GENTAUR Belgium BVBA BE0473327336 Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45
GENTAUR U.S.A Genprice Inc,Logistics 547 Yurok Circle, SanJose, CA 95123
Tel (408) 780-0908, Fax (408) 780-0908, [email protected]

Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, Gentaur another in time delivery

Potassium voltage-gated channel subfamily B member 1 (Delayed rectifier potassium channel 1) (DRK1) (Voltage-gated potassium channel subunit Kv2.1)

 KCNB1_RAT               Reviewed;         857 AA.
P15387;
01-APR-1990, integrated into UniProtKB/Swiss-Prot.
25-OCT-2002, sequence version 3.
23-FEB-2022, entry version 176.
RecName: Full=Potassium voltage-gated channel subfamily B member 1 {ECO:0000250|UniProtKB:Q14721};
AltName: Full=Delayed rectifier potassium channel 1 {ECO:0000303|PubMed:2770868};
Short=DRK1 {ECO:0000303|PubMed:2770868};
AltName: Full=Voltage-gated potassium channel subunit Kv2.1;
Name=Kcnb1 {ECO:0000312|RGD:2954};
Rattus norvegicus (Rat).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae;
Murinae; Rattus.
NCBI_TaxID=10116;
[1]
NUCLEOTIDE SEQUENCE [MRNA] OF 4-857, FUNCTION, BIOPHYSICOCHEMICAL
PROPERTIES, AND ACTIVITY REGULATION.
TISSUE=Brain;
PubMed=2770868; DOI=10.1038/340642a0;
Frech G.C., Vandongen A.M.J., Schuster G., Brown A.M., Joho R.H.;
"A novel potassium channel with delayed rectifier properties isolated from
rat brain by expression cloning.";
Nature 340:642-645(1989).
[2]
SEQUENCE REVISION.
Frech G.C.;
Submitted (FEB-1990) to the EMBL/GenBank/DDBJ databases.
[3]
NUCLEOTIDE SEQUENCE [MRNA] OF 1-575, AND TISSUE SPECIFICITY.
PubMed=1740690; DOI=10.1523/jneurosci.12-02-00538.1992;
Drewe J.A., Verma S., Frech G.C., Joho R.H.;
"Distinct spatial and temporal expression patterns of K+ channel mRNAs from
different subfamilies.";
J. Neurosci. 12:538-548(1992).
[4]
FUNCTION, AND BIOPHYSICOCHEMICAL PROPERTIES.
PubMed=2206531; DOI=10.1016/0896-6273(90)90082-q;
VanDongen A.M., Frech G.C., Drewe J.A., Joho R.H., Brown A.M.;
"Alteration and restoration of K+ channel function by deletions at the
N- and C-termini.";
Neuron 5:433-443(1990).
[5]
FUNCTION, AND ACTIVITY REGULATION.
PubMed=1875913;
Taglialatela M., Vandongen A.M., Drewe J.A., Joho R.H., Brown A.M.,
Kirsch G.E.;
"Patterns of internal and external tetraethylammonium block in four
homologous K+ channels.";
Mol. Pharmacol. 40:299-307(1991).
[6]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=1961744; DOI=10.1073/pnas.88.23.10764;
Trimmer J.S.;
"Immunological identification and characterization of a delayed rectifier
K+ channel polypeptide in rat brain.";
Proc. Natl. Acad. Sci. U.S.A. 88:10764-10768(1991).
[7]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=8508921; DOI=10.1016/0014-5793(93)81394-f;
Trimmer J.S.;
"Expression of Kv2.1 delayed rectifier K+ channel isoforms in the
developing rat brain.";
FEBS Lett. 324:205-210(1993).
[8]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=8463836; DOI=10.1523/jneurosci.13-04-01569.1993;
Hwang P.M., Fotuhi M., Bredt D.S., Cunningham A.M., Snyder S.H.;
"Contrasting immunohistochemical localizations in rat brain of two novel K+
channels of the Shab subfamily.";
J. Neurosci. 13:1569-1576(1993).
[9]
FUNCTION, BIOPHYSICOCHEMICAL PROPERTIES, PHOSPHORYLATION, ACTIVITY
REGULATION, SUBCELLULAR LOCATION, AND LACK OF GLYCOSYLATION.
PubMed=8083226;
Shi G., Kleinklaus A.K., Marrion N.V., Trimmer J.S.;
"Properties of Kv2.1 K+ channels expressed in transfected mammalian
cells.";
J. Biol. Chem. 269:23204-23211(1994).
[10]
SUBCELLULAR LOCATION, TISSUE SPECIFICITY, AND LACK OF INTERACTION WITH
KCNAB1 AND KCNAB2.
PubMed=7623158; DOI=10.1523/jneurosci.15-07-05360.1995;
Rhodes K.J., Keilbaugh S.A., Barrezueta N.X., Lopez K.L., Trimmer J.S.;
"Association and colocalization of K+ channel alpha- and beta-subunit
polypeptides in rat brain.";
J. Neurosci. 15:5360-5371(1995).
[11]
ACTIVITY REGULATION.
PubMed=7576642; DOI=10.1016/0896-6273(95)90184-1;
Swartz K.J., MacKinnon R.;
"An inhibitor of the Kv2.1 potassium channel isolated from the venom of a
Chilean tarantula.";
Neuron 15:941-949(1995).
[12]
FUNCTION, SUBCELLULAR LOCATION, AND DOMAIN.
PubMed=8978827; DOI=10.1083/jcb.135.6.1619;
Scannevin R.H., Murakoshi H., Rhodes K.J., Trimmer J.S.;
"Identification of a cytoplasmic domain important in the polarized
expression and clustering of the Kv2.1 K+ channel.";
J. Cell Biol. 135:1619-1632(1996).
[13]
FUNCTION, SUBUNIT, INTERACTION WITH KCNV1, AND SUBCELLULAR LOCATION.
PubMed=8670833; DOI=10.1002/j.1460-2075.1996.tb00697.x;
Hugnot J.-P., Salinas M., Lesage F., Guillemare E., de Weille J.,
Heurteaux C., Mattei M.-G., Lazdunski M.;
"Kv8.1, a new neuronal potassium channel subunit with specific inhibitory
properties towards Shab and Shaw channels.";
EMBO J. 15:3322-3331(1996).
[14]
FUNCTION, SUBUNIT, INTERACTION WITH KCNG1, AND SUBCELLULAR LOCATION.
PubMed=8980147; DOI=10.1016/s0014-5793(96)01316-6;
Post M.A., Kirsch G.E., Brown A.M.;
"Kv2.1 and electrically silent Kv6.1 potassium channel subunits combine and
express a novel current.";
FEBS Lett. 399:177-182(1996).
[15]
FUNCTION, SUBUNIT, INTERACTION WITH KCNS3, SUBCELLULAR LOCATION, ACTIVITY
REGULATION, AND TISSUE SPECIFICITY.
PubMed=9362476; DOI=10.1093/emboj/16.22.6615;
Patel A.J., Lazdunski M., Honore E.;
"Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-
sensitive pulmonary artery myocytes.";
EMBO J. 16:6615-6625(1997).
[16]
FUNCTION, SUBUNIT, AND SUBCELLULAR LOCATION.
PubMed=9079713; DOI=10.1074/jbc.272.13.8774;
Salinas M., de Weille J., Guillemare E., Lazdunski M., Hugnot J.-P.;
"Modes of regulation of shab K+ channel activity by the Kv8.1 subunit.";
J. Biol. Chem. 272:8774-8780(1997).
[17]
FUNCTION, SUBUNIT, AND SUBCELLULAR LOCATION.
PubMed=9305895; DOI=10.1074/jbc.272.39.24371;
Salinas M., Duprat F., Heurteaux C., Hugnot J.-P., Lazdunski M.;
"New modulatory alpha subunits for mammalian Shab K+ channels.";
J. Biol. Chem. 272:24371-24379(1997).
[18]
PHOSPHORYLATION, FUNCTION, AND MUTAGENESIS OF SER-444 AND SER-496.
PubMed=9351973; DOI=10.1124/mol.52.5.821;
Murakoshi H., Shi G., Scannevin R.H., Trimmer J.S.;
"Phosphorylation of the Kv2.1 K+ channel alters voltage-dependent
activation.";
Mol. Pharmacol. 52:821-828(1997).
[19]
FUNCTION, SUBUNIT, INTERACTION WITH KCNF1 AND KCNG1, AND SUBCELLULAR
LOCATION.
PubMed=9696692; DOI=10.1152/ajpcell.1998.274.6.c1501;
Kramer J.W., Post M.A., Brown A.M., Kirsch G.E.;
"Modulation of potassium channel gating by coexpression of Kv2.1 with
regulatory Kv5.1 or Kv6.1 alpha-subunits.";
Am. J. Physiol. 274:C1501-C1510(1998).
[20]
FUNCTION, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=9616203; DOI=10.1172/jci333;
Archer S.L., Souil E., Dinh-Xuan A.T., Schremmer B., Mercier J.C.,
El Yaagoubi A., Nguyen-Huu L., Reeve H.L., Hampl V.;
"Molecular identification of the role of voltage-gated K+ channels, Kv1.5
and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting
membrane potential in rat pulmonary artery myocytes.";
J. Clin. Invest. 101:2319-2330(1998).
[21]
FUNCTION, SUBCELLULAR LOCATION, SUBUNIT, AND INTERACTION WITH PIAS3.
PubMed=9565597; DOI=10.1074/jbc.273.19.11745;
Wible B.A., Yang Q., Kuryshev Y.A., Accili E.A., Brown A.M.;
"Cloning and expression of a novel K+ channel regulatory protein, KChAP.";
J. Biol. Chem. 273:11745-11751(1998).
[22]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=9522360; DOI=10.1016/s0306-4522(97)00519-8;
Du J., Tao-Cheng J.H., Zerfas P., McBain C.J.;
"The K+ channel, Kv2.1, is apposed to astrocytic processes and is
associated with inhibitory postsynaptic membranes in hippocampal and
cortical principal neurons and inhibitory interneurons.";
Neuroscience 84:37-48(1998).
[23]
REVIEW.
PubMed=10414301; DOI=10.1111/j.1749-6632.1999.tb11293.x;
Coetzee W.A., Amarillo Y., Chiu J., Chow A., Lau D., McCormack T.,
Moreno H., Nadal M.S., Ozaita A., Pountney D., Saganich M.,
Vega-Saenz de Miera E., Rudy B.;
"Molecular diversity of K+ channels.";
Ann. N. Y. Acad. Sci. 868:233-285(1999).
[24]
FUNCTION, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=10024359; DOI=10.1523/jneurosci.19-05-01728.1999;
Murakoshi H., Trimmer J.S.;
"Identification of the Kv2.1 K+ channel as a major component of the delayed
rectifier K+ current in rat hippocampal neurons.";
J. Neurosci. 19:1728-1735(1999).
[25]
FUNCTION, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=10414968; DOI=10.1523/jneurosci.19-15-06394.1999;
Baranauskas G., Tkatch T., Surmeier D.J.;
"Delayed rectifier currents in rat globus pallidus neurons are attributable
to Kv2.1 and Kv3.1/3.2 K(+) channels.";
J. Neurosci. 19:6394-6404(1999).
[26]
FUNCTION, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=10618149; DOI=10.1111/j.1469-7793.2000.t01-2-00019.xm;
Du J., Haak L.L., Phillips-Tansey E., Russell J.T., McBain C.J.;
"Frequency-dependent regulation of rat hippocampal somato-dendritic
excitability by the K+ channel subunit Kv2.1.";
J. Physiol. (Lond.) 522:19-31(2000).
[27]
SUBCELLULAR LOCATION, DOMAIN, AND MUTAGENESIS OF SER-587; SER-590; PHE-591
AND SER-593.
PubMed=10719893; DOI=10.1016/s0896-6273(00)80902-2;
Lim S.T., Antonucci D.E., Scannevin R.H., Trimmer J.S.;
"A novel targeting signal for proximal clustering of the Kv2.1 K+ channel
in hippocampal neurons.";
Neuron 25:385-397(2000).
[28]
FUNCTION, AND TISSUE SPECIFICITY.
PubMed=11463864; DOI=10.1210/mend.15.8.0685;
MacDonald P.E., Ha X.F., Wang J., Smukler S.R., Sun A.M., Gaisano H.Y.,
Salapatek A.M., Backx P.H., Wheeler M.B.;
"Members of the Kv1 and Kv2 voltage-dependent K(+) channel families
regulate insulin secretion.";
Mol. Endocrinol. 15:1423-1435(2001).
[29]
FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, AND MUTAGENESIS OF
TRP-369 AND TYR-384.
PubMed=12451110; DOI=10.1523/jneurosci.22-23-10094.2002;
Malin S.A., Nerbonne J.M.;
"Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits and
regulate tonic firing in mammalian sympathetic neurons.";
J. Neurosci. 22:10094-10105(2002).
[30]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=12127166; DOI=10.1016/s0024-3205(02)01922-7;
Lu Y., Hanna S.T., Tang G., Wang R.;
"Contributions of Kv1.2, Kv1.5 and Kv2.1 subunits to the native delayed
rectifier K(+) current in rat mesenteric artery smooth muscle cells.";
Life Sci. 71:1465-1473(2002).
[31]
FUNCTION, INTERACTION WITH SNAP25, SUBCELLULAR LOCATION, AND TISSUE
SPECIFICITY.
PubMed=12403834; DOI=10.1210/me.2002-0058;
MacDonald P.E., Wang G., Tsuk S., Dodo C., Kang Y., Tang L., Wheeler M.B.,
Cattral M.S., Lakey J.R., Salapatek A.M., Lotan I., Gaisano H.Y.;
"Synaptosome-associated protein of 25 kilodaltons modulates Kv2.1 voltage-
dependent K(+) channels in neuroendocrine islet beta-cells through an
interaction with the channel N terminus.";
Mol. Endocrinol. 16:2452-2461(2002).
[32]
ACTIVITY REGULATION.
PubMed=12065754; DOI=10.1124/mol.62.1.48;
Escoubas P., Diochot S., Celerier M.-L., Nakajima T., Lazdunski M.;
"Novel tarantula toxins for subtypes of voltage-dependent potassium
channels in the Kv2 and Kv4 subfamilies.";
Mol. Pharmacol. 62:48-57(2002).
[33]
FUNCTION, SELF-ASSOCIATION, DOMAIN, SUBCELLULAR LOCATION, AND MUTAGENESIS
OF GLN-71 AND GLU-79.
PubMed=12560340; DOI=10.1074/jbc.m212973200;
Ju M., Stevens L., Leadbitter E., Wray D.;
"The Roles of N- and C-terminal determinants in the activation of the Kv2.1
potassium channel.";
J. Biol. Chem. 278:12769-12778(2003).
[34]
PHOSPHORYLATION AT TYR-128, SUBCELLULAR LOCATION, AND MUTAGENESIS OF
TYR-128.
PubMed=12615930; DOI=10.1074/jbc.m212766200;
Tiran Z., Peretz A., Attali B., Elson A.;
"Phosphorylation-dependent regulation of Kv2.1 Channel activity at tyrosine
124 by Src and by protein-tyrosine phosphatase epsilon.";
J. Biol. Chem. 278:17509-17514(2003).
[35]
FUNCTION, INTERACTION WITH STX1A, AND SUBCELLULAR LOCATION.
PubMed=12621036; DOI=10.1074/jbc.m213088200;
Leung Y.M., Kang Y., Gao X., Xia F., Xie H., Sheu L., Tsuk S., Lotan I.,
Tsushima R.G., Gaisano H.Y.;
"Syntaxin 1A binds to the cytoplasmic C terminus of Kv2.1 to regulate
channel gating and trafficking.";
J. Biol. Chem. 278:17532-17538(2003).
[36]
FUNCTION, INTERACTION WITH SNP25 AND STX1A, AND SUBCELLULAR LOCATION.
PubMed=12807875; DOI=10.1074/jbc.m304943200;
Michaelevski I., Chikvashvili D., Tsuk S., Singer-Lahat D., Kang Y.,
Linial M., Gaisano H.Y., Fili O., Lotan I.;
"Direct interaction of target SNAREs with the Kv2.1 channel. Modal
regulation of channel activation and inactivation gating.";
J. Biol. Chem. 278:34320-34330(2003).
[37]
FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, AND MUTAGENESIS OF
TRP-369 AND TYR-384.
PubMed=12832499; DOI=10.1523/jneurosci.23-12-04798.2003;
Pal S., Hartnett K.A., Nerbonne J.M., Levitan E.S., Aizenman E.;
"Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels.";
J. Neurosci. 23:4798-4802(2003).
[38]
FUNCTION, SUBUNIT, INTERACTION WITH KCNE3, SUBCELLULAR LOCATION, DOMAIN,
AND TISSUE SPECIFICITY.
PubMed=12954870; DOI=10.1523/jneurosci.23-22-08077.2003;
McCrossan Z.A., Lewis A., Panaghie G., Jordan P.N., Christini D.J.,
Lerner D.J., Abbott G.W.;
"MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels in
mammalian brain.";
J. Neurosci. 23:8077-8091(2003).
[39]
FUNCTION, SUBCELLULAR LOCATION, INDUCTION, AND TISSUE SPECIFICITY.
PubMed=15322114; DOI=10.1074/jbc.m408789200;
Amberg G.C., Rossow C.F., Navedo M.F., Santana L.F.;
"NFATc3 regulates Kv2.1 expression in arterial smooth muscle.";
J. Biol. Chem. 279:47326-47334(2004).
[40]
FUNCTION, PHOSPHORYLATION, DEPHOSPHORYLATION, AND SUBCELLULAR LOCATION.
PubMed=15195093; DOI=10.1038/nn1260;
Misonou H., Mohapatra D.P., Park E.W., Leung V., Zhen D., Misonou K.,
Anderson A.E., Trimmer J.S.;
"Regulation of ion channel localization and phosphorylation by neuronal
activity.";
Nat. Neurosci. 7:711-718(2004).
[41]
REVIEW.
PubMed=15858231; DOI=10.1385/cbb:42:2:167;
Cox R.H.;
"Molecular determinants of voltage-gated potassium currents in vascular
smooth muscle.";
Cell Biochem. Biophys. 42:167-195(2005).
[42]
SUBCELLULAR LOCATION.
PubMed=15855232; DOI=10.1242/jcs.02348;
O'Connell K.M., Tamkun M.M.;
"Targeting of voltage-gated potassium channel isoforms to distinct cell
surface microdomains.";
J. Cell Sci. 118:2155-2166(2005).
[43]
FUNCTION, PHOSPHORYLATION, DEPHOSPHORYLATION, SUBCELLULAR LOCATION, AND
TISSUE SPECIFICITY.
PubMed=16319318; DOI=10.1523/jneurosci.3370-05.2005;
Misonou H., Mohapatra D.P., Menegola M., Trimmer J.S.;
"Calcium- and metabolic state-dependent modulation of the voltage-dependent
Kv2.1 channel regulates neuronal excitability in response to ischemia.";
J. Neurosci. 25:11184-11193(2005).
[44]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=16273079; DOI=10.1038/sj.cdd.4401792;
Pal S.K., Takimoto K., Aizenman E., Levitan E.S.;
"Apoptotic surface delivery of K+ channels.";
Cell Death Differ. 13:661-667(2006).
[45]
FUNCTION, PHOSPHORYLATION, DEPHOSPHORYLATION, DOMAIN, AND SUBCELLULAR
LOCATION.
PubMed=16407566; DOI=10.1523/jneurosci.4620-05.2006;
Mohapatra D.P., Trimmer J.S.;
"The Kv2.1 C terminus can autonomously transfer Kv2.1-like phosphorylation-
dependent localization, voltage-dependent gating, and muscarinic modulation
to diverse Kv channels.";
J. Neurosci. 26:685-695(2006).
[46]
SUBCELLULAR LOCATION.
PubMed=16988031; DOI=10.1523/jneurosci.1825-06.2006;
O'Connell K.M., Rolig A.S., Whitesell J.D., Tamkun M.M.;
"Kv2.1 potassium channels are retained within dynamic cell surface
microdomains that are defined by a perimeter fence.";
J. Neurosci. 26:9609-9618(2006).
[47]
PHOSPHORYLATION AT SER-457; SER-567; SER-607 AND SER-719, SUBCELLULAR
LOCATION, TISSUE SPECIFICITY, DEVELOPMENTAL STAGE, AND FUNCTION.
PubMed=17192433; DOI=10.1523/jneurosci.3970-06.2006;
Misonou H., Menegola M., Mohapatra D.P., Guy L.K., Park K.-S.,
Trimmer J.S.;
"Bidirectional activity-dependent regulation of neuronal ion channel
phosphorylation.";
J. Neurosci. 26:13505-13514(2006).
[48]
PHOSPHORYLATION AT SER-15; SER-457; SER-484; SER-496; SER-503; SER-520;
SER-541; SER-567; SER-590; SER-607; SER-655; SER-719; SER-771; SER-799;
SER-804 AND THR-836, FUNCTION, IDENTIFICATION BY MASS SPECTROMETRY, AND
MUTAGENESIS OF SER-15; SER-457; SER-484; SER-541; SER-567; SER-607;
SER-655; SER-719; SER-771 AND SER-804.
PubMed=16917065; DOI=10.1126/science.1124254;
Park K.-S., Mohapatra D.P., Misonou H., Trimmer J.S.;
"Graded regulation of the Kv2.1 potassium channel by variable
phosphorylation.";
Science 313:976-979(2006).
[49]
PHOSPHORYLATION AT SER-15; SER-457; SER-541; SER-607; SER-655; SER-719;
SER-799; SER-804 AND THR-836, AND IDENTIFICATION BY MASS SPECTROMETRY.
PubMed=18690023; DOI=10.4161/chan.4388;
Park K.S., Mohapatra D.P., Trimmer J.S.;
"Proteomic analyses of K(v)2.1 channel phosphorylation sites determining
cell background specific differences in function.";
Channels 1:59-61(2007).
[50]
SUBCELLULAR LOCATION.
PubMed=17606996; DOI=10.1242/jcs.007351;
Tamkun M.M., O'connell K.M., Rolig A.S.;
"A cytoskeletal-based perimeter fence selectively corrals a sub-population
of cell surface Kv2.1 channels.";
J. Cell Sci. 120:2413-2423(2007).
[51]
FUNCTION, INTERACTION WITH STX1A, SUBCELLULAR LOCATION, AND MUTAGENESIS OF
TRP-369 AND TYR-384.
PubMed=17301173; DOI=10.1523/jneurosci.4006-06.2007;
Singer-Lahat D., Sheinin A., Chikvashvili D., Tsuk S., Greitzer D.,
Friedrich R., Feinshreiber L., Ashery U., Benveniste M., Levitan E.S.,
Lotan I.;
"K+ channel facilitation of exocytosis by dynamic interaction with
syntaxin.";
J. Neurosci. 27:1651-1658(2007).
[52]
FUNCTION, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=17379638; DOI=10.1113/jphysiol.2007.128454;
Guan D., Tkatch T., Surmeier D.J., Armstrong W.E., Foehring R.C.;
"Kv2 subunits underlie slowly inactivating potassium current in rat
neocortical pyramidal neurons.";
J. Physiol. (Lond.) 581:941-960(2007).
[53]
PHOSPHORYLATION AT SER-804, MUTAGENESIS OF TRP-369; TYR-384 AND SER-804,
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=17360683; DOI=10.1073/pnas.0610159104;
Redman P.T., He K., Hartnett K.A., Jefferson B.S., Hu L., Rosenberg P.A.,
Levitan E.S., Aizenman E.;
"Apoptotic surge of potassium currents is mediated by p38 phosphorylation
of Kv2.1.";
Proc. Natl. Acad. Sci. U.S.A. 104:3568-3573(2007).
[54]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=17965280; DOI=10.1152/ajpheart.01038.2007;
O'Connell K.M., Whitesell J.D., Tamkun M.M.;
"Localization and mobility of the delayed-rectifer K+ channel Kv2.1 in
adult cardiomyocytes.";
Am. J. Physiol. 294:H229-H237(2008).
[55]
SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=19014551; DOI=10.1186/1471-2202-9-112;
Sarmiere P.D., Weigle C.M., Tamkun M.M.;
"The Kv2.1 K+ channel targets to the axon initial segment of hippocampal
and cortical neurons in culture and in situ.";
BMC Neurosci. 9:112-112(2008).
[56]
FUNCTION, SELF-ASSOCIATION, SUBCELLULAR LOCATION, PHOSPHORYLATION, AND
DOMAIN.
PubMed=18463252; DOI=10.1523/jneurosci.0186-08.2008;
Mohapatra D.P., Siino D.F., Trimmer J.S.;
"Interdomain cytoplasmic interactions govern the intracellular trafficking,
gating, and modulation of the Kv2.1 channel.";
J. Neurosci. 28:4982-4994(2008).
[57]
INTERACTION WITH VAMP2, AND SUBCELLULAR LOCATION.
PubMed=18542995; DOI=10.1007/s00424-008-0468-7;
Lvov A., Chikvashvili D., Michaelevski I., Lotan I.;
"VAMP2 interacts directly with the N terminus of Kv2.1 to enhance channel
inactivation.";
Pflugers Arch. 456:1121-1136(2008).
[58]
FUNCTION, INTERACTION WITH STX1A, AND SUBCELLULAR LOCATION.
PubMed=18167541; DOI=10.1371/journal.pone.0001381;
Singer-Lahat D., Chikvashvili D., Lotan I.;
"Direct interaction of endogenous Kv channels with syntaxin enhances
exocytosis by neuroendocrine cells.";
PLoS ONE 3:E1381-E1381(2008).
[59]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=19276663; DOI=10.4161/chan.3.1.7655;
Mohapatra D.P., Misonou H., Pan S.J., Held J.E., Surmeier D.J.,
Trimmer J.S.;
"Regulation of intrinsic excitability in hippocampal neurons by activity-
dependent modulation of the KV2.1 potassium channel.";
Channels 3:46-56(2009).
[60]
TISSUE SPECIFICITY.
PubMed=19074135; DOI=10.1074/jbc.m808786200;
Mederos y Schnitzler M., Rinne S., Skrobek L., Renigunta V.,
Schlichthorl G., Derst C., Gudermann T., Daut J., Preisig-Muller R.;
"Mutation of histidine 105 in the T1 domain of the potassium channel Kv2.1
disrupts heteromerization with Kv6.3 and Kv6.4.";
J. Biol. Chem. 284:4695-4704(2009).
[61]
INTERACTION WITH VAMP2, SELF-ASSOCIATION, DOMAIN, AND SUBCELLULAR LOCATION.
PubMed=19690160; DOI=10.1074/jbc.m109.028761;
Lvov A., Greitzer D., Berlin S., Chikvashvili D., Tsuk S., Lotan I.,
Michaelevski I.;
"Rearrangements in the relative orientation of cytoplasmic domains induced
by a membrane-anchored protein mediate modulations in Kv channel gating.";
J. Biol. Chem. 284:28276-28291(2009).
[62]
FUNCTION, SUBUNIT, INTERACTION WITH KCNE1 AND KCNE2, SUBCELLULAR LOCATION,
DOMAIN, AND TISSUE SPECIFICITY.
PubMed=19219384; DOI=10.1007/s00232-009-9154-8;
McCrossan Z.A., Roepke T.K., Lewis A., Panaghie G., Abbott G.W.;
"Regulation of the Kv2.1 potassium channel by MinK and MiRP1.";
J. Membr. Biol. 228:1-14(2009).
[63]
FUNCTION, SUBCELLULAR LOCATION, AND INTERACTION WITH SNAP25; STX1A AND
VAMP2.
PubMed=19077057; DOI=10.1111/j.1471-4159.2008.05834.x;
Yao H., Zhou K., Yan D., Li M., Wang Y.;
"The Kv2.1 channels mediate neuronal apoptosis induced by excitotoxicity.";
J. Neurochem. 108:909-919(2009).
[64]
FUNCTION, PHOSPHORYLATION AT TYR-128, DEPHOSPHORYLATION, AND MUTAGENESIS OF
TYR-128 AND SER-804.
PubMed=19622611; DOI=10.1113/jphysiol.2009.176321;
Redman P.T., Hartnett K.A., Aras M.A., Levitan E.S., Aizenman E.;
"Regulation of apoptotic potassium currents by coordinated zinc-dependent
signalling.";
J. Physiol. (Lond.) 587:4393-4404(2009).
[65]
FUNCTION, SUBUNIT, INTERACTION WITH KCNB2, SUBCELLULAR LOCATION,
MUTAGENESIS OF TRP-369 AND TYR-384, TISSUE SPECIFICITY, AND IDENTIFICATION
BY MASS SPECTROMETRY.
PubMed=20202934; DOI=10.1074/jbc.m109.074260;
Kihira Y., Hermanstyne T.O., Misonou H.;
"Formation of heteromeric Kv2 channels in mammalian brain neurons.";
J. Biol. Chem. 285:15048-15055(2010).
[66]
FUNCTION, INTERACTION WITH STX1A, SUBCELLULAR LOCATION, AND MUTAGENESIS OF
TRP-369 AND TYR-384.
PubMed=20484665; DOI=10.1242/jcs.063719;
Feinshreiber L., Singer-Lahat D., Friedrich R., Matti U., Sheinin A.,
Yizhar O., Nachman R., Chikvashvili D., Rettig J., Ashery U., Lotan I.;
"Non-conducting function of the Kv2.1 channel enables it to recruit
vesicles for release in neuroendocrine and nerve cells.";
J. Cell Sci. 123:1940-1947(2010).
[67]
PHOSPHORYLATION AT SER-520; SER-655; SER-607 AND SER-804, DEPHOSPHORYLATION
AT SER-607, AND SUBCELLULAR LOCATION.
PubMed=21712386; DOI=10.1074/jbc.m111.251942;
Cerda O., Trimmer J.S.;
"Activity-dependent phosphorylation of neuronal Kv2.1 potassium channels by
CDK5.";
J. Biol. Chem. 286:28738-28748(2011).
[68]
FUNCTION, SUMOYLATION AT LYS-474, DESUMOYLATION, SUBCELLULAR LOCATION,
MUTAGENESIS OF LYS-149; LYS-259 AND LYS-474, AND IDENTIFICATION BY MASS
SPECTROMETRY.
PubMed=21518833; DOI=10.1085/jgp.201110604;
Plant L.D., Dowdell E.J., Dementieva I.S., Marks J.D., Goldstein S.A.;
"SUMO modification of cell surface Kv2.1 potassium channels regulates the
activity of rat hippocampal neurons.";
J. Gen. Physiol. 137:441-454(2011).
[69]
PHOSPHORYLATION, ACETYLATION, AND INTERACTION WITH CREB1.
PubMed=21818121; DOI=10.1038/cdd.2011.102;
Kim S.J., Widenmaier S.B., Choi W.S., Nian C., Ao Z., Warnock G.,
McIntosh C.H.;
"Pancreatic beta-cell prosurvival effects of the incretin hormones involve
post-translational modification of Kv2.1 delayed rectifier channels.";
Cell Death Differ. 19:333-344(2012).
[70]
FUNCTION, INTERACTION WITH STX1A, SUBCELLULAR LOCATION, TISSUE SPECIFICITY,
AND MUTAGENESIS OF TRP-369 AND TYR-384.
PubMed=22411134; DOI=10.1007/s00125-012-2512-6;
Dai X.Q., Manning Fox J.E., Chikvashvili D., Casimir M., Plummer G.,
Hajmrle C., Spigelman A.F., Kin T., Singer-Lahat D., Kang Y., Shapiro A.M.,
Gaisano H.Y., Lotan I., Macdonald P.E.;
"The voltage-dependent potassium channel subunit Kv2.1 regulates insulin
secretion from rodent and human islets independently of its electrical
function.";
Diabetologia 55:1709-1720(2012).
[71]
SUBCELLULAR LOCATION.
PubMed=22648171; DOI=10.1091/mbc.e12-01-0047;
Deutsch E., Weigel A.V., Akin E.J., Fox P., Hansen G., Haberkorn C.J.,
Loftus R., Krapf D., Tamkun M.M.;
"Kv2.1 cell surface clusters are insertion platforms for ion channel
delivery to the plasma membrane.";
Mol. Biol. Cell 23:2917-2929(2012).
[72]
PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-484; SER-519; SER-520 AND
SER-655, AND IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
PubMed=22673903; DOI=10.1038/ncomms1871;
Lundby A., Secher A., Lage K., Nordsborg N.B., Dmytriyev A., Lundby C.,
Olsen J.V.;
"Quantitative maps of protein phosphorylation sites across 14 different rat
organs and tissues.";
Nat. Commun. 3:876-876(2012).
[73]
FUNCTION, AND SUBCELLULAR LOCATION.
PubMed=23878373; DOI=10.1113/jphysiol.2013.257253;
Guan D., Armstrong W.E., Foehring R.C.;
"Kv2 channels regulate firing rate in pyramidal neurons from rat
sensorimotor cortex.";
J. Physiol. (Lond.) 591:4807-4825(2013).
[74]
INTERACTION WITH MYL12B, SUBCELLULAR LOCATION, AND MUTAGENESIS OF SER-590.
PubMed=24569993; DOI=10.1074/jbc.m113.534495;
Jensen C.S., Watanabe S., Rasmussen H.B., Schmitt N., Olesen S.P.,
Frost N.A., Blanpied T.A., Misonou H.;
"Specific sorting and post-Golgi trafficking of dendritic potassium
channels in living neurons.";
J. Biol. Chem. 289:10566-10581(2014).
[75]
PHOSPHORYLATION AT SER-607, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
PubMed=24477962; DOI=10.1002/cne.23551;
King A.N., Manning C.F., Trimmer J.S.;
"A unique ion channel clustering domain on the axon initial segment of
mammalian neurons.";
J. Comp. Neurol. 522:2594-2608(2014).
[76]
FUNCTION, INTERACTION WITH STX1A, AND SUBCELLULAR LOCATION.
PubMed=24928958; DOI=10.1113/jphysiol.2014.276964;
McCord M.C., Kullmann P.H., He K., Hartnett K.A., Horn J.P., Lotan I.,
Aizenman E.;
"Syntaxin-binding domain of Kv2.1 is essential for the expression of
apoptotic K+ currents.";
J. Physiol. (Lond.) 592:3511-3521(2014).
[77]
X-RAY CRYSTALLOGRAPHY (2.40 ANGSTROMS) OF 272-304.
PubMed=18004376; DOI=10.1038/nature06265;
Long S.B., Tao X., Campbell E.B., MacKinnon R.;
"Atomic structure of a voltage-dependent K+ channel in a lipid membrane-
like environment.";
Nature 450:376-382(2007).
[78]
X-RAY CRYSTALLOGRAPHY (2.90 ANGSTROMS) OF 272-304.
PubMed=20360102; DOI=10.1126/science.1185954;
Tao X., Lee A., Limapichat W., Dougherty D.A., MacKinnon R.;
"A gating charge transfer center in voltage sensors.";
Science 328:67-73(2010).
[79]
X-RAY CRYSTALLOGRAPHY (2.50 ANGSTROMS) OF 272-304.
PubMed=23705070; DOI=10.7554/elife.00594;
Banerjee A., Lee A., Campbell E., Mackinnon R.;
"Structure of a pore-blocking toxin in complex with a eukaryotic voltage-
dependent K(+) channel.";
Elife 2:E00594-E00594(2013).
-!- FUNCTION: Voltage-gated potassium channel that mediates transmembrane
potassium transport in excitable membranes, primarily in the brain, but
also in the pancreas and cardiovascular system. Contributes to the
regulation of the action potential (AP) repolarization, duration and
frequency of repetitive AP firing in neurons, muscle cells and
endocrine cells and plays a role in homeostatic attenuation of
electrical excitability throughout the brain (PubMed:10024359,
PubMed:10618149, PubMed:12451110, PubMed:17379638, PubMed:19276663,
PubMed:23878373). Plays also a role in the regulation of exocytosis
independently of its electrical function (PubMed:20484665). Forms
tetrameric potassium-selective channels through which potassium ions
pass in accordance with their electrochemical gradient. The channel
alternates between opened and closed conformations in response to the
voltage difference across the membrane. Homotetrameric channels mediate
a delayed-rectifier voltage-dependent outward potassium current that
display rapid activation and slow inactivation in response to membrane
depolarization (PubMed:2770868, PubMed:2206531, PubMed:1875913,
PubMed:8083226, PubMed:8978827, PubMed:9351973, PubMed:9565597,
PubMed:12560340). Can form functional homotetrameric and
heterotetrameric channels that contain variable proportions of KCNB2;
channel properties depend on the type of alpha subunits that are part
of the channel (PubMed:20202934). Can also form functional
heterotetrameric channels with other alpha subunits that are non-
conducting when expressed alone, such as KCNF1, KCNG1, KCNG3, KCNG4,
KCNH1, KCNH2, KCNS1, KCNS2, KCNS3 and KCNV1, creating a functionally
diverse range of channel complexes (PubMed:8670833, PubMed:8980147,
PubMed:9362476, PubMed:9079713, PubMed:9305895, PubMed:9696692).
Heterotetrameric channel activity formed with KCNS3 show increased
current amplitude with the threshold for action potential activation
shifted towards more negative values in hypoxic-treated pulmonary
artery smooth muscle cells (PubMed:9362476). Channel properties are
also modulated by cytoplasmic ancillary beta subunits such as AMIGO1,
KCNE1, KCNE2 and KCNE3, slowing activation and inactivation rate of the
delayed rectifier potassium channels (PubMed:12954870,
PubMed:19219384). In vivo, membranes probably contain a mixture of
heteromeric potassium channel complexes, making it difficult to assign
currents observed in intact tissues to any particular potassium channel
family member. Major contributor to the slowly inactivating delayed-
rectifier voltage-gated potassium current in neurons of the central
nervous system, sympathetic ganglion neurons, neuroendocrine cells,
pancreatic beta cells, cardiomyocytes and smooth muscle cells
(PubMed:9362476, PubMed:9616203, PubMed:10024359, PubMed:10414968,
PubMed:10618149, PubMed:11463864, PubMed:12451110, PubMed:12127166,
PubMed:12403834, PubMed:12621036, PubMed:12807875, PubMed:12832499,
PubMed:12954870, PubMed:15322114, PubMed:15195093, PubMed:16407566,
PubMed:17301173, PubMed:17379638, PubMed:18463252, PubMed:18167541,
PubMed:19276663, PubMed:20484665, PubMed:21518833, PubMed:22411134,
PubMed:23878373). Mediates the major part of the somatodendritic
delayed-rectifier potassium current in hippocampal and cortical
pyramidal neurons and sympathetic superior cervical ganglion (CGC)
neurons that acts to slow down periods of firing, especially during
high frequency stimulation (PubMed:10618149, PubMed:12451110,
PubMed:16319318, PubMed:17379638, PubMed:19276663, PubMed:23878373,
PubMed:16917065). Plays a role in the induction of long-term
potentiation (LTP) of neuron excitability in the CA3 layer of the
hippocampus (By similarity). Contributes to the regulation of glucose-
induced action potential amplitude and duration in pancreatic beta
cells, hence limiting calcium influx and insulin secretion
(PubMed:11463864). Plays a role in the regulation of resting membrane
potential and contraction in hypoxia-treated pulmonary artery smooth
muscle cells (PubMed:9616203). May contribute to the regulation of the
duration of both the action potential of cardiomyocytes and the heart
ventricular repolarization QT interval (By similarity). Contributes to
the pronounced pro-apoptotic potassium current surge during neuronal
apoptotic cell death in response to oxidative injury (PubMed:12832499,
PubMed:16273079, PubMed:17360683, PubMed:19077057, PubMed:19622611,
PubMed:24928958). May confer neuroprotection in response to
hypoxia/ischemic insults by suppressing pyramidal neurons
hyperexcitability in hippocampal and cortical regions
(PubMed:16319318). Promotes trafficking of KCNG3, KCNH1 and KCNH2 to
the cell surface membrane, presumably by forming heterotetrameric
channels with these subunits (By similarity). Plays a role in the
calcium-dependent recruitment and release of fusion-competent vesicles
from the soma of neurons, neuroendocrine and glucose-induced pancreatic
beta cells by binding key components of the fusion machinery in a pore-
independent manner (PubMed:11463864, PubMed:17301173, PubMed:18167541,
PubMed:20484665, PubMed:22411134). {ECO:0000250|UniProtKB:Q03717,
ECO:0000269|PubMed:10024359, ECO:0000269|PubMed:10414968,
ECO:0000269|PubMed:10618149, ECO:0000269|PubMed:11463864,
ECO:0000269|PubMed:12127166, ECO:0000269|PubMed:12403834,
ECO:0000269|PubMed:12451110, ECO:0000269|PubMed:12560340,
ECO:0000269|PubMed:12621036, ECO:0000269|PubMed:12807875,
ECO:0000269|PubMed:12832499, ECO:0000269|PubMed:12954870,
ECO:0000269|PubMed:15195093, ECO:0000269|PubMed:15322114,
ECO:0000269|PubMed:16273079, ECO:0000269|PubMed:16319318,
ECO:0000269|PubMed:16407566, ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17301173, ECO:0000269|PubMed:17360683,
ECO:0000269|PubMed:17379638, ECO:0000269|PubMed:18167541,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:1875913,
ECO:0000269|PubMed:19077057, ECO:0000269|PubMed:19219384,
ECO:0000269|PubMed:19276663, ECO:0000269|PubMed:19622611,
ECO:0000269|PubMed:20202934, ECO:0000269|PubMed:20484665,
ECO:0000269|PubMed:21518833, ECO:0000269|PubMed:2206531,
ECO:0000269|PubMed:22411134, ECO:0000269|PubMed:23878373,
ECO:0000269|PubMed:24928958, ECO:0000269|PubMed:2770868,
ECO:0000269|PubMed:8083226, ECO:0000269|PubMed:8670833,
ECO:0000269|PubMed:8978827, ECO:0000269|PubMed:8980147,
ECO:0000269|PubMed:9079713, ECO:0000269|PubMed:9305895,
ECO:0000269|PubMed:9351973, ECO:0000269|PubMed:9362476,
ECO:0000269|PubMed:9565597, ECO:0000269|PubMed:9616203,
ECO:0000269|PubMed:9696692}.
-!- ACTIVITY REGULATION: Inhibited by 42 nM hanatoxin 1 (HaTx1), a spider
venom toxin of the tarantula G. spatulata (PubMed:7576642). Inhibited
by 100 nM stromatoxin 1 (ScTx1), a spider venom toxin of the tarantula
S. calceata (PubMed:12065754). Modestly sensitive to millimolar levels
of tetraethylammonium (TEA) and 4-aminopyridine (4-AP) (PubMed:2770868,
PubMed:1875913, PubMed:8083226, PubMed:9362476). Completely insensitive
to toxins such as dendrotoxin (DTX) and charybdotoxin (CTX)
(PubMed:9362476). {ECO:0000269|PubMed:12065754,
ECO:0000269|PubMed:1875913, ECO:0000269|PubMed:2770868,
ECO:0000269|PubMed:7576642, ECO:0000269|PubMed:8083226,
ECO:0000269|PubMed:9362476, ECO:0000305|PubMed:10414301,
ECO:0000305|PubMed:15858231}.
-!- BIOPHYSICOCHEMICAL PROPERTIES:
Kinetic parameters:
Note=Homotetrameric channels expressed in xenopus oocytes or in
mammalian non-neuronal cells display delayed-rectifier voltage-
dependent potassium currents which are activated during membrane
depolarization, i.e within a risetime of about 20 msec
(PubMed:2770868). After that, inactivate very slowly, i.e within more
than 5 sec (PubMed:2206531, PubMed:8083226). Their activation
requires low threshold potentials of about -20 to -30 mV, with a
midpoint activation at about 10 mV (PubMed:2770868, PubMed:2206531,
PubMed:8083226). For inactivation, the voltage at half-maximal
amplitude is about -20 mV (PubMed:2206531, PubMed:8083226). The time
constant for recovery after inactivation is about 1.6 sec. Channels
have an unitary conductance of about 8 pS (PubMed:10414301,
PubMed:15858231). The voltage-dependence of activation and
inactivation and other channel characteristics vary depending on the
experimental conditions, the expression system, the presence or
absence of ancillary subunits and post-translational modifications.
{ECO:0000269|PubMed:2206531, ECO:0000269|PubMed:2770868,
ECO:0000269|PubMed:8083226, ECO:0000305|PubMed:10414301,
ECO:0000305|PubMed:15858231};
-!- SUBUNIT: Homotetramer or heterotetramer with KCNB2 (PubMed:20202934).
Heterotetramer with non-conducting channel-forming alpha subunits such
as KCNF1, KCNG1, KCNG3, KCNG4, KCNH1, KCNH2, KCNS1, KCNS2, KCNS3 and
KCNV1 (PubMed:8670833, PubMed:8980147, PubMed:9362476, PubMed:9079713,
PubMed:9305895, PubMed:9696692). Channel activity is regulated by
association with ancillary beta subunits such as AMIGO1, KCNE1, KCNE2
and KCNE3 (PubMed:12954870, PubMed:19219384). Self-associates (via N-
terminus and C-terminus); self-association is required to regulate
trafficking, gating and C-terminal phosphorylation-dependent modulation
of the channel (PubMed:12560340, PubMed:18463252, PubMed:19690160).
Interacts (via C-terminus) with STX1A (via C-terminus); this decreases
the rate of channel activation and increases the rate of channel
inactivation in pancreatic beta cells, induces also neuronal apoptosis
in response to oxidative injury as well as pore-independent enhancement
of exocytosis in neuroendocrine cells, chromaffin cells, pancreatic
beta cells and from the soma of dorsal root ganglia (DRG) neurons
(PubMed:12621036, PubMed:12807875, PubMed:17301173, PubMed:18167541,
PubMed:19077057, PubMed:20484665, PubMed:22411134, PubMed:24928958).
Interacts (via N-terminus) with SNAP25; this decreases the rate of
channel inactivation in pancreatic beta cells and also increases
interaction during neuronal apoptosis in a N-methyl-D-aspartate
receptor (NMDAR)-dependent manner (PubMed:12403834, PubMed:12807875,
PubMed:19077057). Interacts (via N-terminus and C-terminus) with VAMP2
(via N-terminus); stimulates channel inactivation rate
(PubMed:18542995, PubMed:19690160, PubMed:19077057). Interacts with
CREB1; this promotes channel acetylation in response to stimulation by
incretin hormones (PubMed:21818121). Interacts (via N-terminus and C-
terminus) with MYL12B (PubMed:24569993). Interacts (via N-terminus)
with PIAS3; this increases the number of functional channels at the
cell surface (PubMed:9565597). Interacts with SUMO1. Interacts (via
phosphorylated form) with PTPRE; this reduces phosphorylation and
channel activity in heterologous cells (By similarity).
{ECO:0000250|UniProtKB:Q03717, ECO:0000250|UniProtKB:Q14721,
ECO:0000269|PubMed:12403834, ECO:0000269|PubMed:12560340,
ECO:0000269|PubMed:12621036, ECO:0000269|PubMed:12807875,
ECO:0000269|PubMed:12954870, ECO:0000269|PubMed:17301173,
ECO:0000269|PubMed:18167541, ECO:0000269|PubMed:18463252,
ECO:0000269|PubMed:18542995, ECO:0000269|PubMed:19077057,
ECO:0000269|PubMed:19219384, ECO:0000269|PubMed:19690160,
ECO:0000269|PubMed:20202934, ECO:0000269|PubMed:20484665,
ECO:0000269|PubMed:21818121, ECO:0000269|PubMed:22411134,
ECO:0000269|PubMed:24569993, ECO:0000269|PubMed:24928958,
ECO:0000269|PubMed:8670833, ECO:0000269|PubMed:8980147,
ECO:0000269|PubMed:9079713, ECO:0000269|PubMed:9305895,
ECO:0000269|PubMed:9362476, ECO:0000269|PubMed:9565597,
ECO:0000269|PubMed:9696692}.
-!- SUBCELLULAR LOCATION: Cell membrane {ECO:0000269|PubMed:10024359,
ECO:0000269|PubMed:10414968, ECO:0000269|PubMed:10618149,
ECO:0000269|PubMed:10719893, ECO:0000269|PubMed:12127166,
ECO:0000269|PubMed:12403834, ECO:0000269|PubMed:12451110,
ECO:0000269|PubMed:12560340, ECO:0000269|PubMed:12615930,
ECO:0000269|PubMed:12621036, ECO:0000269|PubMed:12807875,
ECO:0000269|PubMed:12832499, ECO:0000269|PubMed:12954870,
ECO:0000269|PubMed:15195093, ECO:0000269|PubMed:15322114,
ECO:0000269|PubMed:15855232, ECO:0000269|PubMed:16273079,
ECO:0000269|PubMed:16319318, ECO:0000269|PubMed:16407566,
ECO:0000269|PubMed:16988031, ECO:0000269|PubMed:17192433,
ECO:0000269|PubMed:17301173, ECO:0000269|PubMed:17360683,
ECO:0000269|PubMed:17379638, ECO:0000269|PubMed:17606996,
ECO:0000269|PubMed:17965280, ECO:0000269|PubMed:18167541,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:18542995,
ECO:0000269|PubMed:19014551, ECO:0000269|PubMed:19077057,
ECO:0000269|PubMed:19219384, ECO:0000269|PubMed:19276663,
ECO:0000269|PubMed:19690160, ECO:0000269|PubMed:20202934,
ECO:0000269|PubMed:20484665, ECO:0000269|PubMed:21518833,
ECO:0000269|PubMed:21712386, ECO:0000269|PubMed:22411134,
ECO:0000269|PubMed:23878373, ECO:0000269|PubMed:24477962,
ECO:0000269|PubMed:24569993, ECO:0000269|PubMed:24928958,
ECO:0000269|PubMed:7623158, ECO:0000269|PubMed:8083226,
ECO:0000269|PubMed:8463836, ECO:0000269|PubMed:8508921,
ECO:0000269|PubMed:8670833, ECO:0000269|PubMed:8978827,
ECO:0000269|PubMed:8980147, ECO:0000269|PubMed:9079713,
ECO:0000269|PubMed:9305895, ECO:0000269|PubMed:9362476,
ECO:0000269|PubMed:9522360, ECO:0000269|PubMed:9565597,
ECO:0000269|PubMed:9616203, ECO:0000269|PubMed:9696692}. Perikaryon
{ECO:0000269|PubMed:10024359, ECO:0000269|PubMed:10618149,
ECO:0000269|PubMed:10719893, ECO:0000269|PubMed:12954870,
ECO:0000269|PubMed:15195093, ECO:0000269|PubMed:16319318,
ECO:0000269|PubMed:16407566, ECO:0000269|PubMed:16988031,
ECO:0000269|PubMed:17379638, ECO:0000269|PubMed:17965280,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:19014551,
ECO:0000269|PubMed:19077057, ECO:0000269|PubMed:1961744,
ECO:0000269|PubMed:20202934, ECO:0000269|PubMed:21518833,
ECO:0000269|PubMed:21712386, ECO:0000269|PubMed:22648171,
ECO:0000269|PubMed:23878373, ECO:0000269|PubMed:24477962,
ECO:0000269|PubMed:24569993, ECO:0000269|PubMed:7623158,
ECO:0000269|PubMed:8463836, ECO:0000269|PubMed:8978827,
ECO:0000269|PubMed:9522360}. Cell projection, dendrite
{ECO:0000269|PubMed:10024359, ECO:0000269|PubMed:10618149,
ECO:0000269|PubMed:10719893, ECO:0000269|PubMed:12954870,
ECO:0000269|PubMed:15195093, ECO:0000269|PubMed:16319318,
ECO:0000269|PubMed:16407566, ECO:0000269|PubMed:17379638,
ECO:0000269|PubMed:17965280, ECO:0000269|PubMed:18463252,
ECO:0000269|PubMed:19014551, ECO:0000269|PubMed:19077057,
ECO:0000269|PubMed:20202934, ECO:0000269|PubMed:21518833,
ECO:0000269|PubMed:21712386, ECO:0000269|PubMed:22648171,
ECO:0000269|PubMed:23878373, ECO:0000269|PubMed:24477962,
ECO:0000269|PubMed:24569993, ECO:0000269|PubMed:7623158,
ECO:0000269|PubMed:8463836, ECO:0000269|PubMed:9522360}. Cell
projection, axon {ECO:0000269|PubMed:19014551,
ECO:0000269|PubMed:22648171, ECO:0000269|PubMed:24477962}. Cell
junction, synapse, postsynaptic cell membrane
{ECO:0000269|PubMed:9522360}. Cell junction, synapse
{ECO:0000269|PubMed:9522360}. Cell junction, synapse, synaptosome
{ECO:0000269|PubMed:8508921}. Membrane {ECO:0000269|PubMed:8508921};
Multi-pass membrane protein. Lateral cell membrane
{ECO:0000269|PubMed:8978827}. Cell membrane, sarcolemma
{ECO:0000269|PubMed:17965280}. Note=Localizes to high-density
somatodendritic clusters and non-clustered sites on the surface of
neocortical and hippocampal pyramidal neurons in a cortical actin
cytoskeleton-dependent manner (PubMed:1961744, PubMed:8978827,
PubMed:9522360, PubMed:10024359, PubMed:10719893, PubMed:15195093,
PubMed:16319318, PubMed:16407566, PubMed:16988031, PubMed:17606996,
PubMed:17379638, PubMed:19014551, PubMed:18463252, PubMed:22648171,
PubMed:23878373, PubMed:24569993, PubMed:24477962). Localizes also to
high-density clusters in the axon initial segment (AIS), at ankyrin-G-
deficient sites, on the surface of neocortical and hippocampal
pyramidal neurons (PubMed:17379638, PubMed:19014551, PubMed:22648171,
PubMed:24477962). KCNB1-containing AIS clusters localize either in
close apposition to smooth endoplasmic reticulum cisternal organelles
or with GABA-A receptor-containing synapses of hippocampal and cortical
pyramidal neurons, respectively (PubMed:24477962). Localizes to high-
density clusters on the cell surface of atrial and ventricular myocytes
and at the lateral plasma membrane in epithelial cells (PubMed:8978827,
PubMed:17965280). Localizes both to the axial and transverse tubules (T
tubule) and sarcolemma in ventricular myocytes (PubMed:17965280).
Associated with lipid raft domains (PubMed:15855232). In cortical
neurons, apoptotic injuries induce de novo plasma membrane insertion in
a SNARE-dependent manner causing an apoptotic potassium current surge
(PubMed:16273079, PubMed:19077057). {ECO:0000250|UniProtKB:Q03717,
ECO:0000250|UniProtKB:Q14721, ECO:0000269|PubMed:10024359,
ECO:0000269|PubMed:10719893, ECO:0000269|PubMed:12615930,
ECO:0000269|PubMed:12807875, ECO:0000269|PubMed:12954870,
ECO:0000269|PubMed:15195093, ECO:0000269|PubMed:15855232,
ECO:0000269|PubMed:16273079, ECO:0000269|PubMed:16319318,
ECO:0000269|PubMed:16407566, ECO:0000269|PubMed:16988031,
ECO:0000269|PubMed:17301173, ECO:0000269|PubMed:17379638,
ECO:0000269|PubMed:17606996, ECO:0000269|PubMed:17965280,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:19014551,
ECO:0000269|PubMed:19077057, ECO:0000269|PubMed:19219384,
ECO:0000269|PubMed:1961744, ECO:0000269|PubMed:20202934,
ECO:0000269|PubMed:21518833, ECO:0000269|PubMed:22648171,
ECO:0000269|PubMed:23878373, ECO:0000269|PubMed:24477962,
ECO:0000269|PubMed:24569993, ECO:0000269|PubMed:8508921,
ECO:0000269|PubMed:8978827, ECO:0000269|PubMed:9522360}.
-!- TISSUE SPECIFICITY: Expressed in brain (PubMed:1740690, PubMed:1961744,
PubMed:8508921, PubMed:7623158, PubMed:12954870). Expressed in the
hippocampus, cerebral cortex, cerebellum, thalamus, hypothalamus,
olfactory bulb, corpus striatum and medial hebenula (PubMed:8463836,
PubMed:10414301, PubMed:16319318). Expressed in pancreatic islets
(PubMed:12403834). Expressed in heart and skeletal muscle
(PubMed:1740690, PubMed:19219384, PubMed:10414301). Levels remain
constant throughout postnatal development (PubMed:17192433). Expressed
in neocortical pyramidal neurons and inhibitory interneurons
(PubMed:1961744, PubMed:9522360, PubMed:10618149, PubMed:12832499,
PubMed:17192433, PubMed:17379638, PubMed:19014551, PubMed:20202934,
PubMed:24477962). Expressed in the superior cervical ganglion (SCG)
neurons (PubMed:12451110). Expressed in globus pallidus neurons
(PubMed:10414968). Expressed in pancreatic beta cells (PubMed:11463864,
PubMed:22411134). Expressed in cardiomyocytes (PubMed:17965280).
Expressed in arterial smooth muscle, alveolar epithelium and parenchyma
(at protein level) (PubMed:9362476, PubMed:9616203, PubMed:15322114).
Expressed in brain, heart, lung, liver, colon, kidney and adrenal gland
(PubMed:8508921, PubMed:9362476, PubMed:19074135). Expressed in
pyramidal cells of the cerebral cortex, in Purkinje and granule cells
of the cerebellum (PubMed:8463836). Expressed in CA1-CA3 pyramidal
cells, dentate granule cells and interneurons of the hippocampus
(PubMed:7623158, PubMed:10024359). Expressed in pulmonary artery (PA)
smooth muscle cells (PubMed:9362476). {ECO:0000269|PubMed:10024359,
ECO:0000269|PubMed:10414968, ECO:0000269|PubMed:10618149,
ECO:0000269|PubMed:11463864, ECO:0000269|PubMed:12403834,
ECO:0000269|PubMed:12451110, ECO:0000269|PubMed:12832499,
ECO:0000269|PubMed:12954870, ECO:0000269|PubMed:15322114,
ECO:0000269|PubMed:16319318, ECO:0000269|PubMed:17192433,
ECO:0000269|PubMed:17379638, ECO:0000269|PubMed:1740690,
ECO:0000269|PubMed:17965280, ECO:0000269|PubMed:19014551,
ECO:0000269|PubMed:19074135, ECO:0000269|PubMed:19219384,
ECO:0000269|PubMed:1961744, ECO:0000269|PubMed:20202934,
ECO:0000269|PubMed:22411134, ECO:0000269|PubMed:24477962,
ECO:0000269|PubMed:7623158, ECO:0000269|PubMed:8463836,
ECO:0000269|PubMed:8508921, ECO:0000269|PubMed:9362476,
ECO:0000269|PubMed:9522360, ECO:0000269|PubMed:9616203}.
-!- DEVELOPMENTAL STAGE: Expressed in embryonic brain at 14 dpc, and
thereafter (at protein level) (PubMed:8508921). Expressed in embryonic
brain at 14 dpc, and thereafter (PubMed:8508921).
{ECO:0000269|PubMed:8508921}.
-!- INDUCTION: Down-regulated by angiotensin II in a NFATC3-dependent
manner (PubMed:15322114). {ECO:0000269|PubMed:15322114}.
-!- DOMAIN: The transmembrane segment S4 functions as voltage-sensor and is
characterized by a series of positively charged amino acids at every
third position. Channel opening and closing is effected by a
conformation change that affects the position and orientation of the
voltage-sensor paddle formed by S3 and S4 within the membrane. A
transmembrane electric field that is positive inside would push the
positively charged S4 segment outwards, thereby opening the pore, while
a field that is negative inside would pull the S4 segment inwards and
close the pore. Changes in the position and orientation of S4 are then
transmitted to the activation gate formed by the inner helix bundle via
the S4-S5 linker region. {ECO:0000250|UniProtKB:P63142}.
-!- DOMAIN: The N-terminal and C-terminal cytoplasmic regions mediate
homooligomerization; self-association is required to regulate
trafficking, gating and C-terminal phosphorylation-dependent modulation
of the channel (PubMed:12560340, PubMed:18463252, PubMed:19690160). The
N-terminal cytoplasmic region is important for interaction with other
channel-forming alpha subunits and with ancillary beta subunits
(PubMed:12954870, PubMed:19219384). The C-terminus is necessary and
sufficient for the restricted localization to, and clustering within,
both in soma and proximal portions of dendrite of neurons and in
lateral membrane of non-neuronal polarized cells (PubMed:8978827,
PubMed:10719893). The C-terminus is both necessary and sufficient as a
mediator of cholinergic and calcium-stimulated modulation of channel
cell membrane clustering localization and activity in hippocampal
neurons (PubMed:16407566). {ECO:0000250|UniProtKB:Q14721,
ECO:0000269|PubMed:10719893, ECO:0000269|PubMed:12560340,
ECO:0000269|PubMed:12954870, ECO:0000269|PubMed:16407566,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:19219384,
ECO:0000269|PubMed:19690160, ECO:0000269|PubMed:8978827}.
-!- PTM: Phosphorylated (PubMed:8083226, PubMed:15195093, PubMed:16319318,
PubMed:16407566, PubMed:18463252). Differential C-terminal
phosphorylation on a subset of serines allows graded activity-dependent
regulation of channel gating in hippocampal neurons (PubMed:9351973,
PubMed:17192433, PubMed:16917065). Ser-607 and Tyr-128 are significant
sites of voltage-gated regulation through
phosphorylation/dephosphorylation activities (PubMed:12615930,
PubMed:17192433). Tyr-128 can be phosphorylated by Src and
dephosphorylated by cytoplasmic form of the phosphatase PTPRE isoform 2
(PubMed:12615930). CDK5-induced Ser-607 phosphorylation increases in
response to acute blockade of neuronal activity (PubMed:21712386).
Phosphorylated on Tyr-128 by Src and on Ser-804 by MAPK14/P38MAPK;
phosphorylations are necessary and sufficient for an increase in plasma
membrane insertion, apoptotic potassium current surge and completion of
the neuronal cell death program (PubMed:17360683, PubMed:19622611).
Phosphorylated on Ser-520, Ser-607, Ser-655 and Ser-804 by CDK5;
phosphorylation is necessary for KCNB1 channel clustering formation
(PubMed:21712386). The Ser-607 phosphorylation state differs between
KCNB1-containing clusters on the proximal and distal portions of the
axon initial segment (AIS) (PubMed:24477962). Highly phosphorylated on
serine residues in the C-terminal cytoplasmic tail in resting neurons
(PubMed:9351973, PubMed:16917065). Phosphorylated in pancreatic beta
cells in response to incretin hormones stimulation in a PKA- and
RPS6KA5/MSK1-dependent signaling pathway, promoting beta cell survival
(PubMed:21818121). Phosphorylation on Ser-567 is reduced during
postnatal development with low levels at P2 and P5; levels then
increase to reach adult levels by P14 (PubMed:17192433).
Phosphorylation on Ser-457, Ser-541, Ser-567, Ser-607, Ser-655 and Ser-
719 as well as the N-terminal Ser-15 are sensitive to calcineurin-
mediated dephosphorylation contributing to the modulation of the
voltage-dependent gating properties (PubMed:17192433, PubMed:16917065).
Dephosphorylation by phosphatase PTPRE isoform 2 confers
neuroprotection by its inhibitory influence on the neuronal apoptotic
potassium current surge in a Zn(2+)-dependent manner (PubMed:19622611).
Dephosphorylated at Ser-607 by protein phosphatase PPP1CA
(PubMed:21712386). Hypoxia-, seizure- or glutamate-induced neuronal
activities promote calcium/calcineurin-dependent dephosphorylation
resulting in a loss of KCNB1-containing clustering and enhanced channel
activity (PubMed:15195093, PubMed:16319318, PubMed:16407566,
PubMed:17192433, PubMed:16917065). In response to brain ischemia, Ser-
567 and Ser-607 are strongly dephosphorylated while Ser-457 and Ser-719
are less dephosphorylated (PubMed:17192433). In response to brain
seizures, phosphorylation levels on Ser-567 and Ser-607 are greatly
reduced (PubMed:17192433). Phosphorylated/dephosphorylated by Src or
FYN tyrosine-protein kinases and tyrosine phosphatase PTPRE in primary
Schwann cells and sciatic nerve tissue (By similarity).
{ECO:0000250|UniProtKB:Q03717, ECO:0000269|PubMed:12615930,
ECO:0000269|PubMed:15195093, ECO:0000269|PubMed:16319318,
ECO:0000269|PubMed:16407566, ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17192433, ECO:0000269|PubMed:17360683,
ECO:0000269|PubMed:18463252, ECO:0000269|PubMed:18690023,
ECO:0000269|PubMed:19622611, ECO:0000269|PubMed:21712386,
ECO:0000269|PubMed:21818121, ECO:0000269|PubMed:24477962,
ECO:0000269|PubMed:8083226, ECO:0000269|PubMed:9351973}.
-!- PTM: Acetylated. Acetylation occurs in pancreatic beta cells in
response to stimulation by incretin hormones in a histone
acetyltransferase (HAT)/histone deacetylase (HDAC)-dependent signaling
pathway, promoting beta cell survival (PubMed:21818121).
{ECO:0000269|PubMed:21818121}.
-!- PTM: Sumoylated on Lys-474, preferentially with SUMO1; sumoylation
induces a positive shift in the voltage-dependence of activation and
inhibits channel activity (PubMed:21518833). Sumoylation increases the
frequency of repetitive action potential firing at the cell surface of
hippocampal neurons and decreases its frequency in pancreatic beta
cells (PubMed:21518833). Desumoylated by SENP1 (PubMed:21518833).
{ECO:0000269|PubMed:21518833}.
-!- PTM: Not glycosylated (PubMed:8083226). {ECO:0000269|PubMed:8083226}.
-!- SIMILARITY: Belongs to the potassium channel family. B (Shab) (TC
1.A.1.2) subfamily. Kv2.1/KCNB1 sub-subfamily. {ECO:0000305}.
-!- SEQUENCE CAUTION:
Sequence=CAA34497.1; Type=Erroneous initiation; Evidence={ECO:0000305};
---------------------------------------------------------------------------
Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
Distributed under the Creative Commons Attribution (CC BY 4.0) License
---------------------------------------------------------------------------
EMBL; X16476; CAA34497.1; ALT_INIT; mRNA.
PIR; S05448; CHRTD1.
RefSeq; NP_037318.1; NM_013186.1.
PDB; 2R9R; X-ray; 2.40 A; B/H=272-304.
PDB; 3LNM; X-ray; 2.90 A; B/D=272-304.
PDB; 4JTA; X-ray; 2.50 A; B/Q=274-306.
PDB; 4JTC; X-ray; 2.56 A; B/H=274-306.
PDB; 4JTD; X-ray; 2.54 A; B/H=274-306.
PDBsum; 2R9R; -.
PDBsum; 3LNM; -.
PDBsum; 4JTA; -.
PDBsum; 4JTC; -.
PDBsum; 4JTD; -.
SMR; P15387; -.
BioGRID; 247764; 6.
CORUM; P15387; -.
IntAct; P15387; 4.
MINT; P15387; -.
STRING; 10116.ENSRNOP00000065961; -.
BindingDB; P15387; -.
ChEMBL; CHEMBL1075226; -.
GuidetoPHARMACOLOGY; 546; -.
iPTMnet; P15387; -.
PhosphoSitePlus; P15387; -.
PaxDb; P15387; -.
PRIDE; P15387; -.
ABCD; P15387; 5 sequenced antibodies.
GeneID; 25736; -.
KEGG; rno:25736; -.
UCSC; RGD:2954; rat.
CTD; 3745; -.
RGD; 2954; Kcnb1.
eggNOG; KOG3713; Eukaryota.
HOGENOM; CLU_011722_2_1_1; -.
InParanoid; P15387; -.
OrthoDB; 203440at2759; -.
PhylomeDB; P15387; -.
Reactome; R-RNO-1296072; Voltage gated Potassium channels.
Reactome; R-RNO-381676; Glucagon-like Peptide-1 (GLP1) regulates insulin secretion.
EvolutionaryTrace; P15387; -.
PRO; PR:P15387; -.
Proteomes; UP000002494; Unplaced.
Genevisible; P15387; RN.
GO; GO:0030424; C:axon; IDA:UniProtKB.
GO; GO:0009986; C:cell surface; IDA:RGD.
GO; GO:0030425; C:dendrite; IDA:UniProtKB.
GO; GO:0032590; C:dendrite membrane; IDA:RGD.
GO; GO:0005783; C:endoplasmic reticulum; IDA:RGD.
GO; GO:0016021; C:integral component of membrane; IBA:GO_Central.
GO; GO:0016328; C:lateral plasma membrane; IEA:UniProtKB-SubCell.
GO; GO:0016020; C:membrane; IDA:RGD.
GO; GO:0043025; C:neuronal cell body; IDA:RGD.
GO; GO:0032809; C:neuronal cell body membrane; IDA:UniProtKB.
GO; GO:0043204; C:perikaryon; IDA:UniProtKB.
GO; GO:0005886; C:plasma membrane; IDA:UniProtKB.
GO; GO:0045211; C:postsynaptic membrane; IDA:RGD.
GO; GO:0042383; C:sarcolemma; IEA:UniProtKB-SubCell.
GO; GO:0008076; C:voltage-gated potassium channel complex; IDA:UniProtKB.
GO; GO:0005251; F:delayed rectifier potassium channel activity; IDA:UniProtKB.
GO; GO:0015271; F:outward rectifier potassium channel activity; IMP:RGD.
GO; GO:0046982; F:protein heterodimerization activity; IDA:UniProtKB.
GO; GO:0047485; F:protein N-terminus binding; IPI:RGD.
GO; GO:0000149; F:SNARE binding; IPI:UniProtKB.
GO; GO:0044325; F:transmembrane transporter binding; IPI:UniProtKB.
GO; GO:0005249; F:voltage-gated potassium channel activity; IDA:MGI.
GO; GO:0001508; P:action potential; IDA:UniProtKB.
GO; GO:0071333; P:cellular response to glucose stimulus; ISS:UniProtKB.
GO; GO:0031669; P:cellular response to nutrient levels; IDA:UniProtKB.
GO; GO:0042593; P:glucose homeostasis; ISS:UniProtKB.
GO; GO:0007215; P:glutamate receptor signaling pathway; IDA:UniProtKB.
GO; GO:0046676; P:negative regulation of insulin secretion; ISS:UniProtKB.
GO; GO:0045956; P:positive regulation of calcium ion-dependent exocytosis; IDA:UniProtKB.
GO; GO:0033605; P:positive regulation of catecholamine secretion; IDA:UniProtKB.
GO; GO:1900454; P:positive regulation of long-term synaptic depression; ISS:UniProtKB.
GO; GO:0010701; P:positive regulation of norepinephrine secretion; IDA:UniProtKB.
GO; GO:0090314; P:positive regulation of protein targeting to membrane; IDA:UniProtKB.
GO; GO:0097623; P:potassium ion export across plasma membrane; IMP:RGD.
GO; GO:0071805; P:potassium ion transmembrane transport; IDA:UniProtKB.
GO; GO:0006813; P:potassium ion transport; IDA:UniProtKB.
GO; GO:0051260; P:protein homooligomerization; IEA:InterPro.
GO; GO:0072659; P:protein localization to plasma membrane; IDA:UniProtKB.
GO; GO:0098900; P:regulation of action potential; ISS:UniProtKB.
GO; GO:0034765; P:regulation of ion transmembrane transport; IEA:UniProtKB-KW.
GO; GO:2000671; P:regulation of motor neuron apoptotic process; IDA:UniProtKB.
GO; GO:0006904; P:vesicle docking involved in exocytosis; IDA:UniProtKB.
Gene3D; 1.20.120.350; -; 1.
Gene3D; 3.30.710.10; -; 1.
InterPro; IPR000210; BTB/POZ_dom.
InterPro; IPR005821; Ion_trans_dom.
InterPro; IPR003968; K_chnl_volt-dep_Kv.
InterPro; IPR003973; K_chnl_volt-dep_Kv2.
InterPro; IPR004350; K_chnl_volt-dep_Kv2.1.
InterPro; IPR011333; SKP1/BTB/POZ_sf.
InterPro; IPR003131; T1-type_BTB.
InterPro; IPR028325; VG_K_chnl.
InterPro; IPR027359; Volt_channel_dom_sf.
PANTHER; PTHR11537; PTHR11537; 1.
Pfam; PF02214; BTB_2; 1.
Pfam; PF00520; Ion_trans; 1.
Pfam; PF03521; Kv2channel; 2.
PRINTS; PR01514; KV21CHANNEL.
PRINTS; PR01491; KVCHANNEL.
PRINTS; PR01495; SHABCHANNEL.
SMART; SM00225; BTB; 1.
SUPFAM; SSF54695; SSF54695; 1.
1: Evidence at protein level;
3D-structure; Cell junction; Cell membrane; Cell projection; Exocytosis;
Ion channel; Ion transport; Isopeptide bond; Membrane; Phosphoprotein;
Postsynaptic cell membrane; Potassium; Potassium channel;
Potassium transport; Reference proteome; Synapse; Synaptosome;
Transmembrane; Transmembrane helix; Transport; Ubl conjugation;
Voltage-gated channel.
CHAIN 1..857
/note="Potassium voltage-gated channel subfamily B member
1"
/id="PRO_0000054046"
TOPO_DOM 1..186
/note="Cytoplasmic"
/evidence="ECO:0000250|UniProtKB:P63142"
TRANSMEM 187..208
/note="Helical; Name=Segment S1"
/evidence="ECO:0000255"
TOPO_DOM 209..228
/note="Extracellular"
/evidence="ECO:0000250|UniProtKB:P63142"
TRANSMEM 229..250
/note="Helical; Name=Segment S2"
/evidence="ECO:0000255"
TOPO_DOM 251..259
/note="Cytoplasmic"
/evidence="ECO:0000250|UniProtKB:P63142"
TRANSMEM 260..280
/note="Helical; Name=Segment S3"
/evidence="ECO:0000250|UniProtKB:P63142"
TOPO_DOM 281..294
/note="Extracellular"
/evidence="ECO:0000250|UniProtKB:P63142"
TRANSMEM 295..316
/note="Helical; Voltage-sensor; Name=Segment S4"
/evidence="ECO:0000250|UniProtKB:P63142"
TOPO_DOM 317..330
/note="Cytoplasmic"
/evidence="ECO:0000250|UniProtKB:P63142"
TRANSMEM 331..351
/note="Helical; Name=Segment S5"
/evidence="ECO:0000250|UniProtKB:P63142"
TOPO_DOM 352..364
/note="Extracellular"
/evidence="ECO:0000250|UniProtKB:P63142"
INTRAMEM 365..376
/note="Helical; Name=Pore helix"
/evidence="ECO:0000250|UniProtKB:P63142"
INTRAMEM 377..384
/evidence="ECO:0000250|UniProtKB:P63142"
TOPO_DOM 385..391
/note="Extracellular"
/evidence="ECO:0000250|UniProtKB:P63142"
TRANSMEM 392..420
/note="Helical; Name=Segment S6"
/evidence="ECO:0000250|UniProtKB:P63142"
TOPO_DOM 421..857
/note="Cytoplasmic"
/evidence="ECO:0000250|UniProtKB:P63142"
REGION 1..21
/note="Disordered"
/evidence="ECO:0000256|SAM:MobiDB-lite"
REGION 59..75
/note="Self-association"
/evidence="ECO:0000269|PubMed:18463252,
ECO:0000269|PubMed:19690160"
REGION 448..481
/note="Self-association"
/evidence="ECO:0000269|PubMed:18463252,
ECO:0000269|PubMed:19690160"
REGION 476..524
/note="Disordered"
/evidence="ECO:0000256|SAM:MobiDB-lite"
REGION 540..569
/note="Disordered"
/evidence="ECO:0000256|SAM:MobiDB-lite"
REGION 610..658
/note="Disordered"
/evidence="ECO:0000256|SAM:MobiDB-lite"
REGION 770..802
/note="Disordered"
/evidence="ECO:0000256|SAM:MobiDB-lite"
REGION 818..857
/note="Disordered"
/evidence="ECO:0000256|SAM:MobiDB-lite"
MOTIF 377..382
/note="Selectivity filter"
/evidence="ECO:0000250|UniProtKB:P63142"
COMPBIAS 491..506
/note="Polar residues"
/evidence="ECO:0000256|SAM:MobiDB-lite"
COMPBIAS 639..658
/note="Polar residues"
/evidence="ECO:0000256|SAM:MobiDB-lite"
MOD_RES 15
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:18690023"
MOD_RES 128
/note="Phosphotyrosine; by Src"
/evidence="ECO:0000269|PubMed:12615930,
ECO:0000269|PubMed:19622611"
MOD_RES 444
/note="Phosphoserine"
/evidence="ECO:0000250|UniProtKB:Q03717"
MOD_RES 457
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17192433, ECO:0000269|PubMed:18690023"
MOD_RES 484
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0007744|PubMed:22673903"
MOD_RES 496
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:16917065"
MOD_RES 503
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:16917065"
MOD_RES 519
/note="Phosphoserine"
/evidence="ECO:0007744|PubMed:22673903"
MOD_RES 520
/note="Phosphoserine; by CDK5; in vitro"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:21712386, ECO:0007744|PubMed:22673903"
MOD_RES 541
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:18690023"
MOD_RES 567
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17192433"
MOD_RES 590
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:16917065"
MOD_RES 607
/note="Phosphoserine; by CDK5"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17192433, ECO:0000269|PubMed:18690023,
ECO:0000269|PubMed:21712386, ECO:0000269|PubMed:24477962"
MOD_RES 655
/note="Phosphoserine; by CDK5; in vitro"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:18690023, ECO:0000269|PubMed:21712386,
ECO:0007744|PubMed:22673903"
MOD_RES 719
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17192433, ECO:0000269|PubMed:18690023"
MOD_RES 771
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:16917065"
MOD_RES 799
/note="Phosphoserine"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:18690023"
MOD_RES 804
/note="Phosphoserine; by CDK5, MAPK14; in vitro"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17360683, ECO:0000269|PubMed:18690023,
ECO:0000269|PubMed:21712386"
MOD_RES 836
/note="Phosphothreonine"
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:18690023"
CROSSLNK 474
/note="Glycyl lysine isopeptide (Lys-Gly) (interchain with
G-Cter in SUMO)"
/evidence="ECO:0000269|PubMed:21518833"
MUTAGEN 15
/note="S->A: Shift in voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation. Additive effect on activation and steady-
state inactivation; when associated with A-457."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 15
/note="S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 71
/note="Q->E: Reduces channel activity."
/evidence="ECO:0000269|PubMed:12560340"
MUTAGEN 79
/note="E->D: No effect on channel activity."
/evidence="ECO:0000269|PubMed:12560340"
MUTAGEN 128
/note="Y->F: Reduces the increase of plasma membrane
insertion and apoptotic enhancement of potassium current
during cell death program. Significant loss of Src-mediated
phosphorylation and channel activity. Reduces interaction
with PTPRE. Increases cell viability against apoptotic
insults. Abolishes the increase of plasma membrane
insertion and apoptotic enhancement of potassium current
during cell death program; when associated with D-804."
/evidence="ECO:0000269|PubMed:12615930,
ECO:0000269|PubMed:19622611"
MUTAGEN 149
/note="K->Q: No loss of SUMO-dependent channel activity
modulation in hippocampal neurons."
/evidence="ECO:0000269|PubMed:21518833"
MUTAGEN 259
/note="K->Q: No loss of SUMO-dependent channel activity
modulation in hippocampal neurons."
/evidence="ECO:0000269|PubMed:21518833"
MUTAGEN 369
/note="W->C: Reduces channel activity. Does not inhibit
membrane plasma subcellular localization, interaction with
STX1A, pore-independent exocytosis activity and apoptotic
enhancement of potassium current during cell death program;
when associated with T-384."
/evidence="ECO:0000269|PubMed:12451110,
ECO:0000269|PubMed:12832499, ECO:0000269|PubMed:17301173,
ECO:0000269|PubMed:17360683, ECO:0000269|PubMed:20202934,
ECO:0000269|PubMed:20484665, ECO:0000269|PubMed:22411134"
MUTAGEN 384
/note="Y->T: Reduces channel activity. Does not inhibit
membrane plasma subcellular localization, interaction with
STX1A, pore-independent exocytosis activity and apoptotic
enhancement of potassium current during cell death program;
when associated with C-369."
/evidence="ECO:0000269|PubMed:12451110,
ECO:0000269|PubMed:12832499, ECO:0000269|PubMed:17301173,
ECO:0000269|PubMed:20202934, ECO:0000269|PubMed:20484665,
ECO:0000269|PubMed:22411134"
MUTAGEN 444
/note="S->A: No effect on Src-mediated phosphorylation."
/evidence="ECO:0000269|PubMed:9351973"
MUTAGEN 457
/note="S->A: Shift in voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation. Additive effect on activation and steady-
state inactivation; when associated with A-15."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 457
/note="S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 474
/note="K->Q: Loss of SUMO-dependent channel activity
modulation in hippocampal neurons."
/evidence="ECO:0000269|PubMed:21518833"
MUTAGEN 484
/note="S->A: Shift in voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 484
/note="S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 496
/note="S->A: No effect on Src-mediated phosphorylation."
/evidence="ECO:0000269|PubMed:9351973"
MUTAGEN 541
/note="S->A: Shift in voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 541
/note="S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 567
/note="S->A: Shift in voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation. Larger effect on activation and steady-state
inactivation; when associated with A-607."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 567
/note="S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 587
/note="S->A: Abolishes clustered subcellular distribution
in neurons."
/evidence="ECO:0000269|PubMed:10719893"
MUTAGEN 590
/note="S->A: Abolishes clustered subcellular distribution
in neurons. Does not affect KCNB1-containing vesicles
motility."
/evidence="ECO:0000269|PubMed:10719893,
ECO:0000269|PubMed:24569993"
MUTAGEN 591
/note="F->A: Abolishes clustered subcellular distribution
in neurons."
/evidence="ECO:0000269|PubMed:10719893"
MUTAGEN 593
/note="S->A: Abolishes clustered subcellular distribution
in neurons."
/evidence="ECO:0000269|PubMed:10719893"
MUTAGEN 607
/note="S->A: Shift in voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation. Larger effect on activation and steady-state
inactivation; when associated with A-567."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 607
/note="S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 655
/note="S->A: Shift in voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 655
/note="S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 719
/note="S->A: Shift in voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 719
/note="S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 771
/note="S->A: Shift in voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 771
/note="S->D: Resists voltage-dependent gating on
calcineurin-dependent activation and steady-state
inactivation."
/evidence="ECO:0000269|PubMed:16917065"
MUTAGEN 804
/note="S->A: Reduces the increase of plasma membrane
insertion and apoptotic enhancement of potassium current
during cell death program. No change in calcineurin-
dependent regulation of voltage-dependent gating. Abolishes
the increase of plasma membrane insertion and apoptotic
enhancement of potassium current during cell death program;
when associated with F-128."
/evidence="ECO:0000269|PubMed:16917065,
ECO:0000269|PubMed:17360683, ECO:0000269|PubMed:19622611"
MUTAGEN 804
/note="S->D: Does not reduce apoptotic enhancement of
potassium current during the cell death program."
/evidence="ECO:0000269|PubMed:17360683"
HELIX 274..281
/evidence="ECO:0007829|PDB:4JTA"
HELIX 286..302
/evidence="ECO:0007829|PDB:4JTA"
HELIX 303..307
/evidence="ECO:0007829|PDB:4JTA"
SEQUENCE 857 AA; 95637 MW; B3C5B0839AB15FD0 CRC64;
MPAGMTKHGS RSTSSLPPEP MEIVRSKACS RRVRLNVGGL AHEVLWRTLD RLPRTRLGKL
RDCNTHDSLL QVCDDYSLED NEYFFDRHPG AFTSILNFYR TGRLHMMEEM CALSFSQELD
YWGIDEIYLE SCCQARYHQK KEQMNEELKR EAETLREREG EEFDNTCCAE KRKKLWDLLE
KPNSSVAAKI LAIISIMFIV LSTIALSLNT LPELQSLDEF GQSTDNPQLA HVEAVCIAWF
TMEYLLRFLS SPKKWKFFKG PLNAIDLLAI LPYYVTIFLT ESNKSVLQFQ NVRRVVQIFR
IMRILRILKL ARHSTGLQSL GFTLRRSYNE LGLLILFLAM GIMIFSSLVF FAEKDEDDTK
FKSIPASFWW ATITMTTVGY GDIYPKTLLG KIVGGLCCIA GVLVIALPIP IIVNNFSEFY
KEQKRQEKAI KRREALERAK RNGSIVSMNM KDAFARSIEM MDIVVEKNGE SIAKKDKVQD
NHLSPNKWKW TKRALSETSS SKSFETKEQG SPEKARSSSS PQHLNVQQLE DMYSKMAKTQ
SQPILNTKEM APQSKPPEEL EMSSMPSPVA PLPARTEGVI DMRSMSSIDS FISCATDFPE
ATRFSHSPLA SLSSKAGSST APEVGWRGAL GASGGRLTET NPIPETSRSG FFVESPRSSM
KTNNPLKLRA LKVNFVEGDP TPLLPSLGLY HDPLRNRGGA AAAVAGLECA SLLDKPVLSP
ESSIYTTASA RTPPRSPEKH TAIAFNFEAG VHHYIDTDTD DEGQLLYSVD SSPPKSLHGS
TSPKFSTGAR TEKNHFESSP LPTSPKFLRP NCVYSSEGLT GKGPGAQEKC KLENHTPPDV
HMLPGGGAHG STRDQSI


Related products :

Catalog number Product name Quantity
28-297 This gene encodes a member of the potassium channel, voltage-gated, subfamily H. This member is a pore-forming (alpha) subunit of a voltage-gated non-inactivating delayed rectifier potassium channel. 0.1 mg
18-003-42663 Potassium voltage-gated channel subfamily KQT member 2 - Voltage-gated potassium channel subunit Kv7.2; Neuroblastoma-specific potassium channel subunit alpha KvLQT2; KQT-like 2 Polyclonal 0.05 mg Aff Pur
18-003-42664 Potassium voltage-gated channel subfamily KQT member 2 - Voltage-gated potassium channel subunit Kv7.2; Neuroblastoma-specific potassium channel subunit alpha KvLQT2; KQT-like 2 Polyclonal 0.1 mg Protein A
18-662-20074 Potassium voltage-gated channel subfamily C member 1 - Voltage-gated potassium channel subunit Kv3.1; Kv4; NGK2; RAW2 Polyclonal 0.1 ml
18-662-20009 Potassium voltage-gated channel subfamily B member 2 - Voltage-gated potassium channel subunit Kv2.2; CDRK Polyclonal 0.1 ml
18-003-43133 Potassium voltage-gated channel subfamily G member 1 - Voltage-gated potassium channel subunit Kv6.1; kH2 Polyclonal 0.05 mg Aff Pur
18-003-42629 Potassium voltage-gated channel subfamily D member 3 - Voltage-gated potassium channel subunit Kv4.3 Polyclonal 0.1 mg Protein A
Y062354 Anti-Potassium Channel Kv<_SUB>1.6 (Voltage-gated, Delayed-Rectifier Potassium Channel; RCK2; KV2) produced in rabbit Antibody 100ul
KCNT2 KCNS3 Gene potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3
201-20-2921 KCNS2{potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2}rabbit.pAb 0.2ml
KCNS3 KCNS1 Gene potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1
KCNT1 KCNS2 Gene potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2
18-003-42631 Cyclic GMP gated potassium channel - Potassium voltage-gated channel. shaker-related subfamily. member 10 Polyclonal 0.1 mg Protein A
CSB-EL012097RA Rat potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3 (KCNS3) ELISA kit, Species Rat, Sample Type serum, plasma 96T
CSB-EL012095RA Rat potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1 (KCNS1) ELISA kit, Species Rat, Sample Type serum, plasma 96T
CSB-EL012096RA Rat potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2 (KCNS2) ELISA kit, Species Rat, Sample Type serum, plasma 96T
CSB-EL012097HU Human potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3 (KCNS3) ELISA kit, Species Human, Sample Type serum, plasma 96T
CSB-EL012097RB Rabbit potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3 (KCNS3) ELISA kit, Species Rabbit, Sample Type serum, plasma 96T
CSB-EL012095HU Human potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1 (KCNS1) ELISA kit, Species Human, Sample Type serum, plasma 96T
CSB-EL012096HU Human potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2 (KCNS2) ELISA kit, Species Human, Sample Type serum, plasma 96T
CSB-EL012095MO Mouse potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1 (KCNS1) ELISA kit, Species Mouse, Sample Type serum, plasma 96T
CSB-EL012096MO Mouse potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2 (KCNS2) ELISA kit, Species Mouse, Sample Type serum, plasma 96T
CSB-EL012095RH Monkey potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1 (KCNS1) ELISA kit, Species Monkey, Sample Type serum, plasma 96T
CSB-EL012097MO Mouse potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3 (KCNS3) ELISA kit, Species Mouse, Sample Type serum, plasma 96T
CSB-PA012096GA01HU Rabbit anti-human potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2 polyclonal Antibody Primary antibody Host:Rabbit IgG 150ul
Pathways :
WP2197: Endothelin
WP2272: Pathogenic Escherichia coli infection
WP1566: Citrate cycle (TCA cycle)
WP1634: Butanoate metabolism
WP1663: Homologous recombination
WP1680: Oxidative phosphorylation
WP1711: Trinitrotoluene degradation
WP1626: Benzoate degradation via CoA ligation
WP1655: Geraniol degradation
WP1672: Mismatch repair
WP1694: Pyrimidine metabolism
WP1834: Interactions of the immunoglobulin superfamily (IgSF) member proteins
WP1614: 1- and 2-Methylnaphthalene degradation
WP2292: Chemokine signaling pathway
WP1644: DNA replication
WP1671: Methane metabolism
WP1693: Purine metabolism
WP1718: Vitamin B6 metabolism

Related Genes :
[KCNB1] Potassium voltage-gated channel subfamily B member 1 (Delayed rectifier potassium channel 1) (DRK1) (h-DRK1) (Voltage-gated potassium channel subunit Kv2.1)
[Kcnb1] Potassium voltage-gated channel subfamily B member 1 (Delayed rectifier potassium channel 1) (DRK1) (Voltage-gated potassium channel subunit Kv2.1)
[KCNB1] Potassium voltage-gated channel subfamily B member 1 (Delayed rectifier potassium channel 1) (DRK1) (Voltage-gated potassium channel subunit Kv2.1)
[Kcnb1] Potassium voltage-gated channel subfamily B member 1 (Voltage-gated potassium channel subunit Kv2.1) (mShab)
[KCNB1] Potassium voltage-gated channel subfamily B member 1 (Voltage-gated potassium channel subunit Kv2.1)
[KCNE1] Potassium voltage-gated channel subfamily E member 1 (Delayed rectifier potassium channel subunit IsK) (IKs producing slow voltage-gated potassium channel subunit beta Mink) (Minimal potassium channel)
[Kcne1] Potassium voltage-gated channel subfamily E member 1 (Delayed rectifier potassium channel subunit IsK) (IKs producing slow voltage-gated potassium channel subunit beta Mink) (Minimal potassium channel)
[Kcnb2] Potassium voltage-gated channel subfamily B member 2 (CDRK) (Voltage-gated potassium channel subunit Kv2.2)
[KCNB2] Potassium voltage-gated channel subfamily B member 2 (Voltage-gated potassium channel subunit Kv2.2) (Fragment)
[KCNB2] Potassium voltage-gated channel subfamily B member 2 (Voltage-gated potassium channel subunit Kv2.2)
[Kcna6] Potassium voltage-gated channel subfamily A member 6 (RCK2) (Voltage-gated potassium channel subunit Kv1.6) (Voltage-gated potassium channel subunit Kv2)
[KCNS1] Potassium voltage-gated channel subfamily S member 1 (Delayed-rectifier K(+) channel alpha subunit 1) (Voltage-gated potassium channel subunit Kv9.1)
[Kcns1] Potassium voltage-gated channel subfamily S member 1 (Delayed-rectifier K(+) channel alpha subunit 1) (Voltage-gated potassium channel subunit Kv9.1)
[Kcnc2] Potassium voltage-gated channel subfamily C member 2 (Potassium channel voltage-gated Shaw-related subfamily C member 2) (Shaw-like potassium channel) (Voltage-gated potassium channel subunit Kv3.2)
[KCNG3] Potassium voltage-gated channel subfamily G member 3 (Voltage-gated potassium channel subunit Kv10.1) (Voltage-gated potassium channel subunit Kv6.3)
[Kcnb2] Potassium voltage-gated channel subfamily B member 2 (Voltage-gated potassium channel subunit Kv2.2)
[Kcne2] Potassium voltage-gated channel subfamily E member 2 (MinK-related peptide 1) (Minimum potassium ion channel-related peptide 1) (Potassium channel subunit beta MiRP1)
[KCNA1] Potassium voltage-gated channel subfamily A member 1 (Voltage-gated K(+) channel HuKI) (Voltage-gated potassium channel HBK1) (Voltage-gated potassium channel subunit Kv1.1)
[KCNA2] Potassium voltage-gated channel subfamily A member 2 (NGK1) (Voltage-gated K(+) channel HuKIV) (Voltage-gated potassium channel HBK5) (Voltage-gated potassium channel subunit Kv1.2)
[KCNQ1 KCNA8 KCNA9 KVLQT1] Potassium voltage-gated channel subfamily KQT member 1 (IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1) (KQT-like 1) (Voltage-gated potassium channel subunit Kv7.1)
[KCNA4 KCNA4L] Potassium voltage-gated channel subfamily A member 4 (HPCN2) (Voltage-gated K(+) channel HuKII) (Voltage-gated potassium channel HBK4) (Voltage-gated potassium channel HK1) (Voltage-gated potassium channel subunit Kv1.4)
[Kcnc1] Potassium voltage-gated channel subfamily C member 1 (NGK2) (RAW2) (Voltage-gated potassium channel subunit Kv3.1) (Voltage-gated potassium channel subunit Kv4)
[KCNH2 ERG ERG1 HERG] Potassium voltage-gated channel subfamily H member 2 (Eag homolog) (Ether-a-go-go-related gene potassium channel 1) (ERG-1) (Eag-related protein 1) (Ether-a-go-go-related protein 1) (H-ERG) (hERG-1) (hERG1) (Voltage-gated potassium channel subunit Kv11.1)
[Kcna3] Potassium voltage-gated channel subfamily A member 3 (RCK3) (RGK5) (Voltage-gated potassium channel subunit Kv1.3) (Voltage-gated potassium channel subunit Kv3)
[KCNH1 EAG EAG1] Potassium voltage-gated channel subfamily H member 1 (Ether-a-go-go potassium channel 1) (EAG channel 1) (h-eag) (hEAG1) (Voltage-gated potassium channel subunit Kv10.1)
[KCNC1] Potassium voltage-gated channel subfamily C member 1 (NGK2) (Voltage-gated potassium channel subunit Kv3.1) (Voltage-gated potassium channel subunit Kv4)
[KCNA5] Potassium voltage-gated channel subfamily A member 5 (HPCN1) (Voltage-gated potassium channel HK2) (Voltage-gated potassium channel subunit Kv1.5)
[Kcnh1 Eag] Potassium voltage-gated channel subfamily H member 1 (Ether-a-go-go potassium channel 1) (EAG channel 1) (EAG1) (r-eag) (Voltage-gated potassium channel subunit Kv10.1)
[Kcnc1] Potassium voltage-gated channel subfamily C member 1 (NGK2) (Voltage-gated potassium channel subunit Kv3.1) (Voltage-gated potassium channel subunit Kv4)
[Kcnh2 Erg Merg1] Potassium voltage-gated channel subfamily H member 2 (Ether-a-go-go-related gene potassium channel 1) (ERG-1) (Eag-related protein 1) (Ether-a-go-go-related protein 1) (MERG) (Voltage-gated potassium channel subunit Kv11.1)

Bibliography :
No related Items