylated form of
CCAR2"
/evidence="ECO:0000269|PubMed:25406032"
REGION 538..540
/note="Phosphorylated at one of three serine residues"
MOTIF 32..39
/note="Nuclear localization signal"
/evidence="ECO:0000250"
MOTIF 138..145
/note="Nuclear export signal"
/evidence="ECO:0000250"
MOTIF 223..230
/note="Nuclear localization signal"
/evidence="ECO:0000250"
MOTIF 425..431
/note="Nuclear export signal"
/evidence="ECO:0000250"
COMPBIAS 54..98
/note="Ala-rich"
COMPBIAS 122..127
/note="Poly-Asp"
COMPBIAS 128..134
/note="Poly-Glu"
ACT_SITE 363
/note="Proton acceptor"
/evidence="ECO:0000269|PubMed:11672523,
ECO:0000269|PubMed:12006491, ECO:0000269|PubMed:12535671,
ECO:0000269|PubMed:17290224, ECO:0000269|PubMed:18004385,
ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18485871,
ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:25406032"
METAL 371
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
METAL 374
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
METAL 395
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
METAL 398
/note="Zinc"
/evidence="ECO:0000255|PROSITE-ProRule:PRU00236"
BINDING 482
/note="NAD; via amide nitrogen"
/evidence="ECO:0000250"
MOD_RES 2
/note="N-acetylalanine"
/evidence="ECO:0000244|PubMed:19413330,
ECO:0000244|PubMed:20068231, ECO:0000244|PubMed:21406692,
ECO:0000244|PubMed:22223895, ECO:0000244|PubMed:22814378"
MOD_RES 14
/note="Phosphoserine"
/evidence="ECO:0000244|PubMed:20068231,
ECO:0000244|PubMed:21406692, ECO:0000244|PubMed:23186163,
ECO:0000244|PubMed:24275569, ECO:0000269|PubMed:19107194"
MOD_RES 26
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:19107194"
MOD_RES 27
/note="Phosphoserine; by MAPK8"
/evidence="ECO:0000244|PubMed:23186163,
ECO:0000244|PubMed:24275569, ECO:0000269|PubMed:18838864,
ECO:0000269|PubMed:19107194, ECO:0000269|PubMed:20027304"
MOD_RES 47
/note="Phosphoserine; by MAPK8"
/evidence="ECO:0000244|PubMed:16964243,
ECO:0000244|PubMed:20068231, ECO:0000244|PubMed:21406692,
ECO:0000244|PubMed:23186163, ECO:0000269|PubMed:18838864,
ECO:0000269|PubMed:19107194, ECO:0000269|PubMed:20027304,
ECO:0000269|PubMed:21471201"
MOD_RES 159
/note="Phosphoserine"
/evidence="ECO:0000305|PubMed:19107194"
MOD_RES 162
/note="Phosphoserine"
/evidence="ECO:0000305|PubMed:19107194"
MOD_RES 172
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:19107194"
MOD_RES 173
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:19107194"
MOD_RES 238
/note="N6-acetyllysine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 377
/note="N6-acetyllysine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 395
/note="S-nitrosocysteine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 398
/note="S-nitrosocysteine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 430
/note="N6-acetyllysine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 513
/note="N6-acetyllysine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 530
/note="Phosphothreonine; by DYRK1A, DYRK3 and MAPK8"
/evidence="ECO:0000244|PubMed:19690332,
ECO:0000269|PubMed:19107194, ECO:0000269|PubMed:20027304"
MOD_RES 535
/note="Phosphoserine"
/evidence="ECO:0000244|PubMed:19690332"
MOD_RES 544
/note="Phosphothreonine"
/evidence="ECO:0000305|PubMed:19107194"
MOD_RES 545
/note="Phosphoserine"
/evidence="ECO:0000305|PubMed:19107194"
MOD_RES 610
/note="N6-acetyllysine"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 659
/note="Phosphoserine; by CaMK2"
/evidence="ECO:0000250|UniProtKB:Q923E4"
MOD_RES 661
/note="Phosphoserine; by CaMK2"
/evidence="ECO:0000305|PubMed:19236849"
MOD_RES 719
/note="Phosphothreonine"
/evidence="ECO:0000244|PubMed:18669648,
ECO:0000244|PubMed:19690332, ECO:0000244|PubMed:21406692,
ECO:0000244|PubMed:23186163, ECO:0000269|PubMed:19107194"
MOD_RES 747
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:19107194"
VAR_SEQ 454..639
/note="Missing (in isoform 2)"
/evidence="ECO:0000305"
/id="VSP_042189"
VARIANT 3
/note="D -> E (in dbSNP:rs35671182)"
/evidence="ECO:0000269|Ref.3"
/id="VAR_025148"
VARIANT 484
/note="V -> D (in dbSNP:rs1063111)"
/id="VAR_051976"
MUTAGEN 27
/note="S->A: Greatly diminishes phosphorylation by MAPK8;
when associated with A-47 and A-530."
/evidence="ECO:0000269|PubMed:20027304"
MUTAGEN 47
/note="S->A: Blocks residue phosphorylation, restores
deacetylation activity and inhibits DNA damage-induced
apoptosis."
/evidence="ECO:0000269|PubMed:20027304,
ECO:0000269|PubMed:21471201"
MUTAGEN 47
/note="S->A: Greatly diminishes phosphorylation by MAPK8;
when associated with A-27 and A-530."
/evidence="ECO:0000269|PubMed:20027304,
ECO:0000269|PubMed:21471201"
MUTAGEN 233
/note="K->R: Impairs in vitro methylation by SETD7; when
associated with R-235, R-236 and R-238."
/evidence="ECO:0000269|PubMed:21245319"
MUTAGEN 235
/note="K->R: Impairs in vitro methylation by SETD7; when
associated with R-233, R-236 and R-238."
/evidence="ECO:0000269|PubMed:21245319"
MUTAGEN 236
/note="K->R: Impairs in vitro methylation by SETD7; when
associated with R-233, R-235 and R-238."
/evidence="ECO:0000269|PubMed:21245319"
MUTAGEN 238
/note="K->R: Impairs in vitro methylation by SETD7; when
associated with R-233, R-235a and R-236."
/evidence="ECO:0000269|PubMed:21245319"
MUTAGEN 256..257
/note="II->KK: Loss of interaction with the sumoylated form
of CCAR2. No effect on its deacetylation activity."
/evidence="ECO:0000269|PubMed:25406032"
MUTAGEN 363
/note="H->Y: Loss of function. Reduces the interaction with
CCAR2 and APEX1. Increases acetylation of APEX1."
/evidence="ECO:0000269|PubMed:11672523,
ECO:0000269|PubMed:12006491, ECO:0000269|PubMed:12535671,
ECO:0000269|PubMed:17290224, ECO:0000269|PubMed:18004385,
ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18485871,
ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:25406032"
MUTAGEN 474
/note="F->A: Abolishes phosphorylation at Ser-47, restores
deacetylation activity and inhibits DNA damage-induced
apoptosis."
/evidence="ECO:0000269|PubMed:21471201"
MUTAGEN 530
/note="T->A: Greatly diminishes phosphorylation by MAPK8;
when associated with A-27 and A-47."
/evidence="ECO:0000269|PubMed:19107194,
ECO:0000269|PubMed:20027304"
MUTAGEN 530
/note="T->A: Reduces in vitro phosphorylation by CDK1.
Impairs cell proliferation and cell cycle progression; when
associated with A-540."
/evidence="ECO:0000269|PubMed:19107194,
ECO:0000269|PubMed:20027304"
MUTAGEN 540
/note="S->A: Reduces in vitro phosphorylation by CDK1.
Impairs cell proliferation and cell cycle progression; when
associated with A-530."
/evidence="ECO:0000269|PubMed:19107194"
MUTAGEN 659
/note="S->A: Reduces in vitro phosphorylation by CaMK2;
when associated with S-661. Greatly reduces in vivo
phosphorylation; when associated with A-661."
/evidence="ECO:0000269|PubMed:19236849"
MUTAGEN 661
/note="S->A: Reduces in vitro phosphorylation by CaMK2;
when associated with S-659. Greatly reduces in vivo
phosphorylation; when associated with A-659."
/evidence="ECO:0000269|PubMed:19236849"
MUTAGEN 684
/note="S->A: No effect on phosphorylation (in vitro and in
vivo)."
/evidence="ECO:0000269|PubMed:19236849"
CONFLICT 386..389
/note="DIFN -> ALFS (in Ref. 5; AAH12499)"
/evidence="ECO:0000305"
HELIX 184..194
/evidence="ECO:0000244|PDB:4ZZI"
HELIX 198..205
/evidence="ECO:0000244|PDB:4ZZI"
HELIX 217..228
/evidence="ECO:0000244|PDB:4ZZI"
HELIX 243..252
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 254..260
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 262..268
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 273..275
/evidence="ECO:0000244|PDB:4KXQ"
TURN 276..278
/evidence="ECO:0000244|PDB:4IG9"
HELIX 279..286
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 290..292
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 293..297
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 299..304
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 307..312
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 313..316
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 318..320
/evidence="ECO:0000244|PDB:4I5I"
HELIX 325..335
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 339..344
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 350..354
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 358..361
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 364..371
/evidence="ECO:0000244|PDB:4KXQ"
TURN 372..374
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 377..379
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 380..382
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 384..388
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 396..398
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 406..411
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 420..429
/evidence="ECO:0000244|PDB:4KXQ"
TURN 430..432
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 435..440
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 448..450
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 451..454
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 461..467
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 475..480
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 482..493
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 495..500
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 506..510
/evidence="ECO:0000244|PDB:5BTR"
STRAND 643..645
/evidence="ECO:0000244|PDB:4KXQ"
TURN 646..648
/evidence="ECO:0000244|PDB:4KXQ"
STRAND 649..651
/evidence="ECO:0000244|PDB:4KXQ"
HELIX 656..658
/evidence="ECO:0000244|PDB:4KXQ"
SEQUENCE 747 AA; 81681 MW; 2D3BEA6D73DA229F CRC64;
MADEAALALQ PGGSPSAAGA DREAASSPAG EPLRKRPRRD GPGLERSPGE PGGAAPEREV
PAAARGCPGA AAAALWREAE AEAAAAGGEQ EAQATAAAGE GDNGPGLQGP SREPPLADNL
YDEDDDDEGE EEEEAAAAAI GYRDNLLFGD EIITNGFHSC ESDEEDRASH ASSSDWTPRP
RIGPYTFVQQ HLMIGTDPRT ILKDLLPETI PPPELDDMTL WQIVINILSE PPKRKKRKDI
NTIEDAVKLL QECKKIIVLT GAGVSVSCGI PDFRSRDGIY ARLAVDFPDL PDPQAMFDIE
YFRKDPRPFF KFAKEIYPGQ FQPSLCHKFI ALSDKEGKLL RNYTQNIDTL EQVAGIQRII
QCHGSFATAS CLICKYKVDC EAVRGDIFNQ VVPRCPRCPA DEPLAIMKPE IVFFGENLPE
QFHRAMKYDK DEVDLLIVIG SSLKVRPVAL IPSSIPHEVP QILINREPLP HLHFDVELLG
DCDVIINELC HRLGGEYAKL CCNPVKLSEI TEKPPRTQKE LAYLSELPPT PLHVSEDSSS
PERTSPPDSS VIVTLLDQAA KSNDDLDVSE SKGCMEEKPQ EVQTSRNVES IAEQMENPDL
KNVGSSTGEK NERTSVAGTV RKCWPNRVAK EQISRRLDGN QYLFLPPNRY IFHGAEVYSD
SEDDVLSSSS CGSNSDSGTC QSPSLEEPME DESEIEEFYN GLEDEPDVPE RAGGAGFGTD
GDDQEAINEA ISVKQEVTDM NYPSNKS


Related products :

Catalog number Product name Quantity
18-003-43079 NAD-dependent deacetylase sirtuin-1 - EC 3.5.1.-; hSIRT1; hSIR2; SIR2-like protein 1 Polyclonal 0.05 mg Aff Pur
18-003-43079 NAD-dependent deacetylase sirtuin-1 - EC 3.5.1.-; hSIRT1; hSIR2; SIR2-like protein 1 Polyclonal 0.1 mg Protein A
EIAAB38505 Homo sapiens,hSIR2,hSIRT1,Human,NAD-dependent deacetylase sirtuin-1,SIR2L1,SIR2-like protein 1,SIRT1
18-003-43078 NAD-dependent deacetylase sirtuin-2 - EC 3.5.1.-; SIR2-like; SIR2-like protein 2 Polyclonal 0.1 mg Protein A
18-003-43078 NAD-dependent deacetylase sirtuin-2 - EC 3.5.1.-; SIR2-like; SIR2-like protein 2 Polyclonal 0.05 mg Aff Pur
EIAAB38504 Mouse,mSIR2a,Mus musculus,NAD-dependent deacetylase sirtuin-1,Sir2,SIR2alpha,Sir2l1,SIR2-like protein 1,Sirt1
18-003-43080 NAD-dependent deacetylase sirtuin-3. mitochondrial - EC 3.5.1.-; SIR2-like protein 3; hSIRT3 Polyclonal 0.05 mg Aff Pur
18-003-43080 NAD-dependent deacetylase sirtuin-3. mitochondrial - EC 3.5.1.-; SIR2-like protein 3; hSIRT3 Polyclonal 0.1 mg Protein A
EIAAB38510 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-5,Sir2l5,SIR2-like protein 5,Sirt5
EIAAB38516 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-7,Sir2l7,SIR2-like protein 7,Sirt7
EIAAB38513 Mouse,Mus musculus,NAD-dependent deacetylase sirtuin-6,Sir2l6,SIR2-like protein 6,Sirt6
E0430r ELISA kit NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
U0430r CLIA NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
E0430r ELISA NAD-dependent deacetylase sirtuin-2,Rat,Rattus norvegicus,Sir2l2,SIR2-like protein 2,Sirt2 96T
EIAAB38511 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-5,SIR2L5,SIR2-like protein 5,SIRT5
EIAAB38515 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-7,SIR2L7,SIR2-like protein 7,SIRT7
EIAAB38514 Homo sapiens,Human,NAD-dependent deacetylase sirtuin-6,SIR2L6,SIR2-like protein 6,SIRT6
U2135m CLIA kit Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
E0430m ELISA kit Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
E0430m ELISA Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
E2135m ELISA kit Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
U0430m CLIA Mouse,mSIR2L2,Mus musculus,NAD-dependent deacetylase sirtuin-2,Sir2l2,SIR2-like protein 2,Sirt2 96T
U2135m CLIA Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
E2135m ELISA Mouse,mSIR2L3,Mus musculus,NAD-dependent deacetylase sirtuin-3,Sir2l3,SIR2-like protein 3,Sirt3 96T
E0430h ELISA kit Homo sapiens,Human,NAD-dependent deacetylase sirtuin-2,SIR2L,SIR2L2,SIR2-like protein 2,SIRT2 96T
Pathways :
WP1493: Carbon assimilation C4 pathway
WP1672: Mismatch repair
WP1676: Non-homologous end-joining
WP1678: Nucleotide excision repair
WP1625: Base excision repair
WP731: Sterol regulatory element binding protein related
WP1909: Signal regulatory protein (SIRP) family interactions
WP1049: G Protein Signaling Pathways
WP1694: Pyrimidine metabolism
WP813: G Protein Signaling Pathways
WP1654: gamma-Hexachlorocyclohexane degradation
WP2272: Pathogenic Escherichia coli infection
WP1661: Glyoxylate and dicarboxylate metabolism
WP2324: AGE/RAGE pathway
WP1371: G Protein Signaling Pathways
WP1714: Tyrosine metabolism
WP1502: Mitochondrial biogenesis
WP346: Protein Modifications
WP1613: 1,4-Dichlorobenzene degradation
WP1624: Bacterial secretion system
WP211: BMP signaling pathway
WP1689: Porphyrin and chlorophyll metabolism
WP1693: Purine metabolism
WP1650: Fluorobenzoate degradation
WP2218: sGC

Related Genes :
[SIRT1 SIR2L1] NAD-dependent protein deacetylase sirtuin-1 (hSIRT1) (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (hSIR2) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)]
[Sirt1 Sir2l1] NAD-dependent protein deacetylase sirtuin-1 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (SIR2alpha) (Sir2) (mSIR2a) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)]
[Sirt7 Sir2l7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[SIRT7 SIR2L7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[Sirt7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[SIRT7] NAD-dependent protein deacetylase sirtuin-7 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-7) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 7) (SIR2-like protein 7)
[Sirt2 Sir2l2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2) (mSIR2L2)
[SIRT3 SIR2L3] NAD-dependent protein deacetylase sirtuin-3, mitochondrial (hSIRT3) (EC 2.3.1.286) (Regulatory protein SIR2 homolog 3) (SIR2-like protein 3)
[SIRT2 SIR2L SIR2L2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[Sirt3 Sir2l3] NAD-dependent protein deacetylase sirtuin-3 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 3) (SIR2-like protein 3) (mSIR2L3)
[Sirt2 Sir2l2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[HST3 YOR025W OR26.15] NAD-dependent histone deacetylase HST3 (EC 2.3.1.286) (Homologous to SIR2 protein 3) (Regulatory protein SIR2 homolog 3)
[HST2 YPL015C LPA2C] NAD-dependent protein deacetylase HST2 (EC 2.3.1.286) (Homologous to SIR2 protein 2) (Regulatory protein SIR2 homolog 2)
[SIRT2 QtsA-13614] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[SIRT2] NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2)
[Sirt5 Sir2l5] NAD-dependent protein deacylase sirtuin-5, mitochondrial (EC 2.3.1.-) (Regulatory protein SIR2 homolog 5) (SIR2-like protein 5)
[sir2 cobB npdA MSMEG_5175 MSMEI_5041] NAD-dependent protein deacylase Sir2 (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[sir-2.1 R11A8.4] NAD-dependent protein deacetylase sir-2.1 (EC 2.3.1.286) (Protein sir-2.1) (Regulatory protein SIR2 homolog 1)
[SIR2 MAR1 YDL042C D2714] NAD-dependent histone deacetylase SIR2 (EC 2.3.1.286) (Regulatory protein SIR2) (Silent information regulator 2)
[cobB sir2 TM_0490] NAD-dependent protein deacetylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog) (Sir2Tm)
[Sirt1] NAD-dependent protein deacetylase sirtuin-1 (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-)
[cobB A8C65_17980 A9R57_10780 ACU57_04380 AM464_23635 BJJ90_15625 BMT91_12645 BN17_09831 BON75_05285 BON98_05145 BvCms12BK_01118 BvCmsHHP001_00979 BvCmsHHP019_01023 BvCmsHHP056_02943 BvCmsKSP011_05316 BvCmsKSP024_01940 BvCmsKSP026_03162 BvCmsSINP011_02951 BW690_23120 BZL31_08405 C2U48_03300 C5F72_15645 CG692_05810 CI693_26075 CI694_24500 D2185_03810 D3821_20670 D3O91_24920 D3Y67_15945 D4718_04355 D9D20_13915 D9G69_05205 D9H68_09100 D9I18_08715 D9I97_05705 D9J11_10470 D9J52_06705 D9Z28_16645 DAH34_08040 DL326_11095 DT034_08485 DTL43_16110 DXT71_17790 DXT73_16565 E2119_09590 E2127_07825 E2128_06715 E2134_02425 E2135_09110 E4K61_12600 EA213_13010 EAI52_08920 EC1094V2_2712 ECTO6_02838 ED307_19155 EI021_06925 EI032_10515 EIZ93_12995 EL75_2625 EL79_2659 EL80_2637 EPT01_12255 ERS150873_02733 EXX71_16955 F1E19_06620 F9040_05140 F9X20_14590 FNW97_05865 FRV13_07595 FV293_24135 G5632_08605 G5688_05235 GII66_19990 GJD95_14640 GJD96_14830 GKG12_11215 GP689_02460 GQE22_15660 GQE33_15650 GQE34_18495 GQE42_09405 GQE64_00790 GQE87_03440 GRW42_04440 GRW80_14965 GRW81_06920 HmCms184_02367 HV065_03675 HV109_14455 HVY77_15610 HVY93_14150 NCTC10429_05327 NCTC10963_03027 NCTC11126_00878 NCTC13216_03723 NCTC8500_03291 NCTC9058_03967 NCTC9062_05323 NCTC9073_01936 NCTC9117_03803 NCTC9706_00381 PGD_02175 RK56_003010 SAMEA3472044_03465 SAMEA3472047_01525 SAMEA3472080_03059 SAMEA3484427_03765 SAMEA3484429_03683 SAMEA3752557_01586 SAMEA3752559_02085 SAMEA3753097_03388 SAMEA3753300_01432 SK85_01186 WP7S17E04_26220 WR15_24010] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[cobB SO_1938] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[ppnP yaiE yaiE_1 yaiE_2 A6581_06820 A6592_08565 A6V01_02400 A8C65_08910 A9819_01890 A9P13_20020 A9R57_08485 A9X72_19070 AC067_13660 AC789_1c03900 ACN002_0406 ACN68_10320 ACN81_25005 ACU57_12035 ACU90_20960 AM270_02350 AM446_21575 AM464_18935 AM465_24670 AMK83_08820 AML35_16935 APT94_15240 APU18_24510 APZ14_19390 ARC77_21605 AU473_24575 AUQ13_18550 AUS26_08265 AW059_14025 AW106_10290 AWB10_19430 AWE53_023695 AWF59_002255 AWG78_005920 AWG90_003705 AZZ83_000156 B6V57_02070 B7C53_19905 B9N33_08655 B9T59_05995 BANRA_00817 BANRA_00925 BANRA_02015 BANRA_03594 BB545_15535 BE963_16095 BEN53_04105 BER14_23410 BFD68_18150 BHF03_17705 BHS81_02405 BHS87_02130 BIQ87_02175 BIU72_03345 BIZ41_26355 BJJ90_20310 BK248_04610 BK292_14635 BK373_01320 BK375_26975 BK383_14985 BMA87_04900 BMT91_05310 BN17_01951 BOH76_16090 BON63_11530 BON65_18745 BON66_09075 BON69_11595 BON72_15085 BON75_11450 BON76_23825 BON83_20655 BON86_03800 BON87_15370 BON91_23895 BON92_15465 BON94_14845 BON95_06500 BON96_22295 BON98_18895 BTQ04_02855 BTQ06_17790 BUE81_15520 BvCms12BK_04795 BvCms2454_01767 BvCms28BK_00703 BvCms35BK_00554 BvCmsC61A_02990 BvCmsHHP001_01952 BvCmsHHP019_02594 BvCmsHHP019_02735 BvCmsHHP056_01410 BvCmsKKP036_04281 BvCmsKKP061_04019 BvCmsKSNP073_05624 BvCmsKSNP081_00030 BvCmsKSNP120_04274 BvCmsKSP011_04945 BvCmsKSP024_04930 BvCmsKSP045_04772 BvCmsKSP058_04860 BvCmsKSP067_05191 BvCmsKSP076_04759 BvCmsNSP006_01281 BvCmsNSP007_00849 BvCmsNSP047_03416 BvCmsNSP072_00997 BvCmsOUP014_01108 BvCmsSINP011_02573 BvCmsSINP022_02885 BvCmsSIP019_03625 BvCmsSIP024_01003 BvCmsSIP044_01545 BVL39_00880 BW690_06575 BWI89_12535 BWP17_02145 BXT93_00165 BZL31_10725 BZL69_16805 C2M16_02670 C2U48_08110 C4K41_08090 C4M78_16865 C5715_13595 C5F72_20070 C5F73_09375 C5N07_12740 C5P01_16305 C5P44_19530 C6669_02755 C7235_18880 C7B02_04545 C7B06_13385 C7B07_15195 C7B08_06180 C7B18_00985 C9114_16640 C9160_00550 C9201_03800 C9306_02820 C9E25_04580 C9E67_23765 C9Z03_06575 C9Z23_12315 C9Z28_08265 C9Z37_04640 C9Z68_20485 C9Z70_09610 C9Z78_08360 C9Z89_10690 CA593_01185 CCZ14_02440 CCZ17_04120 CDC27_00860 CDL37_09465 CG692_05055 CI641_017850 CI693_15730 CI694_14320 CJU63_02125 CJU64_02110 CO706_24355 COD30_16055 COD46_04855 CQP61_20925 CR538_19495 CR539_06140 CRD98_01665 CRE06_07890 CRM83_13790 CRT43_02180 CRX46_25985 CT146_15735 CUB99_06570 CV83915_01183 CVH05_20630 CWS33_22875 D0X26_07420 D1912_23295 D2184_11515 D2185_12065 D2188_07740 D3821_12900 D3822_22465 D3C88_28950 D3M98_10990 D3O91_15305 D3Y67_14350 D4011_06560 D4023_06905 D4074_04630 D4628_13540 D4636_05645 D4660_05035 D4718_02350 D4L91_04625 D4M06_05545 D4M76_11590 D4U49_03050 D4U85_07085 D4V08_07680 D5H35_11765 D5I97_03520 D6004_10480 D6C36_05740 D6D43_08420 D6T60_09300 D6T98_08110 D6W00_11135 D6X36_16585 D6X63_13510 D6X76_06760 D7K33_06120 D7K63_09055 D7K66_05505 D7W70_07505 D7Y10_05925 D7Z75_05315 D8Y65_05290 D9610_20040 D9C99_17255 D9D20_11505 D9D31_21970 D9D33_06060 D9D43_14830 D9D94_14580 D9E13_00125 D9E34_09525 D9E49_06955 D9E73_13115 D9F32_03890 D9F87_10325 D9G11_17940 D9G42_13940 D9G48_15840 D9G69_10950 D9G95_10030 D9H10_13930 D9H53_17415 D9H68_03320 D9H70_06445 D9H94_24405 D9I18_05395 D9I20_07245 D9I37_10805 D9I87_03310 D9I88_07660 D9I97_02265 D9J03_17400 D9J11_02150 D9J44_05830 D9J46_05500 D9J52_12125 D9J58_08695 D9J61_02635 D9K02_04260 D9K48_11575 D9K54_20845 D9L89_06360 D9L99_04375 D9S45_05535 D9X77_04435 D9X97_05410 D9Z28_01965 DAH18_14975 DAH26_10405 DAH30_15925 DAH34_21345 DAH37_05240 DBQ99_19625 DD762_07680 DEN86_05080 DEN89_14495 DEO04_04545 DEO20_14385 DIV22_26285 DJ503_01820 DK132_06010 DL257_08620 DL292_11525 DL326_11415 DL455_04445 DL479_02175 DL530_07575 DL545_19130 DL705_16435 DL800_03885 DL979_15710 DLT82_12465 DLU50_08285 DLU82_01595 DLX40_16565 DLY41_06340 DLY44_14080 DM102_12740 DM129_06110 DM155_09525 DM267_00880 DM296_09365 DM382_20220 DM820_05775 DM962_06005 DM973_16495 DMC44_03035 DMI04_05340 DMI53_06710 DMO02_05340 DMY83_21365 DMZ30_04890 DMZ50_06340 DN627_04525 DN660_05650 DN700_06730 DN703_04290 DN808_18120 DNB37_05440 DNC98_06510 DND16_02325 DND79_04070 DNI21_04080 DNJ62_06830 DNK12_05040 DNQ45_00335 DNR35_00475 DNR41_17405 DNW42_09070 DNX19_03125 DOE35_04920 DOS18_04715 DOT81_06465 DOU81_04760 DOY22_07805 DOY56_05925 DOY61_02085 DOY67_05265 DP258_05110 DP265_04025 DP277_07535 DQE91_06675 DQF36_00830 DQF57_07675 DQF72_03865 DQG35_06310 DQO13_05500 DQP61_12090 DRP48_07670 DRW19_06400 DS143_21555 DS721_06100 DS732_06920 DS966_18475 DT034_10500 DTL43_07415 DTL90_10740 DTM10_06080 DTM45_10960 DTZ20_03380 DU321_19460 DU333_14985 DVB38_10440 DW236_15815 DWB25_19225 DXT69_08115 DXT71_02970 DXT73_01860 DXX80_018650 E0I42_07410 E0L04_02150 E0L12_02445 E2114_20640 E2115_06350 E2119_01725 E2126_014065 E2127_09375 E2128_04435 E2129_13975 E2134_12225 E2135_01410 E2855_00540 E2863_00426 E4K51_12070 E4K53_09880 E4K55_09545 E4K61_11255 E5P24_15620 E5P28_11315 E5S38_06765 E5S42_13060 E5S56_05125 E5S58_11035 E5S61_09810 E5S62_19990 EA159_14475 EA164_19085 EA167_08615 EA174_09235 EA184_12770 EA191_05310 EA198_18085 EA200_17785 EA203_10735 EA213_08335 EA214_19270 EA225_09190 EA231_12680 EA232_03760 EA233_12800 EA239_15730 EA242_16550 EA245_15610 EA250_12110 EA429_16040 EA433_19520 EA434_07105 EA435_05820 EA834_11650 EAI42_35435 EAI46_25725 EAI46_25840 EAI52_02950 EAM59_14455 EAN70_14905 EAN77_07940 EAX79_06830 EB476_03650 EB509_06855 EB510_01625 EB515_09345 EB525_RS00545 EBA46_13990 EBJ06_07125 EBM08_07705 EBP16_12520 EC1094V2_3464 EC3234A_4c00610 EC382_12595 EC95NR1_04612 ECs0441 ECTO124_03817 ECTO6_03708 ED225_07600 ED307_07160 ED600_06320 ED611_06650 ED648_16775 ED903_13725 ED944_09580 EEA45_02855 EEP23_01045 EF082_13590 EF173_10565 EG075_09120 EG599_13105 EG796_02110 EG808_04255 EGC26_06115 EGT48_21390 EGU87_05200 EH186_21735 EH412_12630 EHD63_07610 EHD79_03470 EHH55_15815 EHJ36_08465 EHJ66_07060 EHV81_03360 EHV90_10850 EHW09_13270 EHX09_04730 EI021_16245 EI028_11795 EI032_07550 EI041_08145 EIA21_11810 EIZ93_00830 EJ366_17220 EJC75_24145 EKI52_09170 EL75_3359 EL79_3454 EL80_3408 ELT17_22260 ELT22_04045 ELT23_00125 ELT31_00280 ELT33_03015 ELT48_00735 ELT49_21480 ELT58_21305 ELU82_03335 ELU85_08960 ELU96_05805 ELV00_13055 ELV08_00785 ELV13_00555 ELV15_22680 ELV22_01630 ELV24_16525 ELV28_08410 ELX56_03900 ELX61_20790 ELX68_02065 ELX69_19550 ELX70_07125 ELX76_05850 ELX79_24270 ELX83_01445 ELY05_09885 ELY23_04665 ELY24_07180 ELY32_22740 ELY41_15435 ELY48_07355 ELY50_04295 EO241_13835 EPS76_10515 EPS91_09770 EPT01_06355 EQ820_00745 EQ823_11615 EQ825_18070 EQ830_03660 EQO00_19840 ERS085365_01840 ERS085366_04179 ERS085374_02377 ERS085379_01215 ERS085383_01024 ERS085386_01096 ERS085404_01742 ERS085406_02227 ERS085416_01968 ERS139211_01252 ERS150873_01858 EST51_18990 EVY14_00050 EWK56_10245 EXM29_24150 ExPECSC038_04895 ExPECSC065_04439 EXX06_12400 EXX13_09665 EXX23_09965 EXX24_01870 EXX53_07630 EXX55_11875 EXX71_12170 EXX87_11565 EYD11_17450 EYV18_10135 EYX82_01145 EYY27_15550 EYY34_27625 EYY78_10095 F0L67_19465 F1E19_02455 F7D02_16780 F7D05_04595 F7D06_00920 F7F11_06850 F7F23_13355 F7F26_08530 F7F56_11190 F7G03_09695 F9040_18980 F9050_11410 F9059_11725 F9B07_11235 F9X20_10705 F9Z74_08605 FAF34_030290 FE846_08235 FKO60_24460 FNJ67_20330 FNJ69_23475 FNW97_01845 FORC82_3666 FPI65_02250 FQ021_04720 FQ022_05995 FQ915_14565 FQU83_20855 FQZ46_13785 FRV13_03860 FTV90_10360 FTV92_11870 FTV93_12360 FV293_06120 FV295_17245 FV438_20585 FWK02_29295 FZC17_02065 FZN26_02330 FZN30_08825 G3565_02860 G5616_16275 G5668_11855 G5670_13140 G5675_09500 G5680_11755 G5686_06920 G5688_07395 G5696_10795 G6Z99_23355 GFU40_10345 GFU45_05185 GFU47_21615 GII66_02490 GII67_08760 GIJ01_19765 GIY13_13165 GIY19_15475 GJ11_02375 GJ638_13910 GJD95_18350 GJD97_21645 GKE15_12960 GKE22_07290 GKE24_12270 GKE26_09485 GKE29_12130 GKE31_10420 GKE39_07870 GKE46_05810 GKE58_10855 GKE60_09410 GKE64_05810 GKE69_07380 GKE77_09145 GKE79_09230 GKE87_01825 GKE92_20460 GKE93_01170 GKE98_12210 GKF34_16490 GKF39_01885 GKF52_17565 GKF74_01460 GKF86_04910 GKF89_04055 GKG12_02940 GNZ00_09900 GNZ02_03615 GNZ03_09955 GNZ05_01665 GP650_16700 GP654_09510 GP661_19290 GP662_13045 GP664_11395 GP666_10645 GP678_21450 GP689_14645 GP698_13660 GP700_10180 GP711_02810 GP712_12955 GP720_05730 GP727_13245 GP912_14540 GP935_14810 GP945_18805 GP946_18990 GP954_12950 GP979_17585 GQA63_00790 GQE22_09325 GQE30_08115 GQE33_07115 GQE34_00765 GQE36_18000 GQE42_04900 GQE47_13225 GQE51_10750 GQE58_13505 GQE64_07505 GQE68_24505 GQE87_15550 GQE88_10390 GQE93_05310 GQF59_00790 GQM04_16295 GQM06_17115 GQM09_10135 GQM10_05275 GQM13_16755 GQM17_10365 GQM18_17190 GQM28_05335 GQN16_05995 GQN24_05490 GQN33_00860 GQS26_04035 GRW05_15575 GRW12_15215 GRW30_07965 GRW42_03295 GRW57_16360 GRW80_21245 GRW81_04110 GUB08_22335 GUB85_11880 GUB91_14510 GUB95_14180 GUC01_07480 GUC12_15000 GUI33_03675 HHJ41_01370 HmCms169_03669 HmCms184_01874 HmCmsJML074_04353 HmCmsJML079_00649 HmCmsJML146_03132 HmCmsJML204_02343 HMPREF3040_03387 HPE49_20435 HPE52_15660 HR075_18950 HV022_17950 HV023_08705 HV065_00215 HV098_18955 HV109_18115 HV156_07825 HV159_09785 HV160_09785 HV168_09465 HV260_09930 HV303_20415 HVV39_18775 HVW22_00965 HVW93_05045 HVW95_10270 HVX17_19490 HVX75_18690 HVY01_17550 HVY77_19945 HVY93_17995 HVZ12_18920 HVZ21_18085 HVZ47_04860 HVZ53_18680 HW43_05570 HX136_19525 HXS78_17140 HZT35_11660 MJ49_04490 MS8345_00396 NCTC10082_01078 NCTC10089_03910 NCTC10418_05682 NCTC10429_03762 NCTC10764_05371 NCTC10767_04209 NCTC10865_04787 NCTC10963_03206 NCTC11022_05137 NCTC11126_00022 NCTC11181_01145 NCTC11341_03896 NCTC12950_04180 NCTC13127_05156 NCTC13216_02895 NCTC13846_03688 NCTC7922_06246 NCTC7927_04270 NCTC8009_07014 NCTC8179_01642 NCTC8450_01367 NCTC8500_04283 NCTC8621_03984 NCTC8622_02997 NCTC8959_05017 NCTC8960_01314 NCTC8985_02798 NCTC9001_00537 NCTC9007_00270 NCTC9036_03840 NCTC9044_03501 NCTC9045_04434 NCTC9050_01764 NCTC9055_00703 NCTC9058_03120 NCTC9062_04466 NCTC9075_05103 NCTC9077_04792 NCTC9081_02496 NCTC9111_03977 NCTC9117_04804 NCTC9119_03997 NCTC9434_02812 NCTC9701_04128 NCTC9702_04480 NCTC9703_03222 NCTC9706_01114 NCTC9777_00174 NCTC9969_04032 PGD_02920 PU06_02955 RG28_02910 RK56_026705 RX35_02064 SAMEA3472043_02682 SAMEA3472044_00466 SAMEA3472047_02102 SAMEA3472055_02163 SAMEA3472056_03633 SAMEA3472070_02281 SAMEA3472080_01810 SAMEA3472090_01813 SAMEA3472108_01855 SAMEA3472110_00729 SAMEA3472112_02965 SAMEA3472114_01257 SAMEA3472147_04902 SAMEA3484427_03543 SAMEA3484429_01888 SAMEA3484434_01710 SAMEA3485101_03989 SAMEA3752372_02749 SAMEA3752553_00287 SAMEA3752557_00215 SAMEA3752559_02897 SAMEA3752620_00785 SAMEA3753064_01236 SAMEA3753097_00513 SAMEA3753164_00218 SAMEA3753290_01725 SAMEA3753300_00458 SK85_00418 SY51_02060 TUM18780_32860 U14A_00395 UC41_24265 UN86_08900 UN91_18725 WP2S18E08_35360 WP4S18E07_34480 WP7S17E01_36800 WP7S17E04_33320 WP7S18E09_37190 WQ89_01420 WR15_04360 YDC107_3656] Pyrimidine/purine nucleoside phosphorylase (EC 2.4.2.1) (EC 2.4.2.2) (Adenosine phosphorylase) (Cytidine phosphorylase) (Guanosine phosphorylase) (EC 2.4.2.15) (Inosine phosphorylase) (Thymidine phosphorylase) (EC 2.4.2.4) (Uridine phosphorylase) (EC 2.4.2.3) (Xanthosine phosphorylase)
[ORF1ab orf1ab] 2'-O-methyltransferase (EC 2.7.7.48) (EC 3.4.19.12) (EC 3.4.22.69) (EC 3.6.4.12) (EC 3.6.4.13) (3C-like proteinase) (Growth factor-like peptide) (Guanine-N7 methyltransferase) (Helicase) (Host translation inhibitor nsp1) (Leader protein) (NendoU) (Non-structural protein 10) (Non-structural protein 2) (Non-structural protein 3) (Non-structural protein 4) (Non-structural protein 6) (Non-structural protein 7) (Non-structural protein 8) (Non-structural protein 9) (ORF1ab polyprotein) (Papain-like proteinase) (RNA-directed RNA polymerase) (Replicase polyprotein 1ab) (Uridylate-specific endoribonuclease) (p65 homolog)
[cobB1_2 cobB ACTI_81040] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[yjeF nnr nnrD nnrE A6V01_16625 A9X72_22835 AC789_1c45800 ACN002_4392 AW106_17115 AWB10_23600 BB545_04070 BN17_41441 BOH76_10905 BON72_19710 BON76_04155 BON95_14955 BTQ06_07255 BVL39_04290 C5F73_05795 C5N07_07145 C6669_06565 C7235_22665 C7B02_22745 C9306_16010 C9Z28_08925 C9Z37_19300 C9Z89_19770 CA593_04975 CO706_20770 COD30_21525 CR538_23135 CRD98_04165 CRM83_17370 D0X26_12915 D2184_07750 D4628_06615 D4636_22485 D5H35_20705 D6004_16440 D6T60_21965 D6T98_03825 D6X36_01235 D7Z75_22435 D9610_19255 D9F87_11835 D9G95_09255 D9J44_09440 D9K48_15185 D9S45_09270 DAH18_07435 DBQ99_23525 DEO20_13735 DIV22_15595 DL479_09745 DL530_20050 DL705_08080 DL800_29085 DLU50_02155 DLU67_01070 DM155_20490 DM267_22125 DM296_19440 DM820_22760 DMZ30_14180 DN660_14005 DN700_22785 DN808_26000 DND79_22955 DOY67_18795 DP277_02605 DQF36_19900 DQF57_15735 DQF72_18940 DQP61_08520 DRW19_23395 DS143_20990 DS732_02620 DVB38_20810 E4K51_09050 E4K53_08625 E4K55_08625 E5S38_10420 EAM59_16370 EAN77_04060 EAX79_02935 EB476_05880 EB525_RS07260 EBM08_18815 ED600_08260 EG075_07990 EG599_16930 EG796_08825 EH412_13985 EHD79_20055 EHH55_18965 EHJ36_13975 EI028_05185 EJ366_20605 EJC75_20595 EKI52_12685 EYD11_20595 EYV18_13035 EYY78_08665 F7D02_20255 F7F23_18595 F7F26_20125 F7F56_08475 FQ915_09945 FQZ46_21935 G5668_17825 G5680_17200 G5686_17280 GNZ05_12065 GP662_06490 GP664_20690 GP666_16320 GP698_02295 GP935_18145 GP945_15635 GP946_15695 GQN16_16290 GQN24_16710 GRW12_08105 GUB85_10740 GUB91_12710 GUB95_12420 GUC01_09020 GUC12_13450 HV022_21340 HV156_11280 HV159_13410 HVZ12_22090 HZT35_15135] Bifunctional NAD(P)H-hydrate repair enzyme (Nicotinamide nucleotide repair protein) [Includes: ADP-dependent (S)-NAD(P)H-hydrate dehydratase (EC 4.2.1.136) (ADP-dependent NAD(P)HX dehydratase); NAD(P)H-hydrate epimerase (EC 5.1.99.6)]
[cobB OR37_03990] NAD-dependent protein deacylase (EC 2.3.1.286) (Regulatory protein SIR2 homolog)
[nnrE nnrD A3S59_13690 A3T49_17335 A3T75_18530 A3U47_10225 A3U54_09275 A3U78_16085 A3V15_17065 A3V28_15960 A3W22_12930 A4M41_16600 A5970_12510 A6267_12745 A6T07_15280 A7C55_07720 A7H28_15850 A9591_13875 A9C99_18275 A9S47_10990 A9S88_14770 A9X19_06535 AAA56_09530 AAB90_13650 ABA14_13890 ABP10_07270 ABQ42_14075 ACG84_16195 ACM10_17980 ACT92_14320 ACT96_14390 ADR00_04465 ADS36_15285 AGN17_13430 AGP91_11565 AH461_16240 AHV90_18155 AIE92_07590 AKX49_10100 AL461_13480 ALZ46_15575 AM316_12625 AM321_08345 AM525_15220 AN727_01255 AO198_17430 AO799_11345 AOL87_17660 AOL88_17815 AOU74_07580 APN68_15490 APO02_17555 AQ518_14155 AR267_17095 AS882_13920 ASN84_12635 ASV75_18200 AU760_14795 AU775_10415 AVB14_10850 AVI06_14750 B0A21_09265 B0F61_13105 B1868_15980 B4P96_15895 B4W84_18200 B4Z10_18285 B5C64_17865 B6339_13635 B6379_12905 B6396_17560 B6M83_15130 B6N80_13955 B7136_14330 B7900_15880 B7919_12405 B7C82_16710 B7J34_05280 B7M41_18735 B7Q10_20390 B8V98_15175 B8Y89_12815 B8Y98_13185 B8Z45_12040 B9176_15685 B9672_11375 B9673_18235 B9727_12095 B9756_14295 B9H85_18105 B9I48_18045 B9P12_16640 BB088_18985 BBL75_13960 BCP76_14830 BCP85_15340 BCP91_17540 BH227_14585 BIB62_15765 BJO06_15955 BJO39_11850 BK099_19165 BK864_11970 BKF55_14350 BKO29_15730 BSD53_18530 BSD63_15630 BTC31_13980 BXJ37_18690 BZ670_13760 BZ697_16830 BZ722_12720 BZ742_17225 BZ751_18150 BZ759_12840 BZ809_15460 BZ833_13870 BZ881_13655 BZ894_14830 BZ908_18660 BZ939_15625 BZ955_18375 BZ980_09135 BZT14_03720 CA122_13445 CA124_14440 CAD25_13880 CAD70_18135 CAI12_16660 CB062_10255 CB096_14700 CB217_12805 CB220_14435 CB308_15940 CB345_18040 CB472_13065 CB501_11525 CB588_08220 CB596_12655 CB604_10145 CB666_16595 CB721_20345 CBB04_19195 CBB05_13840 CBK53_19215 CBN66_14655 CBN70_12475 CBP97_18655 CBQ45_13910 CBR92_19970 CBR95_11870 CBS03_20305 CBS08_20655 CBS18_16760 CBS39_20735 CBS55_14975 CBS77_09830 CBS78_13115 CBU16_17980 CC149_15825 CC297_18255 CC421_17090 CC678_12725 CC680_11650 CC754_11940 CC805_16855 CC853_16680 CCG98_12880 CCP20_16675 CD530_14030 CDG21_09565 CEA09_11005 CEI41_16725 CEM11_08675 CER90_13970 CEW05_18215 CFB87_11490 CFC01_18200 CFD56_12055 CRE05_02200 D0175_08570 D0A07_14920 D0W94_21365 D3E03_19475 D4415_18015 D4E56_15415 D4F08_19940 D4X57_18540 D4Z56_20190 D5A37_07260 D5O28_18970 D5O87_18615 D5X06_18105 D6J64_14370 D6K13_17205 D6P81_17650 D6R78_16230 D6S88_17785 D6T13_10065 D8Q93_17795 D8S08_07470 D9O81_17800 DLM07_05510 DLQ89_09585 DM648_22170 DMI96_14640 DN254_16985 DO678_17965 DOB11_13010 DOJ41_18470 DOR31_16660 DP790_14935 DP797_19060 DPF44_17095 DPR73_10030 DQ906_16405 DQY42_21185 DQZ81_15615 DRD18_11105 DRK03_17440 DRM04_20170 DRV81_18170 DRX23_19640 DRX96_13475 DS187_17705 DSH04_16815 DSH32_11170 DSN07_15575 DTD96_08125 DTF75_15870 DTI59_10095 DU772_16825 DU867_16745 DUA99_06710 DUB03_17090 DUG35_21095 DUG37_09455 DW487_05640 DY875_08435 DYT79_05520 E2D06_09125 E3C38_19875 E3C57_04960 E5382_12770 E5B97_15680 EAH10_10215 EBB65_17355 EBB99_17160 EBC54_19500 EBC72_13645 EES12_17090 EGL58_19555 EGM21_17370 EHF05_18050 EI456_17675 EI507_18340 EIL24_18235 EIL34_19605 EJG81_18690 EKH43_18120 EKP78_17715 EL812_18020 ELS48_18010 ELY67_16875 ENE83_16990 ERF73_18615 ETB65_18865 EU248_15750 EUZ49_23140 EVI13_02840 EVU69_19825 EZV86_08115 EZX35_16585 F9O36_14895 F9O65_17665 F9P74_18100 F9Q56_17905 FEE84_12285 FEO32_14500 FI281_14470 FI295_17155 FI296_17695 FII38_15555 FII69_17055 FPF90_15410 FTS15_19435 G0A20_15610 G0D20_21205 G0F92_04370 G0F99_20490 G0G00_15020 G0G01_14620 G0G02_01265 G0G04_14275 G0G05_11320 G0G06_08950 G0G07_03945 G0G14_13450 G0G15_05635 G0G16_18195 G0G17_18550 G0G20_12380 G0G22_03800 G0G23_02895 G0G27_20255 G0G31_04885 G0G32_18695 G0G35_22650 G0G37_21300 G0G38_05325 G0G39_05210 G0G40_00495 G0G41_05320 G0G43_20245 G0G45_03755 G0G49_12345 G0G50_02375 G0G51_12780 G0G52_02055 G0G53_14405 G0G54_12570 G0G55_02745 G0G60_04900 G0G61_21540 G0G62_03530 G0G64_11380 G2169_20120 G2170_17950 G2196_15620 G2210_18475 G2222_16940 G2233_16805 G2235_12530 G2237_14760 G2242_16685 G2243_18305 G2249_18265 G2264_16425 G2266_19975 G2271_14330 G2282_17940 G2286_15060 G2298_18170 G2300_17895 G2301_16625 G2322_17655 G2326_05510 G2331_17485 G2345_14690 G2351_11360 G2395_18425 G2410_17370 G2484_18475 G2668_16905 G2672_18505 G2673_12285 G2674_18195 G2681_14230 G2684_17165 G2685_16660 G2686_18420 G2687_17170 G2689_19715 G2693_13850 G2696_16030 G2699_17735 G2700_17140 G2703_18695 G2705_18350 G2706_16440 G2710_15110 G2716_19115 G2717_19090 G2719_18745 G2723_19745 G2726_18435 G2729_18855 G2730_16180 G2732_14990 G2737_11175 G2740_14430 G2745_14690 G2747_17475 G2749_19595 G2751_17145 G2757_17470 G2767_17765 G2784_16450 G2846_16730 G2849_14480 G2856_16940 G2858_16510 G2859_16270 G2860_18520 G2861_14560 G2862_16635 G2863_16285 G2866_13475 G2872_17555 G2874_18875 G2879_17610 G2880_17495 G2882_11825 G2888_18110 G2889_15285 G2890_17755 G2894_09340 G2896_13570 G2902_20700 G2905_11225 G2914_18010 G2939_05565 G2944_09900 G2954_06260 G2964_16835 G2968_15020 G2971_07585 G2973_04400 G2981_03795 G2984_05660 G2989_12910 G2991_03275 G3259_002224 G3346_003537 G3347_001862 G3348_002116 G3414_001902 G3453_002421 G3972_003350 G3984_004132 G3A07_07855 G3A13_18970 G3A29_16685 G3V00_002516 G3V03_003780 G3W49_001000 G4179_002628 G4B49_002728 G4B62_003839 G4D14_001210 G4G55_002523 G4G70_002745 G4J13_004244 G4J27_003406 G4K89_000861 G4L00_003905 G4L11_003511 G4O33_003194 G4O34_001052 G4O38_002777 G4O43_002653 G4P59_003264 G4P65_002509 G4P71_002341 G4Q33_002605 G4Q34_002222 G4Y16_001057 G4Y74_001950 G4Y75_002585 G9273_003139 G9374_002432 G9375_003558 G9C39_002301 G9G26_004226 G9G29_003563 G9G49_002046 G9W24_002411 G9W26_002811 G9W60_001328 GB008_18185 GB023_19730 GB033_06215 GB073_21190 GB084_15780 GB104_17820 GB108_20855 GB117_12760 GB119_19790 GB125_16930 GB136_14545 GB146_16180 GB163_19015 GB165_16740 GB167_14000 GB172_16190 GB174_14415 GB183_21130 GB184_15005 GB191_20690 GB220_18210 GB222_15290 GB260_14850 GB264_18960 GB267_21450 GB268_17125 GB322_04260 GB328_03375 GB340_20380 GB350_18005 GB366_20965 GB382_13880 GB384_17705 GB389_17130 GB395_14155 GB398_19660 GB400_17165 GB410_19810 GB411_20290 GB424_18050 GB444_15320 GB453_02390 GB458_14190 GB471_14430 GB474_15350 GB512_06355 GB517_16250 GB521_21110 GB522_13565 GB528_15755 GB536_16845 GB545_21125 GB552_05380 GB596_11600 GB605_13600 GB608_14220 GB611_21255 GB617_20665 GB638_12945 GBR90_15875 GBR92_06005 GBR96_18020 GBS02_10665 GBS31_18015 GBS51_18015 GBV48_20440 GBV49_21290 GBV51_16940 GBV59_05205 GBW10_15355 GBW37_21300 GBW40_14450 GBW61_14955 GBW81_14525 GBW91_19925 GBW93_16210 GBW94_20475 GBX02_18175 GBX28_03500 GBX30_16305 GBX44_07655 GBX50_18975 GBX65_09510 GBX79_02640 GBY10_21110 GBY16_20595 GBY22_15800 GBY30_14000 GBY40_12305 GBY43_19015 GBY51_02640 GBY55_13045 GBY69_02100 GBY71_13275 GBY80_15315 GBY98_15310 GBZ02_20775 GBZ07_05340 GBZ09_19665 GBZ19_06355 GBZ20_16245 GBZ21_20920 GBZ57_15255 GBZ88_16205 GBZ96_10620 GCS50_17180 GCY20_17660 GDA07_18585 GDH40_18035 GDI37_18915 GDI50_10605 GDN42_04680 GI500_18260 GI569_18355 GI571_19455 GI574_15255 GI576_17370 GI587_15930 GI598_19450 GI602_19455 GI603_18270 GI605_16665 GI606_17755 GI607_18225 GI610_19850 GI613_18970 GI616_19915 GI617_18250 GI618_19650 GI619_18185 GI623_19925 GI627_19930 GI628_20335 GI635_19450 GI641_19620 GI643_19215 GI648_16180 GI652_19115 GI653_18965 GI656_10830 GI657_16195 GI658_10970 GI661_14545 GI664_14465 GI666_14865 GI667_19440 GI672_16195 GI673_19155 GI678_16820 GI679_18005 GI681_20130 GI682_19670 GI684_16950 GJE23_19345 GJE52_20320 GJE53_18800 GJE57_19140 GJE58_18480 GJE61_19460 GJE63_19120 GJE66_17975 GJE68_19380 GJE69_16935 GJE75_19455 GJE76_19455 GJE78_19465 GJE80_18250 GJE81_19525 GJE83_18265 GJE85_18895 GJE87_17205 GJE88_18245 GJE91_18740 GJE97_17405 GJE99_16230 GJF01_19455 GJF04_19450 GJF05_19445 GJF06_19145 GJF07_16855 GJF11_14795 GJF12_19000 GJF15_18775 GJF17_18765 GJF18_19035 GJF25_18900 GJF26_19420 GJF28_19175 GJF31_18790 GJF33_18960 GJF41_19610 GJF44_19235 GJF47_19445 GJF49_19145 GJF51_20105 GJF54_19450 GJF59_18550 GJF61_19930 GJF63_18475 GJF64_19455 GJF68_18410 GJF69_18870 GJF75_19785 GJF76_19450 GJF77_19140 GJF78_19925 GJF81_16490 GJF83_18960 GJF85_19920 GJF86_18955 GJF88_19445 GJF90_20340 GJF91_20505 GJF93_19465 GJF95_18650 GJF99_17980 GJG01_19920 GJG02_19360 GJG03_14565 GJG05_14715 GJG07_11790 GJG10_16200 GJG11_15865 GJG13_13795 GJG14_16105 GJG15_14705 GJG16_17040 GJG17_14795 GJG18_23365 GJG24_15060 GJG25_15325 GJG26_16315 GJG28_16415 GJG29_14235 GJG30_16180 GJG35_16225 GJG37_15715 GJG38_18655 GJG39_18260 GJG40_14820 GJG45_19440 GJG48_17440 GJG49_18945 GJG51_19455 GJG54_21345 GJG57_19125 GJG58_19175 GJG60_18005 GJG63_17960 GJG66_18105 GJG70_17990 GJG71_16195 GJG76_18470 GJG77_18995 GJG81_16360 GJG84_18715 GNA67_003852 GNA68_003740 GNA89_003109 GNA90_003610 GNA94_003248 GNA95_003605 GNB01_003578 GNB24_003575 GNB30_003635 GNB32_003570 GNB39_003909 GNB51_003077 GNB52_003552 GNB53_003749 GNB87_003935 GNB90_003879 GYI57_002966 GYK12_04750 GYK13_17425 OB33_18235 R841_07660 ZQ07_09565 ZR89_19430 ZW25_11665] Bifunctional NAD(P)H-hydrate repair enzyme (Nicotinamide nucleotide repair protein) [Includes: ADP-dependent (S)-NAD(P)H-hydrate dehydratase (EC 4.2.1.136) (ADP-dependent NAD(P)HX dehydratase); NAD(P)H-hydrate epimerase (EC 5.1.99.6)]
[nnr nnrD nnrE BHS81_24940 BMA87_06210 BON75_25135 BUE81_24185 BW690_00535 C5F72_23675 C5P01_11605 C9114_00800 C9160_20005 C9201_17640 C9Z03_11025 CG692_00180 CI641_014360 CI693_12780 COD46_22200 CWS33_03515 D2185_07770 D3821_07085 D3O91_01535 D3Y67_00680 D4011_02210 D6W00_07670 D6X63_00505 D7W70_13040 D8Y65_09515 D9D20_08295 D9D44_05795 D9H68_15720 D9H94_06330 D9I18_04405 D9J11_13510 D9J52_05810 DAH30_09295 DAH34_17710 DAH37_06235 DEN89_23315 DEO04_15015 DK132_00975 DL292_04305 DL326_12595 DLU82_19955 DM973_03315 DMC44_08050 DMY83_06260 DNW42_15620 DOY22_05310 DOY61_22135 DQE91_09055 DT034_15395 E0I42_01095 E2119_06500 E5S42_20000 E5S56_11810 EA213_12050 EAI42_08035 EAI42_19730 EAI46_08330 ED307_02425 EEP23_07485 EH186_16255 EI021_09655 EI041_04975 EL75_3998 EL79_4176 EL80_4091 EPT01_09990 EXX24_09350 F0L67_00935 F1E19_03510 FNW97_22675 FQ022_21765 FRV13_14670 FV293_00830 G5632_13635 GII66_00800 GKF89_03420 GNZ03_04915 GP654_08840 GP678_11365 GP689_08305 GQA63_14675 GQE30_17865 GQE33_09220 GQE34_01730 GQE51_12505 GQE64_09140 GQF59_13930 GQM10_00800 GRW05_08900 GRW57_11930 GRW80_01300 GRW81_08375 HVY77_23140 HVY93_21430 HX136_22720 HXS78_20595 RK56_012375] Bifunctional NAD(P)H-hydrate repair enzyme (Nicotinamide nucleotide repair protein) [Includes: ADP-dependent (S)-NAD(P)H-hydrate dehydratase (EC 4.2.1.136) (ADP-dependent NAD(P)HX dehydratase); NAD(P)H-hydrate epimerase (EC 5.1.99.6)]

Bibliography :