GENTAUR Belgium BVBA BE0473327336 Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45
GENTAUR U.S.A Genprice Inc,Logistics 547 Yurok Circle, SanJose, CA 95123
Tel (408) 780-0908, Fax (408) 780-0908, [email protected]

Did you know ? If you order before Friday 14h we deliver 90PCT of the the time next Tuesday, Gentaur another in time delivery

Pubmed ID: 10224227
Publication Date: //

Activation of Fas inhibits heat-induced activation of HSF1 and up-regulation of hsp70.


Activation of heat shock factor (HSF) 1-DNA binding and inducible heat shock protein (hsp) 70 (also called hsp72) expression enables cells to resist various forms of stress and survive. Fas, a membrane-bound protein, is a central proapoptotic factor; its activation leads to a cascade of events, resulting in programmed cell death. These two mechanisms with contradictory functions, promoting either cell survival or death, were examined for their potential to inhibit each other's activation. Induction of FAS-mediated signaling was followed by a rapid decrease in HSF1-DNA binding and inducible hsp70 expression. Inhibition of HSF1-DNA binding was demonstrated to be based on absent hyperphosphorylation of HSF1 during FAS signaling. These effects of FAS activation on the HSF1/hsp70 stress response were blocked by ICE (caspase 1) inhibitors, suggesting an ICE-mediated process. Furthermore, inhibition of HSF1/hsp70 was accompanied by an increase in apoptosis rates from 20% to 50% in response to heat stress. When analyzing the effects of HSF1/hsp70 activation on Fas-mediated apoptosis, protection from apoptosis was seen in cells with induced hsp70 protein levels, but not in cells that were just induced for HSF1-DNA binding. Thus, we conclude that inhibition of HSF1/hsp70 stress response during Fas-mediated apoptosis and vice versa may facilitate a cell to pass a previously chosen pathway, stress resistance or apoptosis, without the influence of inhibitory signals.
Authors: Schett G , Steiner C W , Gröger M , Winkler S , Graninger W , Smolen J , Xu Q , Steiner G ,

Reference:

  1. ncbi.nlm.nih.gov. [Last access //].

Related products :

Catalog number Product name Quantity
25-272 The heat-shock response is elicited by exposure of cells to thermal and chemical stress and through the activation of HSFs (heat shock factors) results in the elevated expression of heat-shock induced 0.05 mg
31-050 MDM4 inhibits p53- and p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. It inhibits degradation of MDM2. It can reverse MDM2-targeted degradation of p53 w 0.05 mg
31-051 MDM4 inhibits p53- and p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. inhibits degradation of MDM2. It can reverse MDM2-targeted degradation of p53 whil 0.1 mg
27-668 PTK2B encodes a cytoplasmic protein tyrosine kinase which is involved in calcium-induced regulation of ion channels and activation of the map kinase signaling pathway. The encoded protein may represen 0.05 mg
27-667 PTK2B encodes a cytoplasmic protein tyrosine kinase which is involved in calcium-induced regulation of ion channels and activation of the map kinase signaling pathway. The encoded protein may represen 0.1 mg